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The calculation of properties of Bose-Einstein condensates with dipolar interactions has proven a computa-
tionally intensive problem due to the long range nature of the interactions, limiting the scope of applications.
In particular, the lowest lying Bogoliubov excitations in three-dimensional harmonic trap with cylindrical
symmetry were so far computed in an indirect way, by Fourier analysis of time-dependent perturbations, or by

approximate variational methods. We have developed a very fast and accurate numerical algorithm based on
the Hankel transform for calculating properties of dipolar Bose-Einstein condensates in cylindrically symmet-
ric traps. As an application, we are able to compute many excitation modes by directly solving the
Bogoliubov-De Gennes equations. We explore the behavior of the excited modes in different trap geometries.
We use these results to calculate the quantum depletion of the condensate by a combination of a computation
of the exact modes and the use of a local density approximation.
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I. INTRODUCTION

The realization of a Bose-Einstein condensate (BEC) of
52Cr [1] marks a major development in degenerate quantum
gases in that the interparticle interaction via magnetic dipoles
in this BEC is much larger than those in alkali atoms, and
leads to an observable change in the shape of the condensate.
The long range nature and anisotropy of the dipolar interac-
tion pose challenging questions about the stability of the
BEC and brings about unique phenomena, such as roton-
maxon spectrum and different phases of vortex lattices. They
also present a significant theoretical challenge, especially for
the calculation of excitations [2—11].

For N bosons in an external trap potential V,(r) at very
low temperatures, the condensate can be described using
mean-field theory [12,13]. All the particles in the condensate
then have the same wave function W(r), which is described
by the following time-dependent Gross-Pitaevskii equation
(GPE):

iﬁm=< ﬁz V2+U(r) + —l)fdrV(r r’)
Jt m
><|‘If(r',t)|2)‘lf(r,t), (1)

where r is the displacement from the trap center, m is the
atomic mass, and the function WV is normalized to unit norm.
We shall consider the case of a cylindrical harmonic trap,
with U(r)= %(wip2+ w?7?). For dipolar interactions the poten-
tial V(r) may be written [2,4]
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whla 3 cos® 6
or) + dzr—, (2)

V(r) =

where a is the scattering length, d the dipole moment, r the
distance between the dipoles, and 6 the angle between the
vector r and the dipole axis, which we shall take to be
aligned along the trap axis. Note that in general a depends on
the dipole moment [2,4,12,13]. This observation is important
in an experimental setup where the dipole moment is tuned
by an external field. In the present work we shall rather as-
sume that @ and d are either fixed or may be tuned indepen-
dently.

For the following we define the transverse harmonic os-
cillator length a,,=\fi/mw),, and the two d1mens1onless in-
teraction parameters s= (N 1)—) and D.=(N-1)5*. We

work in scaled units where Ai=m=1.
Equation (1) with the potential Eq. (2) is an integro-

hza

differential equation. The integral term
d* [ dr'’ Ij C:’F 2| (r")|? needs special attention due to the ap-

parent divergence of the dipolar potential at small distances.
Moreover, it is nonlocal and requires a computationally ex-
pensive three-dimensional convolution. Two different proce-
dures [4,7] have been proposed to deal with this problem. In
Ref. [7], Fourier transformation to momentum space was
employed to perform the convolution and avoid the diver-
gence, but the calculation still must be performed in three
dimensions even for cylindrical symmetry. In Ref. [4] the
cylindrical symmetry of the system was utilized to compute a
two-dimensional (2D) analytic expression for the convolu-
tion kernel in real space, which, however, required further
computationally intensive numerical smoothing in order to
avoid the r=0 singularity. In either case, it seems that the
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computations remain quite intensive, and this may be the
reason why calculations of low lying excitation modes [5,7]
were performed only via spectral analysis of time-dependent
perturbations. These calculations were time consuming and
numerically challenging.

In this paper, we present a algorithm based on Hankel
transform for calculating properties of dipolar condensates in
cylindrical traps which combines the advantages of the two
methods above: namely, both a transform to momentum
space and utilization of the cylindrical symmetry to work in
two dimensions. In addition, we examine the accuracy of the
previous three-dimensional (3D) Fourier transform algorithm
and show that it does not achieve high spectral accuracy as
might have been expected. We analyze the reason for this
and suggests a simple correction that provides high accuracy.
The same correction also applies to our 2D algorithm.

The ground state is found by minimizing the total energy,
which is often done by propagating the wave function in
imaginary time. We find that this method is slow. Instead, we
use a highly efficient minimization technique, conjugate gra-
dients, to further speed up the calculation of the ground state,
resulting in a typical computation time of fraction of a sec-
ond on a present day PC. Finally, we apply our algorithm to
a fast and efficient calculation of many excited modes via
direct solution of the Bogoliubov-De Gennes (BdG) equa-
tions. Calculation of tens of modes is achieved in a span of a
few seconds to a few minutes. We also compute the quantum
depletion at 7=0 due to the dipolar interaction.

II. THE ALGORITHM

Following Ref. [7], the calculation of the dipolar interac-
tion integral can be simplified by means of the convolution
theorem. Let n(r)=|W(r)|? be the density per particle at r and
let Vp(r)=(322/r*=1)/r. Let ii(k) and Vp(k) be their Fou-
rier transforms, i.e.,

ﬁ(k):fdr exp(— ik - r)n(r), (3)

etc. Then the mean field ®p(r) at the point r due to the
dipolar interaction is

Dp(r) = f dr'Vp(r—r'n(r') = F'[Vponk)],  (4)

where F! is inverse Fourier transform. The Fourier trans-
form of V}, may be found by expanding exp(ik-r) in a series
of spherical harmonics and spherical Bessel functions (the
usual expansion of a free planar wave in free spherical
waves), where only the Y, term gives nonzero contribution.
The result is [7]

_ g 4
Vlk) = ?77(31(3/18 ~1)= ?77(3 cosa—1), (5

where «a is the angle between k and the z axis.

It has also been shown in Ref. [7] that a cutoff of the
dipolar interaction at small r in real space is not important
when the calculation is performed in momentum space, since
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it affects only very high momenta which are not sampled.
n(k) can be numerically evaluated from n(r) by means of a
standard fast Fourier transform (FFT) algorithm. This
method is quite general, and has the speed advantage of us-
ing FFT. It is similar to the calculation of the kinetic energy
to high accuracy by Fourier transform of the wave function
to momentum space and multiplication by —k?/2.

We wish to consider traps with cylindrical symmetry, for
which the projection of the angular momentum on the z axis
is a conserved quantity. The eigenstates may then be written

W p, $,2) = exp(imp)G(p,z), (6)

with (p,z, ¢) the usual cylindrical coordinates, and m an in-
teger. For the ground state m is zero, but we would also like
to consider m >0 excitations.

The 3D FFT cannot take direct advantage of the cylindri-
cal symmetry. The key idea of our algorithm is the observa-
tion that for a function of the form (6), the 2D Fourier trans-
form in the (x,y) plane is reduced, after integration over ¢,
to a one-dimensional (1D) Hankel (or Bessel) transform of
order m [14],

o

Pk k yz) = 27 e ™o f G(p,2)J,(kp)pdp,  (7)
0

where J,,(x) is the Bessel function of order m. Thus, a com-
bination of Hankel transform in the transverse (p) direction
and Fourier transform in the axial (z) direction, which we
shall call here the discrete Hankel-Fourier transform
(DHFT), can be used to move between spatial and momen-
tum spaces. The wave function need only be specified on a
two-dimensional grid in (p,z) coordinates. The transform
can be used to compute both the dipolar interaction energy
and the kinetic energy.

Interestingly, there exist fast Hankel transforms [15-18].
These algorithms perform a discrete transform of N radial
points in time complexity of O[N In(N)], just as for 1D fast
Fourier transform (we use N also to indicate number of par-
ticles. The meaning should be clear from the context.) How-
ever, they require sampling the transformed function on a
logarithmically spaced grid. Thus the function is over-
sampled at small radii. Our experience with the fast algo-
rithm [16] is that it works well for one transform, but re-
quires careful attention and tuning to avoid increasing
numerical errors when applied many times over in the energy
minimization process (for an early attempt of applying the
method [15] for a scattering problem, see Ref. [19]). For this
reason, We have selected as our method of choice a discrete
Hankel transform (DHT) with grid sampling based on zeros
of the Bessel function [20-26]. We found it to be accurate
and robust. This algorithm is of complexity O(N?). The non-
uniform sampling might seem unusual at first, but is actually
of great advantage in that, as we shall show, it allows a
highly accurate integration formula, reminiscent of Gaussian
quadrature. Although for large grids the DHT is slower than
the fast Hankel transforms mentioned above, we find that in
practice it is faster for radial grid sampling of up to 32
points.
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A. The discrete Hankel transform

We shall now describe the DHT. The Hankel transform of
order m of a function f(r) is defined by

flk) = f f(p),.(kp)pdp. (8)
0

The inverse transform is obtained by simply exchanging f

and f along with p and k.
Let us assume that the function f(r) is practically zero for

r=R, and f(k) is practically zero for k=K. Let g(p) be
sampled at N points

pJ:CYm]/K, ]:1,,N, (9)

where a,,; is the jth root of J,,(p). Let f(k) be sampled at N
points

ki: ami/R, i:1,...,N. (10)
Then Eq. (8) is approximated [21] by the discrete sum

f(P;) J (amiami>’
S

5 N
flk) = PE

Jj=1 m+l(amj)

(11)

where S=RK. Equation (11) can be written in a more conve-
nient form by defining

F(]) f(a'mj/K)y

| 1+1(am])|

———#(a,,/R);
|Jm+1(ami)|f(aml )

thus Eq. (11) reduces to

F(i) =

N
ﬁ(i)=2TijFU)a (12)
j=1

where

Y |Jm+l(ami)||‘]m+l(amj)|s

defines the elements of an NxN transformation matrix 7.

T is a real, NXN symmetric matrix. Note also that it
depends on S. Imposing the boundary conditions f(R)
=f(K)=0 requires § =a,, yy (then T(y,;);=0). Since the
Hankel transform is the inverse of itself, we should require T
to be unitary for self-consistency. In fact, with S=a,, vy, T
is found to be very close to being unitary [21]. For example,
1 <1078, and the unitarity
is better with larger N. If an exactly unitary matrix T is
desired, it has been suggested [24] using B=(T"TT)~'T in-
stead of T. But in numerical tests it was found that in prac-
tice essentially the same high accuracy was obtained with T
as with B.

In practice, we first determine an appropriate R for the
function, and some convenient N. Then define S=a,, y,, and

K=S/R. N should be chosen such that f(k) is as small as
desired for k=K.

(13)
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B. Quadraturelike integration formula

When the integrals in Eq. (1) are evaluated in cylindrical
coordinates, we are required to calculate an integral of the
form

1[f] =f fp)pdp. (14)
0

An important benefit of sampling the function f(p) ac-
cording to Eq. (9) is that we are able to derive a highly

accurate approximation to this integral. Let f(k) be the mth
order Hankel transform of f(p), Eq. (8). We shall fist assume
that f(p) is band limited. That is, we assume that there exist
K such that

fk)=0 (k>K). (15)
Then I[f] is given exactly by the following series:

)

1
Kzz:’ ]z—f(ami/K). (16)

m+1 )

1f]=

We give a simple proof of this formula. First, note that by
Eq. (8), I[f]=(0). Expand f(k) on [0,K] in a Fourier-Bessel
series [14] to find

0

ERS Fand K (anlK).  (17)

fly= K? i=1 Jm+1(a’mi)2

Substitution of k=0 gives immediately Eq. (16). This for-
mula has appeared relatively recently in the computational
mathematics literature [25,27,28]. It has been shown to be
intimately related to Gaussian quadrature. In Gaussian
quadrature, the sampling points are roots of orthogonal poly-
nomials, while here they are roots of the Bessel function
Jn(Kp).

The wave functions of interest in our problem are not
strictly zero for k> K, but they typically decrease exponen-
tially for large k. Moreover, as the wave function decreases
exponentially in space, the infinite series can be truncated to
provide the following approximate formula:

N

In our application, N and K are the same as those given
above for the DHT. The approximation converges exponen-
tially to the exact value with increasing N and R.

C. Accuracy of calculating the dipolar interaction energy

Before continuing to applications, we reexamine the ac-
curacy of the 3D FFT method [7]. The behavior discussed
below appears also in the 2D method, but the analysis in the
3D case is easier. From the similarity to the calculation of
kinetic energy with spectral accuracy, which typically
achieves machine precision with a small number of grid
points, we expected that the dipolar interaction energy will
also be calculated to this high accuracy. We find that the
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relative accuracy, typically varying between 1X 107 to 1
X 1072, is enough for practical purposes, but not as accurate
as might be expected. A detailed analysis is given in the
Appendix. The reason for the numerical errors is traced

down to the discontinuity of \7D(k), Eq. (5), at the origin. An
improved accuracy, by at least two orders of magnitude and
up to machine precision, is obtained by using, instead of Eq.
(5), the Fourier transform of a dipolar interaction truncated
to zero outside a sphere of radius R, where the spatial grid
dimensions are [-R,R]X[-R,R]X[-R,R]. Thus, Eq. (A4)
replaces Eq. (5). Note that this truncation of the dipolar po-
tential has no physical effect on the system, as long as R is
greater than the condensate size. For a pancake trap it is
advantageous to use a grid of dimensions [-P,P]X[-P,P]
X[-Z,Z] with Z<P. For Z<P/2 we find that it is prefer-
able to use the Fourier transform of dipolar interaction trun-
cated to zero for |z|)>Z, Eq. (A5). These modifications ap-
ply also to the 2D case.

III. GROUND STATE OF A DIPOLAR CONDENSATE

For finding the ground state of dipolar BEC, the wave
function is sampled on a 2D grid (p;,z;), with p; determined
from Eq. (9), and z; evenly sampled. Since the ground state
is symmetric in z, it is enough to sample z=0. The FFT in
the z direction is then performed as a fast cosine transform
[29], for which we used the FFTW software package [32]).
The fast cosine transform uses the property of the wave func-
tion being real and symmetric to enhance speed by a factor
of 4 compared to standard complex FFT.

The most commonly practiced method to obtain the
ground state is propagation of an initial guess of the wave
function in imaginary time, using Eq. (1) with t— —it. This
method is robust but slow, though the reduction of the prob-
lem to 2D speeds it up considerably. We obtained a further
substantial gain in speed by adopting, instead, direct minimi-
zation of the total energy using the conjugate-gradients tech-
nique [29]. This technique has become popular in density
functional theory calculations, and a review of it appears in
Ref. [30]. A previous application to BEC vortices is found in
Ref. [31], which we closely follow. The GP energy func-
tional is given by

E[\I’,‘I’*]=fdr\1’*(r)Ho\I’(r)

Ngljfdrdr’\lf*(r’)\lf(r’)
XV(r=r )V (r)¥(r), (19)

+

where the Hamiltonian operator H,, contains the kinetic and
the trap potential terms

+U(r), (20)

and the condensate wave function ¥ obeys the normalization
condition

i = [ o=t @)
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The essence of the conjugate-gradients method is mini-
mizing the energy, Eq. (19) by successive line minimizations
along optimally chosen directions. The initial direction is
along the gradient, but in the (n+ 1)th step the direction is a
judicious linear combination of the gradient and the previous
(nth) direction. This memory property provides the algorithm
with a better feeling (so to speak) for the shape of the energy
surface, and faster convergence is achieved compared to sim-
ply following the present gradient at each step. An important
feature for our specific problem is that each line-
minimization step can be done analytically. Another impor-
tant point is the need to ensure that, just like in imaginary
time propagation, we reach the local minimum nearest to the
initial guess, rather than a global minimum, which may be a
collapsed state. Details of the implementation are given in
the Appendix.

The algorithm using the DHFT and the conjugate-
gradients minimization was implemented in Matlab, and its
correctness verified by comparing to the results in the litera-
ture and to an independent code implementing the 3D
method of Ref. [7] with imaginary time propagation. In a
typical application, the grid consists of 32X 32 points, cov-
ering the domain [0,8]%[0,8] in the (p,z) coordinates. The
starting guess is a sufficiently wide Gaussian. We have
checked the numerical convergence of the ground state en-
ergy with respect to increasing the grid resolution and its
size. Generally, convergence will depend on the parameters
of the problem, but in most cases this grid already achieves
convergence to very high accuracy. As a benchmark, the har-
monic oscillator energy in a spherical trap (w,=w,=1) is
obtained to accuracy of 1074 with the above grid. For a
dipolar BEC with the interaction parameters s=1 and D
=3, we find that the energy is converged to the same accu-
racy, 107!#, with respect to increasing the resolution and size
of the grid. The run time for this computation on our PC is
0.5 seconds.

IV. BOGOLIUBOV-DE GENNES EXCITATIONS
A. Formulation

We now turn our attention to computing excitations of the
condensate by direct solution of the BdG equations (see, e.g,
Ref. [33], for the case of a short range potential). We first
derive the BAG equations for the dipolar case by analyzing
the linear stability of the time-dependent GPE about a sta-
tionary state W(r). We write

W(r,t) =[Vyr) + Hr,0)]e ™™, (22)

where u is the chemical potential of the stationary state, and
U is a small quantity for which we look for a solution of the
form

Hr,0) = Nu(r)e ™ + v'(r)e'], (23)

where w is the frequency of the oscillation, N the amplitude
of the perturbation (A< 1), and u and v are normalized ac-
cording to

f dr[u*(r) - ¥*(r)] = 1. (24)
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By collecting the terms linear in A and evolving in time
like ¢ and €', one obtains the following pair of BdG
equations:

ou(r) = (HO —u+(N=-1) f dr’\I/;(r’)V(r —r’)\Ifo(r’)>u(r)
+(N-1) f dr’\I’;;(r’)V(r —rur)Wy(r)

SN-1) J Ao WV -1 Yol W),

- our)= (HO— m+(N=-1) f dr’\lff)(r’)V(r—r’)
X‘Po(r’))v(r)+ (N—l)fdr"l’;(r’)V(r—r’)

Xur'YWor)+(N-1) J dr'vy(r'")V(r-r'")
Xu(r')Wo(r), (25)
where H0=—%V2+ U(r), and V(r) is given by Eq. (2). This

linear system may be expressed more succinctly by the ma-
trix form

(HO—,LL+C+X X )(u) (u)
-X -Hy+u—-C-X/)\v - v

with

(26)

(CX)(r)=(N—1)fdr"lfo(r')V(r—r’)‘I’o(r')X(r)
=D. J dr'Wo(r" ) Vpr—r")Wyr")x(r) +S\I’(2)(r))((r),
(XX)(r)=(N—1)fdr"l’o(r')V(r—r')X(r')‘I’o(r)

=D- J dr'Wo(r")Vp(r = r' ) x(r')Wo(r) + sU5(r)x(r),
(27)

for y=u,v. The C operator describes the usual direct inter-
action, while the X operator describes exchange interaction
between an excited quasiparticle and the condensate. Note
that, in the same notation, the stationary state W, satisfies
(Hy—p+C)W¥y=0. In Egs. (27) we have chosen the phase of
W, so that it is real valued.

1By making the ’change of Var.iables u=%(f—g) ansi v
=5(f+g), Eq. (26) is transformed into the more convenient
form
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st 2N
Hy—pu+C+2X 0 g g

The eigenvalues w come in pairs: if  is an eigenvalue of Eq.
(28) with eigenfunction (f,g), then —w is an eigenvalue with
eigenfunction(f,—g). This originates in the symmetry of Eq.
(23) under the exchange of u and v" with w— —w.

Taking the square of the matrix in Eq. (28) gives a block
diagonal matrix, and as a result we obtain the two separate
problems [34]

(Hy— pu+C)(Hy— u+ C+2X)f = 0’f, (29a)

(Hy— u+C+2X)(Hy— p+C)g = 0’g. (29b)

For finding the eigenvalues w?, it is sufficient to solve one of
these equations. If one solves the equation for f (or g), then
the corresponding solution g (or f) for the same w can be
obtained via Eq. (28), provided w# 0. Note that g=V, is a
solution of Eq. (29b) with w=0. This neutral mode is due to
the arbitrariness in fixing the phase of W. Equation (29a)
also has a neutral mode [34]. For a stable ground state, all
eigenvalues w are real and the excitation energy of one par-
ticle into a given mode is given by (the positive signed) w. In
this case the functions u and v are real valued. The appear-
ance of negative w? solutions of Egs. (29), i.e., complex o,
indicates instability of the condensate.

In our application we find the eigenvalues of Eq. (29a) by
first discretizing f on a 2D grid, as described for the ground
state W in Sec. III. The eigenstates may be classified as odd
or even with respect to reflection through the x-y plane.
Thus, as in the case of the ground state, only the positive z
semiaxis need to be sampled. The calculation of the integrals
with V(r) in Egs. (27) is performed in momentum space via
the use of Eq. (4) [with the appropriate reinterpretation of
n(r') there] and the DHFT. The excitation modes with m
>0 require special attention, and we refer the reader to the
Appendix for their treatment. As part of the DHFT we need
the Fourier transform in the z direction. This is performed by
a fast cosine transform for even parity, and fast sine trans-
form for odd parity [29], for which we used the FFTW soft-
ware package.

Since (as we find) many excited modes may be obtained
to very high accuracy with relatively small grids (32X 32 to
64 X 64), it is feasible to construct the matrix elements of
A=(Hy— pu+C)(Hy— p+C+2X) and diagonalize it. Since we
are only interested in the lowest energy eigenstates, the Ar-
noldi method [35] is a much more efficient method, which is
also applicable to much larger, 3D grids [34]. It is an itera-
tive method that requires at each iteration only the action of
A on the vector f, and the full matrix A itself need not be
constructed. It is particularly effective for sparse matrices. In
our case, A is not sparse, but it has a special structure: parts
of it are diagonal in space and other parts (the kinetic energy
as well as the dipolar parts of C and X) are diagonal in
momentum space. The use of DHFT enables the efficient
calculation of its action on f without ever forming the full
matrix of A in one particular basis. Interestingly, this is the
same property that makes the time-dependent propagation
technique [36] appealing for calculating the spectrum of ex-
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citations: in that case, only successive operations with the
Hamiltonian on the wave function are necessary. However,
combined use of linearization (i.e., BdG equations) and the
Arnoldi method should be much more efficient, even in the
3D case. Of course, nonlinear effects, which in principle can
be probed by the time-dependent method, cannot be studied
by use of the BAG equations alone. More implementation
details are given in the Appendix.

For completeness of the discussion, we compare in the
next section the exact numerical solution of the BdG equa-
tions as obtained with our method, with some low lying
modes computed with the time-dependent variational method
[4,5,7,37]. In the variational method, one assumes a time-
dependent Gaussian ansatz,

P(x,y,2,1) = A(t) H e[’?-ﬂo(t)]2/2w37+ina,](t)+i,]23n(z)’ (30)
T=X,,2

with the parameters A (complex amplitude), w, (width), 7,
(center of cloud), a, and B, are variational parameters. The
resulting equations of motion give the equilibrium widths
(variational Gaussian solution of the time-independent GP
equation) and frequencies of some low lying modes. The
modes that are described by the ansatz of Eq. (30) are, first,
the three “sloshing” or Kohn modes corresponding to the
movement of the center of the cloud 7,. These are found to
have the frequencies w, and w_ of the harmonic oscillator
and are not affected by the interaction. In fact, Kohn’s theo-
rem [38] proves that the exact solution for these modes gives
the same harmonic oscillator frequencies, and are not af-
fected by the interaction. To understand this, consider a small
displacement of the center of the mass of the cloud without
changing its shape. The intercloud forces are then un-
changed, while the restoring force due to the harmonic trap is
proportional to the displacement and is the same throughout
the cloud. This results in a classical harmonic motion of the
cloud as a whole. The constant frequency of these modes
will provide a good check on the numerical accuracy of our
algorithm. Second, one obtains three collective modes de-
scribing the oscillation of the widths, two modes with m=0
and one with m=2. In the ideal gas limit they correspond to
m=0 modes with frequencies2w, and 2w, and m=2 mode
with frequency 2w, These modes have been illustrated
graphically in Refs. [4,5,7], with the two m=0 modes de-
scribed as the breathing mode and the quadrupole mode.

B. Behavior and shape of BAG excitations

The parameter space of the dipolar BEC problem in a
cylindrical trap is three dimensional: we have the aspect ratio
of the trap, Z—, the dipolar parameter D:, and the contact
interaction pareameter s. In this work we shall concentrate on
dominant dipole-dipole interactions, and set the contact in-
teraction to zero. We explore the behavior of the BAG modes
with varying dipole-dipole interaction strength in different
trap geometries, from pancake shaped to cigar shaped. For
orientation, consider a >>Cr gas [1] with magnetic dipole mo-
ment 6up. Assume it is confined in a trap with w,=27
X200 Hz. Then D.=0.0024(N-1). For example, for N
=1000 atoms, D.=2.4. We assume that it would be possible,
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o)

Excitation energy (w/w

FIG. 1. (Color online) Excitations frequencies as function of the
dipole parameter D- for dipolar BEC in the JILA pancake trap
(w,/w,=\8), with zero scattering length. Plotted are modes with
m=0-4. The three lines that extend to higher D- are the variational
results (cf. Fig. 2 of Ref. [7]).

through a Feshbach resonance, to make the scattering length
zero [39,40].

Let us first consider a BEC in a JILA pancake trap [41]
with 2—:=\c"§. The results are presented in Fig. 1. For D=0
we retrieve the ideal-gas results f:nz\e‘”§+np with n,,n,
=0,1,2,... . The lowest mode has n;=1 and corresponds to
a transverse Kohn mode with frequency w, (in fact these are
two degenerate modes, m=1 and m=-1, or alternatively,
sloshing motion in the x and y directions). The frequency is
evidently constant as a function of D-, in agreement with
Kohn’s theorem. Similarly, the second lowest m=0 mode is a
Kohn mode in the z direction with frequency w,. Next, con-
sider the two modes that converge to w=2w, in the ideal-gas
limit. One of them has m=0 (solid line) and the second m
=2 (dashed line). The m=0 mode is shifted down in fre-
quency with increasing D. while the m=2 mode is shifted
up. The m=0 mode goes to zero at D.=3.87. This point
marks the collapse of the condensate: for higher value of D,
there is no stable solution of the GPE. These two modes are
also described by the variational method outlined above,
with good agreement with the exact numerical results up to
about D.=2.2. However, the variational method significantly
overestimates the D for collapse (giving D.=4.87 at col-
lapse). Our exact numerical results are in agreement with the
numerical results for these two modes obtained in Ref. [7]
using the time-dependent response of the system to external
perturbation, and moreover, we are able to resolve them right
down to the collapse point.

The behavior of the next few low modes is also interest-
ing: some modes of different symmetries cross each other,
while two modes (one of the them the third m=0 mode)
converge together near to collapse. Note also the fifth m=0
mode, with the ideal-gas frequency of 2w,. This mode is also
described by the variational method. We see that the lowest
m=0 variational mode is also the lowest m=0 exact mode,
but the second variational m=0 mode is much higher, and
between them there are two m=0 modes (excluding the
Kohn mode), as well as other m >0 modes, which are not
described at all by the variational method. As mentioned

013623-6



BOGOLIUBOV MODES OF A DIPOLAR CONDENSATE IN...

o)

Excitation energy (w/w

FIG. 2. (Color online) Excitations frequencies as function of the
dipole parameter D for dipolar BEC in a spherical trap with zero
scattering length. Plotted are modes with m=0-4. The three lines
that extend to higher D- are the variational results.

above, the variational method obtains only two m=0 modes
(excluding a Kohn mode) that approach 2w, and 2w, in the
ideal gas limit. But for w,> 2w, there are at least two other
(non-Kohn) m=0 modes that are between them, and ap-
proach 2w,+w_ and 4w, in the ideal gas limit.

It is worth noting the computational efficiency of our al-
gorithm in obtaining these BAG results. We obtained 100
converged modes for a given dipole moment and m in about
one-half minute on our PC, with a grid size of N,XN_ =34
X 64.

Let us now consider the case of a spherical trap w,=w,
= w,, Fig. 2. The lowest excitation (in the ideal gas limit)
consists of three degenerate Kohn modes corresponding to
[=1 with m=0,-1,+1. Note that the Kohn frequencies are
constant and maintain their degeneracy for D.>0, even
though the dipolar interaction does not conserve the total
angular momentum, and the ground state shape is elongated
in the z direction. Next, consider the four modes that con-
verge to 2w,: two with m=0, and another two with m=1 and
m=2. Actually, there are six, accounting for the degeneracy
with negative m. In the ideal gas limit these correspond to
five degenerate /=2 modes and one /=0 mode. The lowest
m=0 of these causes the collapse of the condensate at D
=4.19. Note that this mode crosses the three Kohn modes.
This is possible whenever there are two different m modes or
two modes with the same m but different parity with respect
to the symmetry z— —z. The two m=0 modes and the m=2
mode are also described by the variational method. The
variational frequencies agree quite well with the exact ones
up to D.=3, although, again, the variational method overes-
timates the critical D= for collapse.

Note that an isotropic short range interaction that con-
serves [ would only split the degenerate ideal gas levels into
different / modes. Thus, if there is a dominant short range
interaction and a smaller dipolar interaction in a spherical
trap, the dipolar interaction would not just shift the levels,
but also split them into nondegenerate states of different |m)|.
This could provide an interesting and unambiguous experi-
mental signature of dipolar interaction effects. In such an
experiment, it would be important to verify the spherical
harmonicity of the trap, to exclude splitting due to anisotropy
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FIG. 3. (Color online) Excitations frequencies as function of the
dipole parameter D- for dipolar BEC in a cigar trap with w,/w),
=5/6 and with zero scattering length. Plotted are modes with m
=0-4. The three lines that extend to higher D- are the variational
results.

of the trap or non-harmonicity. This could be accomplished
by measuring the Kohn (i.e., sloshing, or dipole) modes.

We move now to a slightly cigar shaped trap, with
w,/0,=5/6 (Fig. 3); Here, the collapse occurs at D.=4.32.
The interesting feature here is the avoided crossing between
the second and third m=0 modes. We find that in the avoided
crossing the nature of the lowest mode changes from quadru-
polelike mode for small D. to a breathing mode close to
collapse. However, we found the same change in the nature
of the lowest mode also in a spherical trap, where there is no
such avoided crossings (see below). (See also Ref. [7] for
discussion of the nature of the modes within the variational
method [42].)

Finally, consider the JILA cigar trap [41] with w./w,
=1/.8, Fig. 4. Here collapse occurs at D.=4.83. The two
m=0 modes which are described by the variational method
have now a wide gap in energy and there is no longer a clear
avoided crossing between them. There is an interesting pat-
tern of crossing between some of the higher modes. Note

n
3)

N

—_

o
o

Excitation energy (
b

FIG. 4. (Color online) Excitations frequencies as function of the
dipole parameter D for dipolar BEC in a JILA cigar trap (o, lw,,
=1/48) with zero scattering length. Plotted are modes with m
=0-4. The three lines that extend to higher D- are the variational
results (cf. Fig. 3 of Ref. [7]).
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D,=1 D,=4.1

FIG. 5. (Color online) The spatial density perturbation f=u+uv
(see text) for the lowest (non-Kohn) mode in a spherical trap. Left,
for D.=1.0; right, for D«=4.1, close to collapse. The nodal line is
the thick line.

again, that the lowest variational mode is the one that leads
to collapse, but the two other two variational modes lie
above others which are not accounted for by the variational
ansatz.

We can also examine the shape and nature of the BdG
eigenmodes. The two eigenmode functions u and v are real,
and determine the time-dependent oscillation through Eqgs.
(22) and (23). The oscillation of the density p(r,7)
=|ydr,1)|? is then given, to linear order in u,v, by Sp(r,t)
=2[u(r)+u(r)]cos(wt). The function f=u+v therefore gives
the shape of the density oscillations.

As an example, consider the lowest (non-Kohn) mode in
the spherical trap, the mode that goes to zero in Fig. 2 and
leads to the collapse of the BEC. In Fig. 5 we draw the
contour plot of f for this mode, for two values of D, one
small, and one close to the collapse point. If we examine the
nodal line [f(r)=0, heavy line], we see that for small D it
forms an open, hyperboliclike contour. This signifies a qua-
drupolelike mode. In contrast, close to collapse, the nodal
line forms a closed, elliptic contour, typical of a breathing
mode. We conclude that the nature of the mode changes from
quadrupolelike for small D= to a breathing mode for D close
to collapse. This conclusion is in agreement with analysis
based on the variational method [7]. In between, the nodal
line is parallel to the z axis, and the eigenmode character is
essentially that of a pure transverse (p) excitation.

C. Collective versus single-particle excitations

Let us now examine in more detail the structure of the
BdG excitations spectrum for a specific case. In Fig. 6 we
show the spectrum evaluated for a spherical trap with D
=4. Each state is characterized by angular momentum pro-
jection m, and by even (positive) parity or odd (negative)
parity with respect to reflection z— —z. The BdG states are
represented by thick solid bars.

The BAG modes in each column of Fig. 6 are grouped in
multiplets with increasing near degeneracy of 1,2,3,...
near the harmonic oscillator frequencies. In the ideal-gas
limit these groups become exactly degenerate. Note that for
the 0* column the two lowest modes (which are far apart)
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O+ O0- 1+ 1- 2+ 2- 3+ 3- 4+ 4- 5+ 5- 6+ 6- 7+
m and parity

FIG. 6. Excitation spectrum in a spherical trap with D:=4. The
eigenenergies of BAG equations (26) are represented by thick solid
bars. Dotted bars correspond to the single-particle spectrum of the
HF Hamiltonian (31).

become degenerate (with frequency 2w,) at the ideal gas
limit. The splitting between the groups in each given column
is approximately 2w,. The splitting between the towers of
even and odd modes of the same m is approximately w,. In
the ideal gas limit, the tower of states with m* is degenerate
with that of (m—1)". We can classify the states in the ideal
gas limit by (/,n,), with [ the total angular momentum, 7, the
number of radial nodes (not counting a node at r=0), and
with energy (2n,+[)fiwy,. The towers of m*™ and
(m—1)"states become, in the ideal gas limit, a tower of (/,n,)
states as follows: the lowest state is (I/,n,)=(m,0). Above it
there is a pair (m+2,0),(m,2) degenerate in the ideal gas
limit, followed by a triplet (m+4,0),(m+2,2),(m,4) and so
on. Here, the ordering of the states inside each multiplet is
conventional only and does not indicate their order of in-
creasing energy when split by the interaction.

The BdG eigenmodes are given by the pair u,v corre-
sponding to positive and negative frequencies. A collective
mode is characterized by non-negligible v component. It de-
scribes excitation of a quasiparticle, as opposed to an exci-
tation of a single particle. However, the high-energy part of
the spectrum is expected to be well reproduced by a single-
particle description in the mean-field approximation [33,43],
since the condensate as a whole has little time to respond to
the fast oscillations of a single particle in a high-frequency
mode. The single-particle, or Hartree-Fock (HF) picture is
obtained by neglecting the coupling between u and v in Eq.
(25). This corresponds to setting v=0 in the first equation of
Eq. (25), which then reduces to the eigenvalue problem
(Hyp— ) = wu, with the HF Hamiltonian

HHF=H0+C+X. (31)

In this case, the eigenfunctions u(r) satisfy the normalization
condition fuf(r)uj(r) =0
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The spectrum of Hyy is shown as dotted horizontal bars in
Fig. 6. The general structure of the HF spectrum is very
similar to that obtained with the BdG equations (25), apart
from states with low energy and m, which are collective
modes. Note that the HF spectrum fails to satisfy the Kohn
theorem for the dipole modes. It is worth noting the good
agreement between the HF and the BdG spectra for m>2 as
well as for the odd m=1 modes. A close look at the near-
degenerate groups of the even m=0,1 modes shows that for
the 0" symmetry, there is good agreement between the two
spectra except for two modes in each group. For the 0~ and
1* symmetries, there is good agreement except for one mode
in each group. These observations can be understood as fol-
lows. In the ideal gas limit, modes with />0, have zero
amplitude at the center of the condensate, where the density
is at its maximum. With increasing / the modes become more
concentrated near the surface. The dipolar nondiagonal cou-
pling term in Eq. (26) is proportional to the local ground
state amplitude, and so becomes small for surface modes.
This, assuming that modes having /> 1 in the ideal gas limit
are well approximated by the HF description, explains the
pattern of Fig. 6, except for the even m=0 tower.

To explain the fact that for the 0* modes we see two
non-single-particle modes in each near-degenerate group, we
observe that, to first order of perturbation theory, the dipolar
interaction mixes the /=0 and /=2 modes into two orthogo-
nal linear combinations, each having some /=0 component.
Thus, for example, the group of three 0" near degenerate
modes around w/wy=4 corresponds to the ideal gas modes
(1,n,)=(0,2),(2,1),(4,0). The first two are mixed already in
first order of perturbation theory, so that both have some !/
=0 character, and as a consequence are not well described by
the single-particle picture. This interpretation is supported by
visual examination of the exact numerical eigenfunctions of
the three states. Note that the state that goes to the (4,0) state
in the ideal gas limit is the second of the three in order of
energy.

D. Quantum depletion

The quantum depletion, i.e., the number of particles N out
of the condensate, due to the interaction, is given by the
Bogoliubov theory as

N= f dri(r), (32)
with the local depletion defined by

lr) = 2 [y ()], (33)
J

where the “hole” components v; are obtained by solving the
BdG equations (26).

Typically, many thousands of modes need to be obtained
in order to converge the sum in Eq. (33) [43]. A useful ap-
proximation in this context in the local density approxima-
tion (LDA) [43,44], which is the leading order of a semiclas-
sical approximation. It was employed for the description of
BEC with a repulsive short range interaction. For an attrac-
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tive short range interaction, or more generally, for a dipolar
BEC with d*>>a/3 [45], an homogeneous BEC is unstable to
small momentum perturbations. Thus, the LDA, which as-
sumes local homogeneity, leads to unphysical complex fre-
quencies for small momenta. However, it is still useful to
describe the high momentum modes.

The LDA amounts to setting

ui(r) — u(p,r)e””,

v(r) — up,r)e?”,
d3
E..._> (2:)3..., (34)

where u(p,r),up,r) are normalized by |u(p,r)|*-|uvp,r)
=1. In the semiclassical limit the functions u(p,r) and v(p,r)
are slowly varying on the scale of the trap size, hence their
derivatives are negligible. We then obtain the same structure
of the BdG equations (26), with the operators H,X of Egs.
(27) replaced by their LDA versions,

p2
H{'=—+U(r),
2m

(X' (p.r) = [D:Vp(p) + sTV(r) x(p.r). (35)

where V(p) is given by Eq. (5). The operator C of Eq. (27)
remains unchanged, while the exchange operator X be-
comes local. Thus, in the LDA all the operators are local, and
the solution of the BAG equations becomes algebraic. The
excitation frequency is given by

o(p,r) = Vopep.r) - X(p.r), (36)
where wyg is the HF frequency within the LDA, given by

oup(p,r) = Hy'(p,r) — u+ C(r) + X“(p.r).  (37)

In the semiclassical approximation, one replaces the sum
over the discrete states in Eq. (33) with integral over
w (par ) - w(par )
Plpr)= — 38
(p.r) 20lpr) (38)
Since the LDA is inappropriate for the low lying modes,
we may calculate the contribution to Eq. (33) from exact,
discrete BAG modes up to a certain frequency cutoff w,, and
use the LDA to obtain the contribution from higher fre-
quency modes. Then Eq. (33) is replaced by

n(r) = E lu()*0(w, - w;) + f don(w,r), (39)

c

with

ﬁ(w,r)=f (zdpwz(p,r)é(w(p,r)—w)(wHF(p,r))- (40)
)

Note that the factor in the Dirac delta function depends on
the direction in momentum space. That is, the isoenergy sur-
faces are not surfaces of equal momentum p. Also, we use
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FIG. 7. (Color online) The spectral distribution g;,(w) in the
local density approximation, Eq. (41), is compared with the
smoothed, numerically exact spectral distribution g(w), Eq. (42),
for BEC in a spherical trap with D«=4.0.

the Heaviside function ®(wyp(p,r)) to exclude unphysical
LDA modes with wpp<<0, even though the definition (36)
can assign them a real positive frequency, due to taking the
positive root. However, this matters only for small momenta
below ..

As an example, we consider the case of a BEC in a
spherical trap with D«=4.0 and s=0. Using Egs. (40) and
(32), we find that the total depletion is 1.4 particles. The
fractional depletion depends on the number of condensate
particles. Since D. is proportional to (N-1)d’>, we can
achieve the same value of D. with many particles with a
small dipole moment, or a few particles with a large dipole
moment. For the **Cr example mentioned in the beginning of
Sec. IV B, we obtain D.=4.0 with N=1670, and the quantum
depletion is entirely negligible. However, we may imagine a
dozen or so molecules with high dipole moment in a mi-
crotrap. In which, case, the depletion may be measurable.

To demonstrate the agreement between the LDA and the
exact BAG spectrum for high frequencies, we define the
spectral distribution g;,(w) as the number of depleted bosons
per unit frequency. Thus g,,(w)dw is the number of depleted
bosons with frequency w in the interval dw. We have

gu(w) = J drit(w,r). (41)
We want to compare it with the spectral distribution g,

1{w-w\?
(52) ] )

g(w) = 2 fdrn (r)—— \7702 exp{ >

obtained from the low-lying discrete modes by folding 7(r)
with a Gaussian of standard deviation o (some smoothing of
the discrete data is necessary for meaningful comparison
with the continuous LDA spectral distribution).

In Fig. 7 we compare g and g,; for a BEC in a spherical
trap, with dipolar interaction D.=4.0 and s=0. We computed
g from Eq. (42) with o=w,. For frequencies above w/wy
~5 the two curves are essentially indistinguishable. This
shows the efficiency of the LDA in describing the high en-
ergy part of the spectrum.

V. CONCLUSIONS

We have calculated, for the first time, many BdG excited
modes of a dipolar BEC in a cylindrical trap, by direct solu-
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tion of the BAG equations. This achievement was made pos-
sible by a highly efficient algorithm which takes advantage
of the cylindrical symmetry. We showed how properties of
the BAG spectrum depend on the shape of the trap; examined
in detail the spectrum in a spherical trap and the nature of the
modes (collective vs single-particle); and calculated the
quantum depletion due to dominant dipolar interactions,
which is typically very small, but may become more signifi-
cant in microtraps containing a dozen or so molecules with
high dipole moment.

We note that the formalism developed in this work may
be easily extended to compute properties of dipolar BEC and
its depletion at nonzero temperature using the Hartree-Fock-
Bogoliubov-Popov method [44]. We intend to study the non-
zero temperature behavior in a future work.
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APPENDIX

Modification of the dipolar potential

In this part of the appendix we analyze the numerical
accuracy of the 3D FFT method for calculating the dipolar
interaction. A correction is suggested to increase the accu-
racy, and this correction also applies to our 2D algorithm.

The 3D FFT method was used to calculate the mean field
potential due to dipolar interactions via Eq. (4). To check its
accuracy it is more convenient to consider the dipolar inter-
action energy for a dipole strength D.=1, given by

1
=3 f f drdr'Vp(r —r")n(r")n(r). (A1)
Given n(r), this expression can be evaluated numerically on
a 3D grid by first performing the r’ integration using Eq. (4),
which requires FFT and inverse FFT, and then performing
the r integration as discrete summation on the spatial grid.
Note that V,(k) in Eq. (4) is given analytically by Eq. (5) and
does not require FFT.

Equation (A1) may be alternatively written in the form

b s e
Er=35m f dkVp(K)ii(k)?.

This expression may be evaluated numerically by using one
FFT to obtain 72(k) and then performing the integration as
summation in momentum space. The two numerical proce-
dures give the same result up to machine precision.

For a Gaussian density

(A2)

n(r)= exp[— (x* + y)/o? - ZZ/U'Z] (A3)

773/20'2

it is possible to obtain an analytic expression for E, using
Eq. (A2) [2,46]. This enables us to check the accuracy of the
numerical calculation.
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TABLE I. Relative error of evaluating dipolar interaction energy using the 3D FFT method, before and
after correction, for a pancake Gaussian density (see text).

R=8, N=32 R=8, N=64 R=16, N=64 R=16, N=128
Original method 2.7%1073 2.7%1073 8.6X107° 8.6X107
Corrected method -1.1X107 -1.1X107° 1.8x1078 —44X 10714

For a spherically symmetric Gaussian, o=0,, defined on a
cubic grid with equal resolution in the three axis, we find
numericallyzthze fzzxact result E,=0. In fact, by noticing that
‘Zﬁk):%ﬂw, it is seen that E, evaluated on a cubic
grid is guaranteed to be zero for any density n(x,y,z) which
is symmetric under all permutations of (x,y,z).

For a pancake shaped density o=2,0,=1, the exact result
is Ep=0.038670861 ---. We have evaluated it on cubic
grids of extent [-R,R]X[-R,R]X[-R,R] with varying size
R and number of points N X N X N. The relative error is tabu-
lated in the first row of Table I. It is seen that the errors are
small but far from machine accuracy. Note that convergence
with respect to N is already achieved with a modest spatial
resolution of 2R/N=2 X 8/32=0.5, but there is a rather slow
convergence with increasing R. This makes it clear that the
error is not due to failure to resolve the density function n(r).
For cigar-shaped densities similar behavior was observed.

The reason for the behavior of the numerical error is un-

derstood if we realize that V,,(k) is discontinuous at the ori-
gin, where n(k) obtains its maximum. This discontinuity
originates in the long range and nonisotropic nature of the
interaction. Thus, the numerical accuracy converges slowly
with increasing grid resolution, proportional to 1/R, in mo-
mentum space.

An alternative and equivalent way to understand the
source of the error is that the use of FFT implicitly assumes
that we are dealing with a 3D periodic lattice of condensates,
with unit cell of size 2R. Thus the error may be traced down
to the long range interactions between copies of condensates
in different unit cells.

An obvious correction suggests itself: since our actual
condensate is isolated and of a finite size, we can limit the
range of the dipolar interaction V(r) such that it is the same
as before for <R and zero for r=R. This should have no
physical consequences as long as R is greater than the extent
of our condensate. Then the Fourier transform of this inter-
action is continuous at the origin and resolved by the grid in
momentum space. We obtain the following expression for the

corrected dipolar interaction VS F(k):

cos(Rk) _sin(Rk)
R2k2 - R3k3

- 4
Vg‘”?(k)=§<1+3 )(3cos2a—1).

(A4)

Using this corrected interaction, we obtain the much bet-
ter accuracy demonstrated in the second line of Table I. The
remaining error depends on R only due to the spatial extent
of the condensate, and fast convergence is achieved by in-
creasing R while keeping appropriate grid resolution through

increasing N. One may compromise on R and N, and still
obtain at least a 100-fold increase in accuracy as compared to
using the infinite range interaction.

For highly pancake and/or cigar traps the condensate has
also a highly pancake and/or cigar shape. In this case it is
natural to work with a grid whose extent [-Z,Z] in the z
direction is, respectively, smaller and/or larger than its extent
[-P,P]X[-P,P] in the (x,y) plane. Thus, fewer grid points
are needed along the shorter axis. In this case, we find that
without correction, numerical errors can be typically as large
as one percent. However, truncating the interaction outside a
sphere as in Eq. (A4) is not very helpful in this case, since
the condition R <min(Z, P) must be met, which restricts the
condensate extent to less than the shorter direction. The ideal
fix would be to cut the interaction exactly by the shape of the
box, or a cylinder inscribed within it. We were unable to find
an analytic expression for the Fourier transform of a dipolar
interaction bounded by a cylinder. A partial but still helpful
solution for pancake traps is to truncate the interaction only
for |z| >Z. We then find

4
pau Z(k) = ?77(3 cos® a— 1) +4mexp(— Zk,)

X [sin? a cos(Zk.) — sin a cos a sin(Zk,)].
(A5)

With this corrected interaction, a small Z may be used as
long as it fully contains the condensate. Numerical conver-
gence with the size P will still be slow, but typically the
accuracy is improved by an order of magnitude at the least.

Finally, with our 2D algorithm combining Hankel trans-
form in the transverse direction and Fourier transform in the
z direction, we find numerical errors of similar behavior and
magnitude. In the case of 2D, small numerical errors exists
even for a spherical symmetric density, since there is no
symmetry of the grid that ensures getting the correct zero
energy, as in the 3D case. All of these errors are significantly
reduced by employing the same cutoff interactions as in the
3D case.

Conjugate-gradients implementation

We describe here in some detail aspects of the conjugate-
gradients implementation specific to the problem of finding
the ground state of a dipolar condensate, see Sec. III. The
standard conjugate-gradients algorithm performs uncon-
strained minimization. In principle a constraint could be
implemented through a Lagrange multiplier. In our imple-
mentation we rather follow the idea of Ref. [31]. To account
more easily for the normalization constraint, Eq. (21), we let
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W —W/||W| so that the energy can be obtained for conden-
sate wave functions W with a norm different from unity. This
corresponds to dividing the terms of E[W,¥"] in Eq. (19)
that are quadratic in ¥ by ||W|]%, and the interaction term
quartic in ¥ by [|[¥||*. The modified energy functional reads

V() HyW (r)
I

E[V,¥"]=

2||W||4ffdrdr (W (r)

XV(r =)V ()P (r). (A6)

This functional may now be minimized directly with no con-
straints. During the minimization process it may still be nu-
merically advantageous to normalize the wave function at
each step.

One ingredient of the conjugate-gradients method is a line
minimization of the energy functional, that is the minimiza-
tion of

E(Wy+A\y) (A7)

with respect to N, where W, is the current trial wave function
and y is the proposed direction along which to move. An
important issue for our specific problem is to find the first
minimum encountered when moving downhill in energy
along the line: whenever d*>>al3, the global minimum is a
collapsed state [2], while the condensate corresponds to a
stable local minimum (if such exists). Therefore, it is impor-
tant that the line minimization will not jump to an energy
valley leading to the global one, but stay in the energy valley
of the initial guess. This issue is usually not considered as
important in the textbook implementation of the conjugate-
gradients method. Following Ref. [31] we use the fact that
the Eq. (A7) is a rational function of N. We then easily find
the roots of dE/dN and the first local minimum of E encoun-
tered when one moves along the line downhill in energy
starting from A=0. The coefficients of the numerator in the
rational function require calculation of dipolar interaction in-
tegrals with combinations of W and x such as
[fdrdr'V(r)x(r)V,(r—r')x*(r'), etc. These integrals can be
computed in momentum space by using DHFT and the iden-
tity

f f drdr'n,(r)Vp(r—r")n,(r')

1

=G f dkit (k) V (k)T (k).

(A8)
After finding the local minimum along a given line we pro-
ceed with another line minimization along a conjugate direc-
tion, and so forth until we find a local minimum of the en-
ergy functional Eq. (A6).

An additional technical ingredient in our implementation
of the conjugate-gradients algorithm is the use of precondi-

PHYSICAL REVIEW A 74, 013623 (2006)

tioning [30], a technique used to accelerate the convergence.
Our preconditioner is given in momentum space as 5, /2+M,
with M=max(E,E,), E is the energy given by Eq. (A6), and
E, is the kinetic energy.

Excitations spectrum

An important issue in calculating the m >0 excitations is
that the grid points given by Eq. (9) are different for different
m. The point is that the function f of Eq. (29a) is represented
on the m>0 grid, whereas the ground state wave function
entering Eqgs. (27), is defined on the m=0 grid. Our solution
is to interpolate the ground state wave function to the grid
m>0. The interpolation is facilitated by the fact that the
roots of the Bessel function J,,(r) march to the right as m is
increased, and those of m are interlaced between those of
order m—1. Fortunately, a highly accurate interpolation
scheme is available in this case [47]. Similarly to the exact
integration formula (16), one can derive an exact interpola-
tion formula for band limited functions satisfying Eq. (15),

o 2a0o(27Kr) f(r)
fr Z s A9
fin = i [ 01_(27TKr)2]J1(a0l') (A9)

with the grid points r;= 2‘% This formula may be proved by
writing f(r) as the Hankel transform (of order 0) of Fk).

Expanding f(k) in a Fourier-Bessel series, the coefficients are
found to be proportional to f(r;). Evaluating the resulting
expression gives Eq. (A9). This formula, exact for band lim-
ited functions, still gives very accurate approximation for
f(r) such that its Hankel transform (i.e., its 2D Fourier trans-
form) is small for k>K. It can be truncated to the first N
terms provided f(r) is small for r=R= ) ;,;/K. We used this
formula to interpolate the ground state wave function to the
required grid points of m>0. Note that this interpolation
need only be done once prior to solving the BdG eigensys-
tem. An alternative method for calculating m >0 modes us-
ing a fixed grid corresponding to m=0 with no need for
interpolation was suggested in Refs. [22,48].

In our application we have taken advantage of the struc-
ture of the BAG equations (Sec. IV) to efficiently compute
the low lying spectrum. We have used a variant of the Ar-
noldi method (the implicitly restarted Arnoldi method),
which is implemented in the ARPACK software package
[49], and enables finding the M largest or smallest eigenval-
ues of an operator A, where M is selected by the user. A need
not be Hermitian. For our purposes, the main advantage of
this method is that it requires as input only the evaluation of
Ax for some vector x. The matrix elements of A need not be
known. The user need only provide a function that accepts x
and returns y=Ax. The eigenvalues in the requested part of
the spectrum are then found iteratively by repeated applica-
tions of A, starting from some randomly chosen x. In our
case, Ax represents the left-hand side of Eq. (29a), and the
computation is facilitated, as usual, by using DHFT to move
between space and momentum space representations.
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