
Photon distribution function for long-distance propagation of partially coherent beams
through the turbulent atmosphere

G. P. Berman1,* and A. A. Chumak1,2

1Theoretical Division and the Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Institute of Physics of the National Academy of Sciences, prospect Nauki 46, Kiev-28, MSP 03028, Ukraine

�Received 24 April 2006; published 18 July 2006�

The photon density operator function is used to calculate light beam propagation through turbulent atmo-
sphere. A kinetic equation for the photon distribution function is derived and solved using the method of
characteristics. Optical wave correlations are described in terms of photon trajectories that depend on fluctua-
tions of the refractive index. It is shown that both linear and quadratic disturbances produce sizable effects for
long-distance propagation. The quadratic terms are shown to suppress the correlation of waves with different
wave vectors. We examine the intensity fluctuations of partially coherent beams �beams whose initial spatial
coherence is partially destroyed�. Our calculations show that it is possible to significantly reduce the intensity
fluctuations by using a partially coherent beam. The physical mechanism responsible for this pronounced
reduction is similar to that of the Hanbury-Braun–Twiss effect.
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I. INTRODUCTION

The study of the interaction of light beams with a random
media is of great importance for applications in such areas as
astronomy, laser communication, laser radar systems, etc.
Fluctuations of the atmospheric refractive index, caused by
turbulent eddies, affect electromagnetic waves. The effects of
turbulence have been investigated both theoretically and ex-
perimentally over the past few decades. �See, for example,
the monographs �1–3� and the surveys �4–7�.� Additional
beam spreading, beam wandering �“dancing”�, intensity fluc-
tuations �known as “scintillations”�, etc., caused by turbu-
lence limit significantly the range and the performance of
free-space communication systems.

It has been established that coherent laser beams are very
sensitive to atmospheric conditions. Realizing this, the idea
of utilizing of partially coherent beams �PCBs� for practical
purposes has arisen. It was shown by numerous researchers
�see, for example, publications �8–14�� that partially coher-
ent beams are less affected by turbulence than fully coherent
beams. A specific case �in which the spatial coherence of the
signal-carrying laser beam is partially destroyed before it is
launched into the atmospheric channel� was considered by
many researchers. This beam has the angular spread in free
space of the order of � / lc �� and lc are the wavelength and
the transverse correlation length of phase distortion at the
source aperture, respectively�, which is larger than that of the
coherent beam. For not too large distances of propagation,
beam spreading due to the small initial coherence length lc
may dominate throughout the trajectory. One can say that the
effects of turbulence are masked by the larger initial free-
space spreading. At the same time it is evident that, with
increasing propagation distance, the atmospheric inhomoge-
neity becomes the dominating factor. This results in a beam
size that is almost independent of the initial correlation
length.

The dependence of the intensity fluctuations on the initial
coherence is more intricate than the dependence of beam

spreading. Provided the dependence of the intensity fluctua-
tions on the initial coherence is given, the noise to signal
ratio can be controlled by choosing the optimal initial coher-
ence length lc. This tempting opportunity has stimulated
many studies in this field �9,15–21�. It was shown that con-
trol is possible for small fluctuations �weak turbulence or
short-distance propagation�.

At moderate and strong fluctuations the situation is more
complicated. Banakh et al. �18� have shown that for long
distances of propagation or for strong turbulence the inten-
sity fluctuations have a tendency to saturate at a level which
depends on the initial spatial coherence. This level may be
much lower than that of the coherent beam by the factor
�r0 / lc�2, where r0 is the initial radius of the beam. The paper
deals with the physical model when the measuring device
�detector� has the response time �d greater than the coherence
time �s of the radiation at the beginning of the trajectory. In
this case, the detector averages the signal over the initial
fluctuations, which are due to temporal intensity fluctuations
of the source and �or� may be generated when a coherent
beam is transformed into PCB. The authors of Ref. �18� have
solved an equation for the fourth-order coherence function
�the fourth moment of the field�. The derivation of the equa-
tion for fourth moment in the limit of Markov approximation
is given in Refs. �1,4�. Its solution is based on the approxi-
mate method developed by Yakushkin in Ref. �22�. The au-
thors of Ref. �18� have modified the Yakushkin approach to
be applicable to the case of PCBs. The Yakushkin method is
based on the observation that, for long distance propagation,
the dominant contribution to the fourth-order correlation
function comes from the products of two second-order co-
herence functions just as if Gaussian statistics for radiation
field were valid. The Dashen analysis �23� in terms of the
path integral formalism and the results of Fante �24� obtained
by employing the extended Huygens-Fresnel principle have
justified the Yakushkin idea. It seems to be quite reasonable
to consider that after long-distance propagation through a
medium with a random refractive index, the statistics of the
photon flux acquires some of the properties of thermal radia-
tion.*Email address: gpb@lanl.gov
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For similar conditions, when the coherence time of the
quasimonochromatic laser source is much smaller than the
detector’s integration time interval �d, Korotkova et al. �21�
have derived an analytical expression �see Eq. 33 in Ref.
�21�� for the intensity fluctuations. The paper �21� has gen-
eralized the analytical approach developed by Andrews and
Phillips �see monographs �2,3�� to the case of PCB. This
approach is a modification of the Rytov theory. Namely, in
addition to the first-order perturbation of the complex phase
of the field caused by refractive index fluctuations �as in
Rytov theory�, second-order perturbation terms are taken into
account. The results of Ref. �21� differs from those in Ref.
�18�. More comments are presented in Sec. IV.

The purpose of our paper is to develop a quantum pertur-
bation theory based on path integrals. This approach allows
us to obtain the scintillation index for the case of a PCB,
including a limit of a strong turbulence and long-distance
propagation. Our approach uses the distribution function of
photons �for photon density in phase space�, f�r ,q , t�, where
r and q are the coordinate and the momentum of photon, to
describe the beam characteristics at an arbitrary instant t. The
first and second moments of the distribution function ��f� and
�f f�� are used to obtain the beam size and intensity fluctua-
tions, respectively. Also, higher-order moments will be ob-
tained for long propagation paths.

The next section deals with the definition of the distribu-
tion function. The equation governing the evolution of the
distribution function will be derived.

II. THE PHOTON DISTRIBUTION FUNCTION AND ITS
EVOLUTION

The Hamiltonian of photons in a medium with a fluctuat-
ing refractive index is given by

H = �
k

� �kbk
†bk − �

k,k�

� �knk�bk
†bk+k�, �1�

where the two terms on the right-hand side describe photons
in a vacuum and the effect of refractive index fluctuations,
respectively; bk

† and bk are creation and annihilation opera-
tors of photons with momentum k, ��k� �ck is the photon
energy, c is the speed of light in a vacuum, and nk is the
Fourier transform of the refractive index fluctuations �n�r�.
The Fourier transform is defined by

nk =
1

V
	 dVeik·r�n�r� , �2�

where V�LxLyLz is the normalizing volume.
Equation �1� follows from the representation of the energy

of the random medium+electromagnetic field given in Ref.
�25� �Chap. 15� in the limit of small wave vectors k� �k��k�
and of atmosphere refractive index close to unity �n�r�
−1�1�. The former means that the scale of spatial inhomo-
geneity of turbulence is much greater than the wavelength of
the radiation. For simplicity, we consider here only the case
of polarized light with a fixed polarization throughout the
distance of propagation. Depolarization effects due to atmo-
sphere turbulence are very small. �See, for example, Refs.

�26,27�.� Also, the terms describing the zero-point electro-
magnetic energy are omitted in Eq. �1�.

The photon distribution function is defined by analogy
with the distribution functions for electrons, phonons �28�,
etc. It is given by

f�r,q,t� =
1

V
�
k

e−ik·rbq+k/2
† bq−k/2. �3�

The distribution function will be used to describe beams
with characteristic sizes much larger than the photon wave-
length. Thus, we will restrict a sum over k by some k0 �k
�k0�q0, where q0 is the wave vector corresponding to the
central frequency �0 of radiation �0=cq0�. At the same time
k0 is chosen to be large enough to sample the spatial varia-
tion of the light intensity.

After integration of the operator function f�r ,q , t� over
the volume V, we obtain the operator for the total number of
photons with momentum q:

	 dVf�r,q,t� = bq
†bq. �4�

Similarly, the quantity obtained after a summation of
f�r ,q , t� over q may serve as a photon density averaged over
a small spatial area with the size � /k0. This is very similar to
the Mandel operator �29� �Chap. 12� introduced in Ref. �30�.

Here and in the remainder of this paper, we use the
Heisenberg representation for all operators. Thus, the evolu-
tion of f�r ,q , t� is determined by the commutator with the
total Hamiltonian:

�t f�r,q,t� =
1

i�
�f�r,q,t�,H� . �5�

Equation �5� can be written explicitly as

�t f�r,q,t� + cq�rf�r,q,t� − i�0�
k

e−ik·rnk
 f�r,q +
k

2
,t�

− f�r,q −
k

2
,t�
 = 0, �6�

where cq=�q�q.
Considering the characteristic values of the photon mo-

mentum to be much greater than the wave vectors of turbu-
lence, we can express the difference of functions in square
brackets by the corresponding derivative. A detailed discus-
sion of this approximation is given in Sec. VI. Then, after
summing over k, we obtain

��t + cq�r + F�r��q�f�r,q,t� = 0, �7�

where F�r�=�0�rn�r�. As we see, the photon distribution
function is governed by a kinetic equation in which the ran-
dom force F�r� originates from atmospheric turbulence.

The distribution function determines density of photons at
a point �r ,q� of the phase space at time t. Equation �7� may
be interpreted as the equation governing the evolution of a
particle distribution function in which the state of each par-
ticle is described by the individual coordinate r and the mo-
mentum q. The trajectories of these particles may be ob-
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tained from the solution of the equations of motion

�r�t�
�t

= c�q�t�� ,

�q�t�
�t

= F�r�t�� . �8�

Then, the general solution of Eq. �7� is given by

f�r,q,t� = ��r − 	
0

t

dt�
�r�t��

�t�
;q − 	

0

t

dt�
�q�t��

�t� � , �9�

where the function ��r ,q� is the “initial” value of f�r ,q , t�,
i.e.,

��r,q� =
1

V
�
k

e−ik·r�bq+k/2
† bq−k/2��t=0 � �

k
e−ik·r��k,q� ,

�10�

and the “trajectories” r�t�� and q�t�� pass through the point
r ,q at t�= t �i.e., r�t�= t�=r ,q�t�= t�=q��. As one can see, the
photon distribution function at an arbitrary instant t is ex-
pressed via the operators bq

† ,bq defined for some fixed t0 �t0
is chosen to be equal to 0 in Eq. �9��. It is convenient to put
t− t0=z /c. Thus, t0 is the instant when photons exit from the
source. The initial photon statistics �at t0�, determined by the
source properties, is assumed to be given.

We consider here the propagation of light beams with
narrow spread �paraxial beams�. In this case, k� ,q��q0,
where index ��� means perpendicular to the direction of
propagation �the z-axis� components. The relative effect of
turbulence on qz is negligible because of the large value of
q0. At the same time q�, which determines a beam diver-
gence, can be increased considerably due to turbulence
�compared to the initial value�. Therefore, beam characteris-
tics should be modified significantly for the case of long
distance propagation.

It follows from Eq. �8� that the evolution of transverse
photon momentum is given by

q��t�� = q� + 	
t

t�
dt�F��r�t��� . �11�

Similarly, we obtain an expression for r�t��

r�t�� = r − cq�t − t�� −
c

q0
	

t

t�
dt��t� − t��F��r�t��� . �12�

Then, Eq. �9� can be written as

f�r,q,t� = ��r − cqt +
c

q0
	

0

t

dt�t�F��r�t���;q

− 	
0

t

dt�F��r�t���� . �13�

A regular iterative procedure is applicable here to expand
r�t�� in powers of F. Then, substituting the explicit terms
r�t�� into Eq. �13�, we will obtain solution of the problem. In
particular, the first and second moments of f , which describe

beam spreading and intensity fluctuation, can be calculated.
Applying this perturbation method, we can investigate the
effects of the initial partial �spatial� coherence on beam
spreading and scintillations.

III. BEAM SPREAD AND INTENSITY FLUCTUATIONS

The intensity of radiation in the z direction at r can be
presented in the form

I�r� = c�
q

� �qf�r,q,t� . �14�

This can be rewritten as

I�r� = c � �0�
q,k

e−ik·�r−c�q�t+�c/q0��0
t dt�t�F��r�t����

	�k�q − 	
0

t

dt�F��r�t���� . �15�

Let us restrict ourselves to only linear in F terms in Eq. �12�.
In other words, we put r−cq�t− t�� for r�t�� in arguments of
F� of Eq. �15�. After changing variables q�

−�0
t dt�F��r�t���→q� and using the relation z=ct, Eq. �15�

is transformed to

I�r� = c � �0�
q,k

e−ik��r�−q��z/q0�+�c/q0��0
t dt��t−t��F��r−c�q��t−t����

	�k�q� . �16�

The stochastic variables F and �k�q�, which are of different
nature, are separated in Eq. �16�. Averaging of each factor in
the sum can be performed independently because of the ab-
sence of correlations between the source fluctuations and the
refractive index fluctuations. Thus, we have

�I�r�� = c � �0�
q,k

�e−ik��r�−q��z/q0�+�c/q0��0
t dt�t�F��r−c�q�t����

	��k�q�� . �17�

In Eq. �17� and throughout this paper, we shall calculate
average values of functionals of �n. This can be carried out
when the statistics of �n is known. Usually, �n is assumed to
be a Gaussian random variable with known covariance
��n�r��n�r���. The covariance is defined by its Fourier trans-
form 
�g�, with respect to the difference r−r�. The depen-
dence 
�g� is often approximated by the von Karman for-
mula


�g� = 0.033Cn
2exp�− �gl0/2��2�

�g2 + L0
−2�11/6 . �18�

The quantities L0 and l0 are the outer and inner scales sizes
of the turbulent eddies, respectively. In atmospheric turbu-
lence, L0 may range from 1 to 100 m, and l0 is usually on the
order of several mm. Cn

2 is known as the index-of-refraction
structure constant. In most physically important cases the
quantity L0

−2 in the denominator of Eq. �18� can be omitted.
In this case, the von Karman spectrum is reduced to the
Tatarskii spectrum �1�.
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Using the explicit form for the turbulence fluctuations,
Eq. �17� becomes

�I�r�� = c � �0�
q,k

e−ik��r�−q��z/q0��−k�
2 z3T��k�q�� , �19�

where the effect of turbulence is represented by a quantity T
�T=0.558Cn

2l0
−1/3�. When obtaining Eq. �19� we have as-

sumed that the distance of propagation is much greater than
the characteristic length of the turbulence. The condition
z�L0 is sufficient to satisfy this requirement for any regime
of propagation. Also, the Tatarskii expression for the turbu-
lence spectrum was used.

Now we consider the average value of ��k�q��. It depends
entirely on the source properties. Let us consider a source
field with the following mode structure

Es�r� = �
n
�2� � �n

Lz
�1/2

�eiqnz�n�r��bn + e−iqnz�n
*�r��bn

†� ,

�20�

where the normalized function ��r��, wave vector qn, and
frequency �n, describe the profile and eigenfrequency of nth
mode, respectively. This field should be matched with the
field in the atmosphere

Eatm�r� = �
q
�2� � �q

V
�1/2

�eiq·rbq + e−iq·rbq
†� , �21�

in the plane of the transmitter, where functions �n�r�� are
assumed to be known. When we deal with single-mode laser
radiation �for example, with the n=0 mode�, only one term
in the sum in Eq. �20� should be retained. The other terms
can be omitted. It is important to point out that rigorous
matching conditions would also involve the vacuum fields to
maintain correct commutation relations for all field opera-
tors. Nevertheless, the vacuum fields may be neglected in our
case for two reasons: �i� the photon detectors are assumed to
be of the absorbing type, hence they are not sensitive to
vacuum fields and �ii� we consider only linear �in E� propa-
gation of the radiation. In this case,

bq�,q0
= b�LxLy�−1/2	 dr�e−iq�r���r�� , �22�

where the index in � is dropped for brevity.
Until now, all phase distortions were not considered. In

practice, stochastic phase distortions may be introduced by
means of a rotating phase diffuser placed in front of the
aperture. Mathematically, the effect of the phase diffuser
may be taken into account by introducing the multiplier
e−i��r�� �see, for example, Ref. �17�� into the integrand of Eq.
�22�, where ��r��=a ·r� and a is a Gaussian random vari-
able with covariance ��ax,y�2�=�c

−2. Then, considering � to

be a Gaussian-type function ��=
�2

��r0
e−r�

2 /r0
2�, we obtain

��k�q�� =
2�r1

2

VLxLy
�b†b�e−k2�r0

2/8�−q2�r1
2/2�, �23�

where r1
2=r0

2 / �1+2r0
2�c

−2� and �b†b�= �
�2 for the coherent
state �
� of the laser radiation. Here, symbols q and k are the

perpendicular components of the wave vectors. As we see,
the effect of partial coherence is represented by the value of
r1

2. In the limiting case of �c→�, r1
2 tends to r0

2. In the op-
posite case of small correlation length �c→0, r1

2 tends to
�c

2 /2. Hence, the quantity b=r1
2 /r0

2 is a measure of a spatial
coherence of the beam.

Using Eqs. �19� and �23�, it is found that

�I�z,r� = 0�� = I0
1 +
4z2

q0
2r0

2r1
2 +

8z3T

r0
2 
−1

, �24�

where I0 is equal to �I�r�� at r�=0 and z=0. Equation �24�
coincides with the corresponding Eq. �39� of Ref. �4� when
Cn

2 does not depend on distance z and r1=r0.
The intensity for arbitrary r� can be obtained from Eq.

�24� by multiplying its right-hand side by the factor

exp�−
2r�

2

r0
2 �1+ 4z2

q0
2r0

2r1
2 + 8z3T

r0
2 �−1�. The average beam radius R de-

fined as

R2 =
	 dr�r�

2 �I�r���

	 dr��I�r���
�25�

is given by

R2 =
r0

2

2

1 +

4z2

q0
2r0

2r1
2 +

8z3T

r0
2 
 . �26�

This coincides with Eq. �4� of the paper �14�, where the
effect of partial coherence was studied. As one can see, only
the second term in the square brackets depends on the initial
coherence via r1

2. This term describes the diffraction spread-
ing of the beam in free space. It depends on both the initial
beam radius r0 /�2 and the coherence length lc via r1. The
spreading may be enhanced considerably, if �c is decreasing.
In this way, the diffraction divergence may exceed the diver-
gence due to turbulence �the third term� for a broad range of
distances. In this case, we note the independence of the beam
radius on the turbulence strength, i.e., on the weather condi-
tions. Nevertheless, it follows from Eq. �24� that the “turbu-
lent” term dominates in the limit of z→�. Figure 1 shows
the dependence R2�r1

2 /r0
2� for two different distances and tur-

bulence strengths.
Prior to considering the intensity fluctuations, it is useful

to analyze qualitatively peculiarities of the wave correlations
in the course of their propagation through the atmosphere. It
follows from Eqs. �23� and �19� that the characteristic values
of k contributing to �I� are less than or of the order of the

smallest of the quantities 2�2
r0

,
q0r1

z�2
, �z3T�−1/2. This means that

the two waves, bq+k/2
† and bq−k/2, are correlated

��bq+k/2
† bq−k/2��0� if k satisfies the above requirement. In the

limit of z→�, each wave correlates with itself only as if the
beam originates from a thermal source. The characteristic
distance for wave randomization can be obtained from the
requirement that the “turbulent” term should be dominant
term in Eq. �26�. The corresponding criteria are given by
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8z3T � r0
2,4z2q0

−2r1
−2.

These inequalities distinguish the range of strong turbulence,
which is of the most interest for our studies.

The intensity fluctuations are determined by the expres-
sion

�:I2�r�:� =
�c � �0�2

V2 �
q,k

�
q�,k�

e−i�k+k��r

	�bq+k/2
† bq�+k�/2

† bq�−k�/2bq−k/2� , �27�

where the symbol �:¯ : � means the normal ordering of the
creation and annihilation operators. �See more detail in Ref.
�29�.�

Let us introduce the notation

G�q,q�;k,k�� � bq+k/2
† bq�+k�/2

† bq�−k�/2bq−k/2.

In the limit z→� we have

�G� = �bq+k/2
† bq−k/2��bq�+k�/2

† bq�−k�/2� + �bq+k/2
† bq�−k�/2�

	�bq�+k�/2
† bq−k/2�

= nqnq��k,0�k�,0 + nq+k/2nq−k/2�q,q��k,−k�, �28�

where nq��bq
†bq�. The terms which describe two pairs of

waves with coinciding indices in each pair have nonzero val-
ues. At large but finite z, correlation of waves with somewhat
different indices �“nondiagonal” terms� may also occur.
These are terms with �i� k ,k�� �z3T�−1/2 or �ii� �q−q�+ �k
+k�� /2 � , �q�−q+ �k+k�� /2 � � �z3T�−1/2. The estimates �i�
and �ii� follow from the requirement that the deviations of
the wave vectors from their “diagonal” values are less than
or of the order of the reduced beam radius. The last condition
is determined by the “turbulent” term in Eq. �26� for the case
of long distance propagation. The intersection of both ranges
of wave vectors confined by inequalities �i� and �ii� may be
neglected because of small volume in wave-vector space.
Then, Eq. �28� is reduced to

�:I2�r�:� =
�c � �0�2

V2 ��1 + �2��G�q,q�;k,k��� , �29�

where �1,2 means summation, with the restrictions �i� and
�ii�, respectively. The second sum is reduced to the first one
by renaming the indices. Then considering the quantity
�1/V�bq+k/2

† bq−k/2 as a spatial Fourier component of the dis-
tribution function, we have

�:I2�r�:�
2�c � �0�2 = ��e−i�k�r−c�q�t�+k��r−c�q��t�+�c/q0��0

t dt�t�„k·F�r�q,t���+k�F�r�q�,t���…� 	 :�k�q − 	
0

t

dt�F�r�q,t����
	�k��q� − 	

0

t

dt�F�r�q�,t����:� , �30�

where the summation is with restriction �i�. For the sake of brevity, we again denote by F the component of the force
perpendicular to the z axis.

The averaging of the product :��: with respect to source variables can be performed straightforwardly. �See the derivation
of Eq. �23�.� It is given by

�:�k�Q��k��Q��:� = �2�r0r2

VLxLy
�2

�b†b†bb� 	 e−�Q − Q��2r0
2/4−�Q + Q��2r2

2/4−�k2+k�2�r0
2/8, �31�

where �b†b†bb�= �
�4,

FIG. 1. The dependence of beam radius on the coherence length
parameter �r1 /r0�2 for q0=107 m−1 , �l0 /2��=10−3 m. There is a
wide range of �r1 /r0�2 for which the beam radius is almost constant.
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Q = q − 	
0

t

dt�F�r�q,t���,Q� = q� − 	
0

t

dt�F�r�q�,t��� ,

and the quantity r2 is defined �similarly to r1� as r2
2=r0

2 / �1
+4r0

2�c
−2�.

The rest of the calculations required for obtaining �:I2 : �
can be carried out according to the scheme outlined for the
case of �I�. Up to now, we have dealt with the equal-time
correlation function �:I�t�I�t� : �. This analysis is relevant to
the experimental situation in which the response time of the
detector �d is much less than the characteristic time of the
phase diffuser �s. In what follows, we consider the opposite
case �d��s. The detector averages intensity fluctuations dur-
ing the time interval �d. Lowering of the noise level may be
expected for this detector. Although the time interval �d is
much larger than �s at the same time it should be much
shorter than the characteristic time of the turbulence evolu-
tion �frozen turbulence�, i.e., �d��a= l /va, where l and va
are the characteristic radius of the turbulent eddies and their
transverse flow velocity across the beam, respectively. The
average value �:I�t�I�t+�� : � with ���d gives the dominant
contribution to the quantity measured by this detector. In this
case, the atmospheric conditions of light propagations may
be considered to be fixed, while the initial correlations of
four field operators bq

† ,bq, which enter �:I�t�I�t+�� : �, should
be calculated accounting for the very different random
phases ��t0� and ��t0+�� introduced by the diffuser. These
phases do not correlate ����r , t���r� , t+���=0� even at r
=r�. Hence, averaging over the random phases of each of the
product of four operators is reduced to calculations of
�e−i���r1�t0��+��r2�t0+���−��r3�t0+���−��r4�t0����, that is equal to
�e−i���r1�−��r4����e−i���r2�−��r3���. As a result, the general expres-
sion for the intensity correlations will become different from

Eq. �30�. The difference is that Eq. �31� should become

2� �r1
2

VLxLy
�2

�b†b†bb��e−�Q2+Q�2�r1
2/2−�k2+k�2�r0

2/8

+ e−��Q − Q��2+�k + k��2/4�r0
2/4−��Q + Q��2+�k − k��2/4�r1

2/4� .

�32�

The two terms in the braces of Eq. �32� correspond to the
two summands in Eq. �29� which describe two types of wave
correlations in the course of four waves propagation through
turbulent atmosphere. As we see, the contributions of both
trajectories are not equivalent when r1�r0. The effect is en-
tirely due to partial coherence and may be controlled by
means of variation of r1. For the case of r1=r0, Eq. �32� is
reduced to Eq. �31�.

The relative contributions of the two terms in Eq. �32� to
the intensity correlation function can be easily estimated.
The effective volumes of integration of the first and second
terms over q and q� are of the order of r1

−4 and r1
−2r0

−2, re-
spectively. Moreover, for long-distance propagation, the in-
tegrations over k and k� are confined to the “turbulent”
terms, but not by r1

−1 or r0
−1. Hence the second term gives a

contribution, which is �r0 /r1�2 times less than the first one. It
follows from a comparison of Eqs. �31� and �32� that the
intensity correlation function measured by a fast detector is
approximately twice the value of a slow-detector measure-
ment when r0�r1. Of course, this estimate is only valid for
long-distance propagation. The next section deals with the
case of a slow detector in more detail.

IV. CALCULATIONS OF THE INTENSITY FLUCTUATIONS

It follows from previous considerations that the intensity
correlation function for a slow detector is given by

�:I�t + ��I�t�:� = �2�c � �0r1
2

VLxLy
�2

�b†b†bb����e−�Q2+Q�2�r1
2/2−�k2+k�2�r0

2/8 + e−��Q − Q��2+�k + k��2/4�r0
2/4−��Q + Q��2+�k − k��2/4�r1

2/4�

	e−i�k�r−c�q�t�+k��r−c�q��t�+�c/q0��0
t dt�t�„k·F�r�q,t���+k�F�r�q�,t���…�� . �33�

As we see, the problem is reduced to averaging over the refractive index fluctuations and many-fold integrations. It is
worthwhile to recall here that Q and Q� are dependent on the fluctuating force F. To get a linear form with respect to F in the
exponents of Eq. �33�, the integral representations for the factors containing Q and Q� may be used:

e−Q2r1
2/2 =	 dp

2�r1
2eip·Q−p2/�2r1

2�, �34�

e−�Q + Q��2r1
2/4−�Q − Q��2r0

2/4 =	 dpdp�

�2�r0r1�2eip·Q+ip�Q�−�p − p��2/�4r0
2�−�p + p��2/�4r1

2�. �35�

After substitution of expressions �34� and �35� into Eq. �33�, further analysis is facilitated considerably. In this case the
fluctuating field enters the intensity correlation function only via the factor

e−i�0
t dt���p+kt�s/q0�F�r�q,t���+�p�+k�t�s/q0�F�r�q�,t����. �36�
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The averaging of Eq. �36� over the refractive index fluctua-
tions may be performed straightforwardly if we consider the
trajectories r�q , t�� and r�q� , t�� to be unperturbed by the
turbulence, i.e., r�q , t��=r+c�q��t�− t�, and r�q� , t��=r
+c�q���t�− t�. Then, the average value of Eq. �36� is given by

exp�− 0.033Cn
2�2q0

2	
0

z

dx	
0

�

dgg−2/3e−�gl0/2��2
��p + kx/q0�2

+ �p� + k�x/q0�2+ 2�p� + k�x/q0��p�� + k��x/q0��J0 − J2�

+ 2�p� + k�x/q0��p�� + k�� x/q0��J0 + J2��� , �37�

where J0 and J2 are zeroth and second order Bessel functions
with the arguments equal to g �q−q� � �z−x� /q0. The indices
��� and ��� indicate the parallel and perpendicular to q−q�
components of the corresponding 2D vectors. In the deriva-
tion of Eq. �37� we have used the relations

�F�r�q,t���F�r�q,t���� = �F�r�q,t�� − r�q,t���F�0��

= �F�cq�t� − t���F�0�� �38�

and

�F�r�q,t���F�r�q�,t���� = �F�r�q,t�� − r�q�,t���F�0��

= �F�cq��t� − t�� − cq−q��t − t���F�0��

� �F�cez�t� − t�� − cq−q��t

− t���F�0�� , �39�

where ez is a unit vector in the z direction. The two first
terms in square brackets of Eq. �37� describe correlations of
waves with the same q and q�, while two other terms de-
scribe cross correlations. The contribution of the last terms
decreases with increasing distance of propagation z because
J0,2�y�→0 when y→�. Neglecting the cross-correlation
terms, we can easily obtain the asymptotic value �z→ � � of
the intensity fluctuations and the scintillation index. The
scintillation index is given by

�2 =
�:I�t + ��I�t�:� − �I�2

�I�2 =
r1

2

r0
2 . �40�

A similar result for the limiting case
r1

r0
→0 was obtained in

Ref. �18�. At the same time, this result differs from the
asymptotic value equal to 1, obtained in Ref. �21�. The dif-
ference may arise because of a different assumptions on the
coherent properties of the source used by the authors of Ref.
�21�. Namely, in Ref. �21� the authors consider a small co-
herence time equal to inverse bandwidth of the laser genera-
tion, while our results are valid for small characteristic times
of local phase fluctuations introduced by the dynamic phase
screen.

As we see, the scintillation index tends to zero when z
→ � , �r1 /r0�2→0. This property of partially coherent radia-
tion is favorable for practical utilization.

Similar reasonings may be used to obtain the correlator of
arbitrary �the mth� order. It is given by

�:�i=1

m
�I�ti� − �I��:�

�I�m = am� r1

r0
�m

, �41�

where �s� �ti− tj � ��d and am=1,2 ,9 ,44,265¯ for m
=2,3 ,4 ,5 ,6¯, respectively.

Taking into account Eqs. �33�–�36� and all terms in Eq.
�37� we obtain an analytic expression for the intensity fluc-
tuations in which many integrations can be performed ana-
lytically. The rest �threefold integral� can be evaluated nu-
merically. This allows us to analyze the effect of turbulence
on �2 at large but finite distances.

Equation �37� is derived under the assumption that the
trajectories r�q , t�� in the fluctuating force F are straight
lines. Let us analyze the effect of distortion of trajectories
due to the fluctuating force. With regard for the fact that the
force F is responsible for changing the photon transverse
momentum �and the transverse velocity�, the account for the
dependence of F on F means the account of nonlinear in F
effects in the photon transverse displacements. These effects
are beyond the applicability of the fourth-moment equation
�1,4�, therefore, their studies are impossible by means of the
Yakushkin method. Also, this means that papers �18,19�,
which are based on the Yakushkin method, stay this problem
out of consideration.

First of all, it should be noted that the correlation function
�F�r1�F�r2�� depends on r1−r2. If both points belong to the
same trajectory �r1�r�q , t�� ,r2�r�q , t��� this difference is
equal to r�q , t��−r�q , t���cez�t�− t��. �See Eq. �38�.� Conse-
quently �t�− t� � �L0 /c and only negligible particle displace-
ments in perpendicular to the z direction may occur for such
very short time intervals. In the other case, when two points
belong to different trajectories �r1�r�q , t�� ,r2�r�q� , t���
we have

r1 − r2 � cez�t� − t�� − cq−q��t − t��

+
c

q0
	

t�

t

dt1�t1 − t���F�r�q,t1�� − F�r�q�,t1��� . �42�

It can be easily seen from Eq. �42� that for any given �t�
− t� � �L0 /c, the last two terms on the right-hand side may be
comparable with the first term for sufficiently large values of
t− t�. In this case, the deviations of the trajectories from
straight lines, which enter arguments in the left hand side of
Eq. �39�, should be taken into account. One can say that the
deviations are accumulated throughout the whole propaga-
tion path and, in contrast to the case of the same trajectory,
may become sufficiently large to influence the wave correla-
tions.

For further analysis, an important property of the correla-
tion function �F�r1−r2�F�, where r1−r2 is given by Eq. �42�,
has to be noted. There is almost no correlation between F
entering the argument of F and the function itself. This is
because of the negligibly small time intervals �or character-
istic distances� where these functions correlate: 0� t1− t� , t�
�L0 /c. Then, if we consider as previously that L0�z, the
averaging of �F�r1−r2�F� may be undertaken in two steps:
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first, we average this quantity considering r1−r2 as a fixed
parameter and after that the remaining averaging should be
performed. The result is

�Fi�r1 − r2�Fj�0�� =	 dggigj
�g��e−ig�r1−r2�� , �43�

where g is a three-dimensional vector and the indices i , j
denote the components perpendicular to z. The procedure
described above may be repeated to obtain �e−ig�r1−r2��.
Again, this function may be expressed in terms of two-point
correlation functions in which the points belong to the same
or different trajectories. At this stage we will simplify further
analysis by imposing the approximation

�e−ig�r1−r2�� � �e−ig·r1��eig·r2� , �44�

where the correlation of different trajectories is neglected.
Physically, this approximation requires that two photons with
different transverse momenta propagate in spatial areas with
different refractive indices and experience different fluctuat-
ing forces. Therefore they gain different values of the trans-
verse velocity and transverse displacements. It is evident that
for any finite value of q−q�, the displacements become un-
correlated when z→�.

Within the approximation �44�, the effect of refractive in-
dex fluctuations on trajectories in Eq. �36� may be accounted
for by multiplying all the Bessel functions in Eq. �37� by the
factor e−��z−x�3

, where

� = ��g� = 0.011�2�2��1/3��1

6
�Cn

2l0
−1/3g2.

This factor reduces the effect of correlations of different tra-
jectories by taking into account randomization of the particle
displacements from straight lines.

V. WEAK IRRADIANCE FLUCTUATIONS

For the case of weak turbulence or short distance propa-
gation, the beam characteristics are the same as for propaga-
tion in free space. Small deviations from free space regime
may be accounted using perturbation methods. As previ-
ously, the intensity fluctuations may be described in terms of
the function G�q ,q� ;k ,k��. Further analysis is simplified if
one uses an iterative procedure not for G, but for its fluctu-
ating part � defined as

��q,q�;k,k�� = G�q,q�;k,k�� − �bq+k/2
† bq−k/2�

	�bq�+k�/2
† bq�−k�/2� . �45�

The equation of motion for � is given by

��t − i��q,q�;k,k�����q,q�;k,k��

= i�0�
g

ng���q + g/2,q�;k − g,k��

− ��q − g/2,q�;k − g,k�� + �q,k ↔ q�,k��� , �46�

where the symbol �q ,k↔q� ,k�� indicates two summands,
which are similar to previous ones but with the variables
interchanged as indicated, and

��q,q�;k,k�� � �q+k/2 + �q�+k�/2 − �q�−k�/2 − �q−k/2.

It follows from Eq. �46� that the average value of � may be
written as

���q,q�;k,k��� = i�0�
g
	

0

t

dt�ei��q,q�;k,k���t−t��

	�ng���q + g/2,q�;k − g,k�� − ��q

− g/2,q�;k − g,k�� + �q,k ↔ q�,k����t=t�� ,

�47�

where the initial condition ���q ,q� ;k ,k����t=0=0 corre-
sponding to the case of slow detector, was used. The right-
hand side of Eq. �47�, dependent on average value of �ng��,
is still unknown. An expression similar to Eq. �47� may be
derived again for �ng��. Then, we will simplify the problem
by considering the time dependence of all operators in the
integrand to be determined by free-space propagation laws.
The approach is in the spirit of the classical Rytov approxi-
mation �1�. This will make it possible to integrate all terms
and to get explicit forms for �ng�� as well as for ���. Using
some simple algebra, it can be proved that the scintillation
index is given by

�2 = �1
2K�z,r0,r1� , �48�

where �1
2 is the Rytov variance defined by �1

2

=1.23Cn
2q0

7/6z11/6 and

K�z,�0,�1� = 4.24	
0

1

d�	
0

�

dxx−8/3exp�− x2
 q0l0
2

4�2z

+ �2 �0
2 + �1

2

4 + �0
2�1

2
�sin2� �x2

2
−

2�2x2

4 + �0
2�1

2� ,

�49�

where �0,1
2 =r0,1

2 q0 /z. As done previously, in course of deri-
vation of Eq. �48�, we have considered the propagation dis-
tance to be much longer than the characteristic scale of tur-
bulence variation �z�L0�. It follows from Eq. �49� that in
the limit of �1→�, l0→0, we have the result of Rytov
theory ��2=�1

2� because K→1. The quantity in the square
brackets of Eq. �49� is negligible in this case. With decreas-
ing initial beam coherence, r1 becomes smaller and it may
occur that the quantity in square brackets becomes suffi-
ciently large to influence the result of integration. The char-
acter of wave propagation becomes modified from the plane
wave regime to the spherical wave regime. This is accompa-
nied by a decrease of �2. The effect is saturated at some
small values of r1�2z /r0q0 and further decrease of the co-
herent length �c has no effect on �2. Also, when �0 is small,
the effect of r1 variation is of no significance. Therefore,
there is the opportunity to control �2 but this is only possible
at a sufficiently large aperture radius r0 and small distance z.
Furthermore, the reduction of �2 is limited by some finite
value. Figure 2 illustrates the effect of partial coherence just
for the favorable case when �0=5.
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VI. DISCUSSION

Figures 3 and 4 show the dependence of scintillation in-
dex on the turbulence for two different distances z. A well-
pronounced effect for the decreasing of �2 with the decrease
of the initial coherence can be seen in the range of strong
turbulence. There is a very simple physical explanation of
the reduction of �2. Two things are very important for un-
derstanding this phenomenon. First of all, in the course of
the irradiance propagation the beam acquires the properties

of Gaussian statistics. Therefore, the asymptotic value of the
intensity correlations �I�t�I�t�� is given by 2�I�2. On the other
hand, the quadratic detector counts are determined not by
simultaneous correlations, but by the average �I�t�I�t+���,
where the characteristic value of � is of the order of �d. In the
limiting case of �c→0 and ���s �slow detector�, there are
no correlations between I�t� and I�t+��. Hence, �I�t�I�t+���
= �I�2, and the normalized variance of the intensity fluctua-
tions is negligible ��2→0�. This physical picture is quite
similar to the well-known Hanbury-Braun–Twiss effect �29�,
or photon bunching for thermal light: at zero delay the cor-
relation function has twice the value for long delays. For
finite values of �c, the irradiance differs from thermal light
resulting in a finite value of the scintillation index. Our
theory gives the scintillation index equal to r1

2 /r0
2, that is the

relative part of the aperture where the exiting light may be
considered as a coherent light.

It should be noted that the finite value of �2 shows an
absence of full thermalization because the memory of the
photon flux about source correlations still exists. This
memory may be lost due to fluctuations of the photon transit
time �t. �The transit time was assumed to be constant �equal
to z /c� in the previous analysis.� When �t�0, the initial
conditions for f�r ,q , t� correspond not to its value at the
aperture plane, but, for example, to some outlying point �z
=c ��t� where the turbulence has already modified the waves.
The estimate of �z is given by its r.m.s. value. Setting

�z = 	
0

z

dz��n�z�� ,

we can easily obtain ���z�2��0.066�2zCn
2L0

5/3. When Cn
2

=10−13 m−2/3, L0=10 m, z=105 m, we have ���z�2�1/2

�0.55	10−3 m and ��t � �2	10−12 s, which is negligibly
small.

FIG. 2. Dependence of scintillation index on turbulence strength
for weak fluctuations; q0 and l0 are as in Fig. 1. Decreasing of
scintillation index with the decrease of source coherence is seen
�similar to the results of Korotkova et al. �21��.

FIG. 3. Plots �2�Cn
2� for different initial coherence �r1 /r0�2; q0

and l0 are as in Fig. 1. Left-side curves calculated with employing
Eqs. �48� and �49� exhibit negligible effect of partial coherence
�merged curves�, that is in contrast to results shown in Fig. 2. Two
very different parameters �0

2 are used in these cases. Black squares
show �2 obtained with the assumption of straight trajectories in Eq.
�36�.

FIG. 4. The same as in Fig. 3 but for longer distance. The upper
curve corresponds to coherent beam. It approaches asymptotically
to the value �2=1.
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Other causes of transit time fluctuations arise from fluc-
tuations of the transverse velocity of the photons. For non-
zero q� the photon velocity in the z direction is given by

cz =
��q

�qz
� c�1 −

q�
2

2q0
2� . �50�

Assuming q� to be caused by the turbulence, we have

q�z� = 	
0

z

F�z��dz�/c , �51�

where indices � are omitted again. Then, using Eqs. �50�
and �51� we may estimate �t as

�t � 	
0

z dz�

c � 1

1 − q2/2q0
2 − 1� � 	

0

z dz�

c

�q2�z���
2q0

2 � 1.7
z2Cn

2

cl0
1/3 .

�52�

For the same parameters used previously, �t�3	10−11 s
and ���z�2�1/2�9	10−3 m, which is negligible again.

The most serious assumption of our approach is that the
influence of the turbulence on the photon distribution can be
described in terms of a random force F�r� �see Eq. �7��
modifying photon momentum q�z. Mathematically, this ap-
proximation can be justified when the width of the photon
distribution in momentum space is greater than those turbu-
lence wave vectors, which give the dominant contribution to
�2. In the vicinity of the source, the photon momentum is
distributed within the range of the order of � /r1. �See Eq.
�23�.� The turbulence spectrum covers very broad interval of
wave vectors �� /L0 ,� / l0�, where L0 / l0�105. Therefore, it
is not clear a priori what wave vector should be taken for the
comparison. Of course, the condition r1� l0 is sufficient to
validate our approach. At the same time, this condition im-
poses very rigid restriction on real optical systems. Fortu-
nately, it is not obligatory for a reliable solution for long-
distance propagation. First of all, it may be assumed that a
broad range of the turbulence spectrum, rather than wave
vectors equal to � / l0, contributes significantly to measured
quantities. If this is true, these quantities would not be sen-
sitive to the boundary values of wave vectors. In this context,
it is important to note that the beam radius really does exhibit
a weak dependence on l0. �It depends on l0 through T
� l0

−1/3, see Eq. �26�.� Hence, it is reasonable to consider the
characteristic value of the turbulence wave vector to be much
smaller than � / l0.

On the other hand, due to the action of the random force,
there is a diffusionlike increase in the transverse momentum
of photons in the course of their propagation. It is just that
quantity �not � /r1� which should be compared with the tur-
bulence wave vectors for large z. Using Eq. �51� we may
estimate the increase of the transverse momentum as

�q2� = 0.066�2��1

6
�q0

2zCn
2�2�/l0�1/3. �53�

Substituting the previous parameters into Eq. �53�, we get
�q2� /�2l0

−2�102. This estimate shows our approach to be

reliable for long distance propagation. At small distances, the
perturbation theory is applicable.

VII. CONCLUSION

The approach presented in this paper can be used for both
stationary beams as well as for beams with varying intensity.
Also, the statistics of the exiting irradiance may differ from
the statistics of coherent or partially coherent beams. Our
method of obtaining the correlation function for the intensity
fluctuations is not based on the solution of an equation for
the fourth-order correlation function. Moreover, we have ob-
tained the asymptotic value for all moments of the intensity
fluctuations. Our method does not employ Markov approxi-
mation used previously to derive the equation for the fourth-
order correlation function. Also, we do not use the so-called
quadratic approximation, which similar to the Markov ap-
proximation is nothing more than an artificial modification of
the refractive index covariance in order to simplify the the-
oretical treatment. Both simplifications are inherent to papers
�18,19�. In addition to that, there was assumed l0=0, that is
impossible within our consideration. Suffice it to say that in
the case of l0=0, the quantities T and � lose their physical
sense because of infinitely large values. In spite of the pres-
ence of so serious approximations, the asymptotic �z→� or
Cn

2→�� results of Ref. �18� and our paper results are very
similar. The explanation of this follows from the result ob-
tained: the asymptotic value of �2 does not depend on the
atmosphere turbulence mechanism. Therefore, it does not
matter what kind of turbulence spectrum is employed in the
case of saturated fluctuations. At the same time, our calcula-
tions show �see Figs. 3 and 4� that the distinct asymptotic
regime scarcely can be reached in real experiments. Thus, for
practice, it is more important to know the behavior of �2 at
large but finite Cn

2 and z than its asymptotic value. In this
case, the real turbulence spectrum as well as an adequate
theoretical analysis are required. In this context, the motiva-
tions of our studies are evident.

Our calculations show how to suppress the intensity fluc-
tuations using a PCB. The conditions required for this are a
random phase modulation of the signal and the use of a slow
detector. Estimations of the utility of the PCB should take
into account the negative factor of worsening for the receiv-
ing system resolution when �d is increased. Also, it is impor-
tant for the experiment performance, that the ratio �s /�d is
always finite, and just this ratio rather than �r1 /r0�2 deter-
mines the asymptotic value of � when ��s /�d�� �r1 /r0�2.
Hence, the regime of fast phase modulations �but not the
increase of �d� is preferable in both cases.

ACKNOWLEDGMENTS

We are grateful to V. N. Gorshkov for helping us with
illustrative material, and to L. C. Andrews and B. M. Cher-
nobrod for useful discussions. This work was carried out
under the auspices of the National Nuclear Security Admin-
istration of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-
06NA25396.

G. P. BERMAN AND A. A. CHUMAK PHYSICAL REVIEW A 74, 013805 �2006�

013805-10



�1� V. I. Tatarskii, The Effects of the Turbulent Atmosphere on
Wave Propagation �National Technical Information Service,
U.S. Department of Commerce, Springfield, VA, 1971�.

�2� L. C. Andrews and R. L. Phillips, Laser Beam Propagation
Through Random Media �SPIE Press, Bellingham, WA, 1998�.

�3� L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam
Scintillation with Applications �SPIE Press, Bellingham, WA,
2001�.

�4� R. L. Fante, Proc. IEEE 63, 1669 �1975�.
�5� R. L. Fante, Proc. IEEE 68, 1424 �1980�.
�6� I. G. Yakushkin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 28, 535

�1985� �Radiophys. Quantum Electron. 28, 365 �1985��.
�7� Yu. A. Kravtsov, Rep. Prog. Phys. 55, 39 �1992�.
�8� R. L. Fante, J. Opt. Soc. Am. 69, 71 �1979�.
�9� V. I. Polejaev and J. C. Ricklin, Proc. SPIE 3432, 103 �1998�.

�10� J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 19, 1794
�2002�.

�11� A. Dogariu and S. Amarande, Opt. Lett. 28, 10 �2003�.
�12� G. Gbur and E. Wolf, Opt. Commun. 199, 295 �2001�.
�13� G. Gbur and E. Wolf, J. Opt. Soc. Am. A 19, 1592 �2002�.
�14� M. Salem, T. Shirai, A. Dogariu, and E. Wolf, Opt. Commun.

216, 261 �2003�.
�15� J. C. Ricklin and F. M. Davidson, Proc. SPIE 4884, 95 �2002�.
�16� Y. Baykal, M. A. Plonus, and S. J. Wang, Radio Sci. 18, 551

�1983�.

�17� Y. Baykal and M. A. Plonus, J. Opt. Soc. Am. A 2, 2124
�1985�.

�18� V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Spe-
ktrosk. 54, 1054 �1983�.

�19� V. A. Banakh and V. M. Buldakov, Opt. Spektrosk. 55, 707
�1983�.

�20� O. Korotkova, L. C. Andrews, and R. L. Phillips, Proc. SPIE
4821, 98 �2002�.

�21� O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng.
�Bellingham� 43, 330 �2004�.

�22� I. G. Yakushkin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 18,
1660 �1975�.

�23� R. Dashen, J. Math. Phys. 20, 894 �1979�.
�24� R. L. Fante, Radio Sci. 15, 757 �1980�.
�25� L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-

ous Media �Pergamon, London, 1960�.
�26� J. Strohbehn and S. Clifford, IEEE Trans. Antennas Propag.

AP-15, 416 �1967�.
�27� E. Collett and R. Alferness, J. Opt. Soc. Am. 62, 529 �1972�.
�28� P. M. Tomchuk and A. A. Chumak, Sov. Phys. Solid State 15,

1011 �1973�.
�29� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University, Cambridge, 1995�.
�30� L. Mandel, Phys. Rev. 144, 1071 �1966�.

PHOTON DISTRIBUTION FUNCTION FOR LONG-¼ PHYSICAL REVIEW A 74, 013805 �2006�

013805-11


