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We study the optical interaction in a coupled dielectric microdisks by investigating the splitting of resonance
positions of interacting whispering-gallery modes �WGM’s� and their pattern change, depending on the dis-
tance between the microdisks. It is shown that the interaction between the WGM’s with odd parity about the y
axis becomes appreciable at a distance less than a wavelength and causes directional emissions of the resulting
interacting WGM’s. The directionality of the interacting WGM’s can be understood in terms of an effective
boundary deformation in ray dynamical analysis. We also discuss the oscillation of the splitting when the
distance is greater than a wavelength.
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I. INTRODUCTION

In spherical and cylindrical dielectric cavities high-Q
modes are the whispering-gallery modes �WGM’s� in which
light rays circulate along the curved inner boundary of the
cavities, reflecting from the boundary with an incident angle
always greater than the critical angle for total internal reflec-
tion, thus remaining trapped inside the cavities �1,2�. There
are only minute isotropic emissions of light caused by eva-
nescent leakage. For the applications to optical communica-
tion and optoelectric circuit, this isotropic emission is not
desirable; rather, directional emission is much more useful
and effective �2�.

As a simple system for directional emissions, slightly de-
formed microcavities have been proposed, and directional
emissions, tangential from the boundary points with the
highest curvature, are achieved. From the ray dynamical
viewpoint, as being slightly deformed, some invariant tori
are destroyed in the Poincaré surface of section �PSOS�, but
the Kolmogorov-Arnold-Moser �KAM� tori still confine the
rays supporting the WGM’s. In this case, the tunneling pro-
cess, through the lowest dynamical barrier, to the critical line
for the total internal reflection can explain the tangential
emissions �2,3�.

When the cavity boundary is highly deformed, the PSOS
shows a global chaotic sea with very small integrable regions
�islands�. In this strong-chaotic case, the directional emis-
sions can be found in scarred resonances �4� and quasis-
carred resonances �5�. Unlike the slightly deformed case, the
direction of emission in these resonances can deviate from
the tangential and is well explained by the unstable manifold
structure near the critical line for total internal reflection �6�
and the Fresnel filtering effect �7�. In addition, there are spe-
cial boundary shapes for generating unidirectional emission,
spiral shaped �8� and rounded triangle shaped �9�. We note
that the efforts for directional emissions are mainly based on
the deformation of boundary shapes.

In this paper we show, through a numerical study of the
interacting WGM’s in a coupled identical disks, that a mode-
mode interaction can generate directional emissions. The in-
teraction between two WGM’s is parameterized by the dis-
tance between two disks, and it turns out that the strength of

the interaction between WGM’s with odd parity about the y
axis becomes appreciable at a distance less than a wave-
length, which is evident from the results on the variation of
resonance positions and patterns. In order to explain the re-
sulting directional emission, we assume that the circular
boundary shapes would be effectively deformed due to the
mode-mode interaction. With this assumption the ray dy-
namical analysis gives a good explanation for the degrada-
tion of the Q factor and the enhancement of directional emis-
sions. In addition, when the WGM’s are weakly coupled, the
resonance positions show an oscillating behavior depending
on the distance.

The paper is organized as follows. In Sec. II we illustrate
our system—i.e., a coupled dielectric microdisk. The nu-
merical results for the strongly interacting WGM’s and a ray
dynamical model with an effective deformation are presented
in Sec. III. The behavior of weakly interacting WGM’s is
discussed in Sec. IV. Finally, we summarize the results in
Sec. V.

II. COUPLED DIELECTRIC MICRODISKS

As a simple system for the study of interacting WGM’s,
we take coupled dielectric microdisks. In this system, the
strength of the interaction can be controlled by adjusting the
distance between two disks. It is well known that the WGM’s
of a single dielectric microdisk are twofold degenerate due to
the circular symmetry and are classified by the angular mo-
mentum mode index m and the radial mode index l �2�.
Therefore, in the coupled microdisks, the WGM’s would
show an approximate fourfold degeneracy when the distance
d between the disks is very large or, equivalently, when the
interaction between WGM’s is negligible. As the distance is
getting smaller, the WGM in one microdisk starts to know
the existence of the WGM in the other microdisk; then, the
system is no longer circular symmetric, and the four fold-
degenerate resonance positions start to split each other or
deviate from that of the unperturbed microdisk, and the de-
gree of the splitting measures the strength of the interaction
between the WGM’s.

Figure 1 shows the four symmetry classes of coupled di-
electric microdisks. The system has two symmetry lines, and
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the former letter E �O� is even �odd� if the wave function is
even �odd� with respect to x→−x and the latter refers to
y→−y.

In practical calculation of the interacting WGM’s in the
coupled dielectric microdisks, we use the boundary element
method �BEM� to solve the Helmholtz equation,

��2 + n2�r�k2�� = 0, �1�

where n�r� is the refractive index and k is the wave number.
It is known that the BEM is effective when the boundary is
strongly deformed from a circular shape and the cavities are
coupled �10�. In this paper, we focus on the TM polarization
where both the wave function and its normal derivative are
continuous across the boundary. The radius of the disks is R,
the distance between two dielectric disks is d, and nin and
nout are the refractive indices inside and outside the disks,
respectively. We set nout=1 throughout the paper.

III. STRONGLY INTERACTING WGM’s

In this section we present numerical results on the varia-
tion of resonance positions and patterns of the strongly inter-
acting WGM’s—i.e., the case of the short distance d��. As
mentioned before, we expect that the four fold-degenerate
WGM’s would start to split each other due to the interaction
between WGM’s as the distance d decreases. As a result of
the interaction the directional emissions appear in the inter-
acting WGM’s with odd parity about the y axis. We explain
this directionality by assuming an effective deformation of
the boundary in ray dynamical analysis. In the practical
BEM calculation, we take 12 elements per a wavelength in-
side ��in=2� /nink�.

A. Variation of resonance positions and patterns

Numerical calculation is performed for the WGM of
mode index �m , l�= �77,1� with nin=1.4. Exact resonance po-
sitions of the WGM in an isolated microdisk can be obtained
from the matching conditions between the Bessel function
and the Hankel function of the first kind which are inner and
outer radial solutions of the Helmholtz equation, respec-
tively. The exact resonance position of WGM�77,1� is kR

=59.7136− i2.5687�10−8 where k is the vacuum wave num-
ber. The very small value of �Im�kR�� means high-Q factors
from the relation Q=−Re�kR� /2 Im�kR�. Unfortunately, it is
very difficult to get the exact imaginary values from the
BEM; for example, when we take 12 elements per �in, the
BEM calculation for the isolated microdisk gives kR
=59.7155− i3.9�10−3 for WGM�77,1�. In spite of the restric-
tion on the precision of resonance positions, we rely on the
BEM calculation in analyzing the interacting WGM’s based
on the following reasons. First, the change of ��kR��10−3

does not give any visible variation in resonance patterns.
Second, the BEM calculation would give a correct result
when the variation of resonance positions exceeds the preci-
sion limit ��kR��10−3.

Figure 2 shows the variation of resonance positions of the
interacting WGM’s. The fourfold-degenerate state starts to
split into two groups at d�0.8� in Re�kR� and at d�0.4� in
Im�kR�. Here we can see that the resonances with odd parity
about the y axis �OE and OO modes� show larger variations,
indicating that the WGM’s in the resonances are strongly
coupled. We note that the Re�kR� values of OE and OO
modes increase with decreasing d. The increment of Re�kR�
implies a reduction of the effective boundary perimeter, and
the interaction between WGM’s in the OE and OO modes is,
thus, repulsive. From the same argument, we conclude that
the interaction in the EE and EO modes is weakly attractive.
This result will be used in determining the effective defor-
mation in the ray model in the next subsection. As shown in
Fig. 2�b� the Im�kR� values of OE and OO modes decrease
with decreasing d, implying a degradation of the Q factor
due to the repulsive interaction. Therefore, we can expect
that the emission of the OE and OO modes would be stron-
ger than those of the EE and EO modes. From the viewpoint
of the effective boundary deformation due to the repulsive
interaction, we can understand the difference of the onset

FIG. 1. The four symmetry classes of the coupled identical
disks. The former letter indicates the parity on x, and the latter does
the parity on y coordinates. Even �odd� symmetry is marked by
dashed �solid� lines.

FIG. 2. �Color online� The splitting of the degenerate WGM�77,1�
due to the mode-mode interaction in the coupled disks system.
Re�kR� �a� and Im�kR� �b� are plotted depending on the distance d
between two disks. Note that kR converges into the resonance po-
sition of the single-disk case, 59.7155− i0.0039 as d increases.
Black circle, red square, green diamond, and blue triangle corre-
spond to EE, EO, OE, and OO modes, respectively.
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points of the splitting in Re�kR� and Im�kR�. In a slightly
deformed cavity, the rays supporting the WGM are com-
pletely confined by the KAM tori, resulting in no drastic
reduction of the Q factor. As the cavity is more deformed, the
KAM tori would be broken and the rays can diffusively es-
cape along the unstable manifolds, and then the Q factor,
equivalently Im�kR�, would decrease rapidly.

From the splitting behavior of the resonance positions, we
can expect that the resonance patterns of EE and EO modes
would be different from those of OE and OO modes. In Fig.
3 the resonance patterns of the interacting WGM�77,1�’s are
shown when the distance d is 0.02�. The resonance position
of EE mode shown in Fig. 3�a� is kR=59.6829− i0.0040 and,
as expected from the small absolute value of Im�kR�, the
very small evanescent leakage is shown �11�. However, as
shown in Fig. 3�b�, the resonance pattern of the OE mode
�kR=59.7998− i0.0215� shows clear directional emissions,
reflecting the strong repulsive mode-mode interaction. Its
far-field emission pattern is plotted in Fig. 4�a� where the
four strong directional emissions are clearly seen. We find
that the directionality of the emission pattern is insensitive to
the distance d, although the strength of emissions decreases
with increasing d.

In the OE and OO modes, the strong directional emission
by the repulsive mode-mode interaction is a generic feature,
but the emission directions are closely related to the reflec-
tive index nin. As an example, the resonance patterns of the
EE and OE modes in the interacting WGM�29,1�’s, when nin

=2.0 and d=0.005�, are shown in Fig. 5. As expected, four
strong directional emissions are shown only in the OE reso-
nance pattern in Fig. 5�b�, and the two beams emitted from
one disk are almost parallel to the x axis. Note that the di-
rection of emission is quite different from that of the inter-
acting WGM�77,1� in Fig. 3�b�. The corresponding far-field

emission pattern is shown in Fig. 4�b� where we confirm the
two directional emissions along the x axis and clear interfer-
ence pattern of the parallel beams.

In the next subsection we will introduce a ray dynamical
model to explain the nin dependence of the directionality of
emissions in the interacting WGM’s with OE and OO
parities.

B. Ray dynamical model: Effective deformation

In a circular disk, the ray dynamics is simple. The rays
with incident angles greater than the critical angle, �c
=arcsin�1/nin�, are perfectly confined in the disk by the total

FIG. 3. �Color online� Resonance patterns of the interacting
WGM�77,1�’s when nin=1.4 and d=0.02�. �a� EE mode. �b� OE
mode. Red-white-blue-dark blue colors indicate high to low inten-
sity on a logarithmic scale.

FIG. 4. The far-field emission patterns of the interacting
WGM’s. �a� The interacting WGM�77,1�’s �nin=1.4� shown in Fig.
3�b�. �b� The interacting WGM�29,1�’s �nin=2.0� shown in Fig. 5�b�.

FIG. 5. �Color online� Resonance patterns of the interacting
WGM�29,1�’s when nin=2.0 and d=0.005�. �a� EE mode. �b� OE
mode. Red-white-blue-dark blue colors indicate high to low inten-
sity on a logarithmic scale.
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internal reflection, while the other rays escape isotropically
due to its rotational symmetry. With a simple combination of
this trivial ray dynamics, it is impossible to explain the di-
rectionality of the interacting WGM’s shown in the previous
subsection.

We recall that the interaction between WGM’s are repul-
sive in the OE and OO modes. In fact, this originates from
the constraint that the field value at x=0 or on the y axis
should be zero due to the odd parity about the y axis. As a
result, the intensity spots confronting each other near x=0
would shift repulsively and the structure of the whole inten-
sity spots in a WGM would be slightly deformed from a
circle. In order to incorporate this effect of the repulsive
interaction into the ray dynamics, we consider a slightly de-
formed circular boundary which can support the slightly de-
formed WGM similar to one of the interacting WGM’s.

As a simple ray dynamical model containing the effect of
the repulsive interaction, we consider a circular disk with a
cut as shown in Fig. 6�a�. The deformation parameter is �
which is the reduced length of the radius by the cut. Figure
6�b� shows its PSOS representing the trajectory of a ray start-
ing from one point in phase space �s , p�, where s is the
boundary coordinate and p=sin �, � being the incident angle,
without consideration of the refractive escape. Since the
circle with a cut is a discontinuous deformation �non-KAM
system�, this model cannot describe the weakly deformed
case where the rays supporting the WGM are still confined in
KAM tori. So our model is more suitable to a moderately
deformed case where the rays supporting the WGM can dif-

fusively escape. The rays can change their incident angle
only through the bounce on the cut, and eventually the ray
trajectory fills up the whole phase space, even though there
are so many marginally stable lines. The broken lines at p
�0.50 and p�0.71 represent the families of the marginally
stable triangular and rectangular periodic orbits, and the gaps
of lines correspond to the cut of the boundary.

The dielectric microcavities are open systems where rays
can refractively escape from the microcavities, and the es-
cape rates are determined by the Fresnel equations �12�. In
order to understand the emission direction of rays, we obtain
the survival probability distributions in both cases of nin
=1.4 and nin=2.0 which are shown in Figs. 7�a� and 7�b�,
respectively. The gray points in Fig. 7 correspond to the rays
with normalized probability greater than 0.1 in the time
range of 50� t�53 with a time scale as the length of the ray
trajectory, and the rays start from a uniform ensemble of
1000�1000 initial positions in the phase space. The pattern
of the survival probability distribution reveals the openness
structure on the unstable manifold background near the criti-
cal lines, pc=1/nin, for the total internal reflection. The di-
rectionality of emissions and the emitting part of boundary
are explained by the pattern below the critical line. The color
plots below the critical lines in Figs. 7�a� and 7�b� illustrate
how the long-lived rays supporting the WGM’s can escape.
We find that the long-lived rays refractively escape through
the unstable manifold structure arising in the survival prob-
ability distribution. As mentioned before, the ray far above
the critical line changes its angular momentum only when
bouncing from the cut and, depending on the bouncing posi-
tion on the cut, the angular momentum can increase or de-
crease; in other words, the angular momentum diffuses to
other values. From repetition of this diffusion process, the
ray can reach below the critical line and eventually escape

FIG. 6. �a� The boundary shape used in the ray dynamical analy-
sis, a circle with a cut. �b� PSOS for the billiard shown in �a� when
R=1 and �=0.01.

FIG. 7. �Color online� The survival probability distribution. The
colored spikes show the parts through which long-lived rays escape.
�a� nin=1.4 case. �b� nin=2.0 case.
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the microcavity. The ensemble of the above escape process
makes the color plots. The darkness of the color plots repre-
sents the population of the ensemble.

The colored spikes below the critical line �pc�0.714� in
Fig. 7�a� correspond to the rays following the diamond-type
period orbit inside the microcavity and indicate that the ray
emission from about s=3� /2 is very strong for the counter-
clockwise circulating rays �p	0�. These are consistent with
the resonance pattern shown in Fig. 3�b� where the faint
diamond structure is seen inside the microdisks and the
strong emission comes out from about s=3� /2 of the right
microdisk. If we consider another effective deformed micro-
cavity to simulate the interacting WGM’s, we can get the
resulting emission pattern shown in Fig. 8�a� where we ne-
glect the emission from the cut. This ray dynamical result is
very similar to the far field emission pattern of Fig. 4�a�
except the interference oscillation in peaks. The same discus-
sion is valid for the case of nin=2 case shown in Fig. 7�b�.
The resulting emission pattern is given in Fig. 8�b�, and this
explains well the far-field pattern of the interacting WGM’s
shown in Fig. 4�b�.

Although the deformed disk in Fig. 6�a� is a non-KAM
system, this explains well the insensibility of the direction-
ality of emissions to the distance d. The longer distance d
corresponds to the smaller � value. In this case, although the
average escape rate and the emitting part of the boundary
would decrease, it is clear that the emission directions and
the emitting positions on the boundary are essentially invari-
ant. However, the mode-mode interaction would create a
continuous deformation; i.e., the system would be a KAM
system. In a KAM model, even if the rays supporting the
WGM are confined in KAM tori, it is still possible for the
rays to reach chaotic sea through the dynamical tunneling
and then diffuse along the unstable manifolds to the critical
line �13�. The unstable manifold structure near the critical
line in the KAM model would be similar to that of the non-
KAM model if the global boundary shapes of both models
are almost identical. Therefore, both models would give the
essentially same emission directionality.

IV. WEAKLY INTERACTING WGM’s

When the distance d is larger than �, the interaction be-
tween WGM’s becomes very small. The strength of the small
interaction can be measured by the deviation of resonance
position from that of isolated corresponding WGM as done
for the strongly interacting WGM’s in the previous section.
Figure 9�a� shows the variation of the resonance position in
the range of 2��d�6� for the interacting WGM�29,1�’s with
nin=2. It is shown that the resonance positions of both EE
�black circle� and OE �red square� modes oscillate with the
period 
d�� /2. The oscillatory behavior also appears for
EO and OO modes. The interference effect of emitted waves
from the WGM’s seems to be responsible for the oscillatory
behavior. As pointed out in the previous section, the BEM
calculation, however, has the precision limit of ��kR�
�10−3. We note that the amplitude of the oscillations is al-
most the same order as the precision limit. So we have to be
careful to accept the oscillatory behavior as a real phenom-
enon, because it can be a numerical artifact. To check this,
we performed the same calculation for the interacting
WGM�7,2�’s �nin=2.0� which are relatively low-Q resonance
modes. Since the emission of the WGM�7,2� is stronger than
the WGM�29,1� case, we expect the variation of the resonance
position would be larger than the precision of BEM.

FIG. 8. The ray dynamical far-field emission patterns of the
deformed dielectric disk. �a� nin=1.4 case. �b� nin=2.0 case.

FIG. 9. �Color online� The oscillatory behavior of the resonance
position of interacting WGM’s when d	�. �a� WGM�29,1� case. �b�
WGM�7,2� case. The black circle and red square denote EE and OE
modes, respectively.
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The exact resonance position of the WGM�7,2� in an iso-
lated circular disk is kR=6.5806− i0.1117 and, in the BEM,
kR=6.5808− i0.1127, giving the same precision limit of
��kR��10−3. For the interacting WGM�7,2�’s, the variations
of resonance positions for EE and OE modes are shown in
Fig. 9�b�. When d��, both real and imaginary parts of kR
oscillate with a period 
d�� and the oscillation amplitude
is much greater than the precision limit of the BEM, which
supports the conjecture that the oscillatory behavior of the
interacting WGM�29,1� in Fig. 9�a� would be a real phenom-
enon, not a numerical artifact. We note that the oscillation of
the resonance position of the OE mode is out of phase with
that of the EE mode in both Re�kR� and Im�kR�. The reso-
nance patterns at the local maxima of Im�kR�, corresponding
to minimum leakages of the system, denoted by arrows in
Fig. 9�b�, are shown in Fig. 10, and these explain why the
oscillations of the resonance positions of OE and EE modes
are out of phase and have a period 
d��. The internal pat-
terns of the resonances are almost invariant, and the charac-
teristic difference is the number of intensity spots on the
horizontal axis between two disks which increases one by
one. An odd and even number of spots appear in the OE and
EE modes, respectively. Roughly we can understand this os-
cillation behavior as the degree of the accordance with the
quantization condition of the unstable periodic orbit lying on
the horizontal axis between two disks even though the
boundary condition on the ends of the period orbit is not
trivial. In fact this kind of explanation is valid only for the
relatively low-kR case where the interference on the unstable
orbit dominates and other inference effects are negligible. In
the high-kR case many beams emitted from the intensity
spots inside the disks take part in the interference process,
and the resulting oscillation of each symmetry mode would
show more complicated behavior in its period and amplitude.

V. SUMMARY

In the coupled-disk system, we have shown that the
strongly interacting WGM’s with odd parity about the y axis
give good directional emissions and the directions of the
emissions are determined by the refractive index of the di-
electric disks. This finding has been well explained by an
effective boundary deformation in the ray dynamical model.
It is also shown that the resonance positions of the weakly

interacting WGM’s oscillate depending on the distance d be-
tween two microdisks and this oscillation can be understood
as the result of interference of emitted beams from the
WGM’s.
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