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Our recent measurements on the expansion of a chromium dipolar condensate after release from an optical
trapping potential are in good agreement with an exact solution of the hydrodynamic equations for dipolar
Bose gases. We report here the theoretical method used to interpret the measurement data as well as more
details of the experiment and its analysis. The theory reported here is a tool for the investigation of different
dynamical situations in time-dependent harmonic traps.
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I. INTRODUCTION

Recent developments in the manipulation of cold atoms
and molecules are paving the way towards the analysis of
polar gases, for which the dipole-dipole interaction may play
a significant, or even dominant role. In this sense, exciting
perspectives towards the generation of ultracold polar mol-
ecules have been recently opened by experiments on direct
cooling and trapping of molecules, as well as on photoasso-
ciation and on Feshbach resonances in binary mixtures of
ultracold atoms �1–6�. However, up to now, no degenerate
gas of ultracold polar molecules has been ever realized.

On the other hand, the realization of a Bose-Einstein con-
densate �BEC� of polarized chromium �7� constitutes the first
example of a quantum degenerated dipolar gas. The large
magnetic moment of chromium �6 bohr magnetons� makes
its magnetic dipole-dipole interaction sufficiently strong to
induce qualitative differences in the BEC properties.

Dipole-dipole interactions are long-range and anisotropic
�partially attractive and partially repulsive�, in clear contrast
to the up to now usual short-range isotropic interactions.
Chromium is hence the first atomic species to be Bose-
condensed that has a visible anisotropic interaction. By
means of an appropriate rotating magnetic field, this aniso-
tropy may be employed to tune the dipolar interactions �8�,
introducing a second control mechanism in addition to the
tuning of the isotropic interactions by means of Feshbach
resonances �9�. The dipolar anisotropy should also cause
sound to propagate with different speeds in different direc-
tions providing an interesting tool to investigate dissipation
mechanisms, e.g., the Landau criterion for superfluidity.

Moreover, the partially attractive and partially repulsive
nature of the dipolar interaction together with its long-range
character makes the question of stability for strong dipolar
interactions more intricate �10–12�. Indeed, a homogeneous
dipolar condensate is unstable when the dipolar interaction is
stronger than the s-wave scattering interaction �10,11,13�, an
issue which may become especially relevant for ultracold
heteronuclear molecules with electric dipole moments of the
order of 1 D.

Many other new exciting phenomena are expected in di-
polar quantum gases oriented by an external field. Recent
theoretical analyses have shown that stability and excitations

of dipolar gases are crucially determined by the trap geom-
etry �10–12,14–19�. Dipolar degenerate quantum gases are
also attractive in the context of strongly correlated atoms
�20–24�, as a physical implementation of quantum informa-
tion �25,26�, and for the study of ultracold chemistry �27�.

In a recent article �28�, we reported the first observation
of mechanical effects due to the magnetic dipole-dipole in-
teraction in a degenerate quantum gas. We investigated the
expansion of a chromium BEC polarized by an external mag-
netic field after release from an anisotropic trap. The aniso-
tropy of the magnetic dipolar interaction was shown to lead
to a measurable anisotropic deformation of the expanding
chromium BEC, which is quantitatively in very good agree-
ment with the theoretical predictions. The expansion tech-
nique has been used since the earliest experiments with cold
atoms in order to show the existence of the Bose-Einstein
condensed phase �29,30� and to probe the coherence proper-
ties of bosonic atoms on a lattice �31� and in the context of
ultracold Fermi gases to point out superfluid effects �32,33�.
In this paper, we report in detail on the theoretical methods
that have been used to interpret the experimental data on the
expansion, as well as a more detailed description of the ex-
periment. The theory generalizes a recent exact result ob-
tained for the Thomas-Fermi dynamics of a dipolar conden-
sate �18,34� obtained explicitly for the case of cylindrical-
symmetric traps to the case of nonaxisymmetric traps.

The paper is organized as follows: In Sec. II A we intro-
duce the hydrodynamic theory of a dipolar superfluid. The
general equations for the dynamics of dipolar condensate in
the hydrodynamic limit in the presence of a general time-
dependent nonaxisymmetric harmonic trap are presented in
Sec. II B. The calculation of the ground state density profile
and of the expansion of a dipolar condensate are a direct
application of the theory �Secs. II C and II D, respectively�,
which are used to explain the mechanisms that are respon-
sible for the reported observations quantitatively and quali-
tatively. In Sec. III A we briefly summarize the experimental
procedure we used to obtain the expansion data, which are
compared with the theory subsequently in Sec. III B. Section
IV concludes. Appendix A discusses some properties of the
dipole-dipole mean-field integral. Appendix B contains the
expression for the mean-field dipole-dipole potential.
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II. THEORY

The expansion of the chromium Bose-Einstein condensate
can be studied theoretically by solving the generalized form
of the time-dependent Gross-Pitaevskii equations given in
Sec. II A. These equations are a tool to investigate a large
number of dynamical situations in addition to the expansion,
e.g., large amplitude collective oscillations �see, for instance,
the review �35� for the case of pure s-wave contact interac-
tion� and their frequencies �36�. The generalized time-
dependent Gross-Pitaevskii equations �1� and �2� or the
equivalent hydrodynamic equations �6� and �7� have been
introduced earlier to study the static and stability properties
of a dipolar condensate theoretically in �10,11,37� for the
case of magnetic dipole-dipole interaction and in �38–40� for
the case of laser-induced dipole-dipole interaction. The ex-
pansion of a dipolar condensate has been previously theoreti-
cally investigated in the case of cylindrical symmetry in �41�
for the Thomas-Fermi limit and in �16,37� for the case of an
s-wave scattering length tuned close to zero.

A. Hydrodynamic equations of a dipolar superfluid

The generalized time-dependent Gross-Pitaevskii equa-
tion is given by

− i�
�

�t
��r�,t� = −

�2

2m
�2��r�,t� + Vext�r�,t���r�,t�

+ Vmf�r�,t���r�,t� , �1�

where Vext is an external potential and Vmf is the mean-field
potential given by

Vmf�r�,t� = gn�r�,t� +� d3r�Udd�r� − r���n�r��,t� , �2�

where n�r� , t�= ���r� , t��2 is the condensate atomic density and
m is the atomic mass. In Eq. �2� g is the s-wave scattering
coupling constant given by

g =
4��2a

m
, �3�

where a is the s-wave scattering length. Here

Udd�r�� =
�0�m

2

4�r3 �1 −
3�ê�r��2

r2 � �4�

is the �dipole-dipole� interaction energy between two equally
oriented magnetic dipoles �� m=�mê� aligned by a polarizing

magnetic field �ê� 	B� � and with relative coordinate r�. The

polarizing magnetic field B� is assumed parallel to one of
the symmetry axes of the harmonic trap. A measure of the
strength of the dipole-dipole interaction relative to
the s-wave scattering energy is given by the dimensionless
quantity

�dd =
�0�2m

12��2a
. �5�

In complete equivalence of Eqs. �1� and �2�, one can solve
the corresponding collisionless hydrodynamic equations, i.e.,

the continuity and Euler equations, given, respectively, by

�n

�t
= − �� · �nv�� , �6�

m
�v�

�t
= − ���−

�2�2
n

2m
n
+

mv2

2
+ Vext + Vmf� , �7�

where v� is the superfluid velocity, which is related
to the phase of the macroscopic condensate wave function

��r� , t�=
n�r� , t�exp�i��r� , t�� by v��r� , t�= �� /m��� ��r� , t�.
Equations �6� and �7� describe the potential flow of a fluid in
the presence of a self-consistent potential due to the presence
of the long-range dipolar interaction �the second contribution
on the right side of �2�� and whose pressure P and density n
are related by the equation of state P= �g /2�n2.

B. Hydrodynamic solutions for time-dependent
harmonic potentials

An exact class of solutions of the generalized Gross-
Pitaevskii equation �GPE� �1� and �2� or equivalently of the
hydrodynamic equations �6� and �7� in the Thomas-Fermi
limit has been obtained for harmonic time-dependent poten-
tial �18� of the form given by

Vho�r�,t� =
m

2
�	x

2�t�x2 + 	y
2�t�y2 + 	z

2�t�z2� . �8�

In the Thomas-Fermi or hydrodynamic limit the quantum
pressure term �2�2
n / �2m
n� proportional to the Laplacian
of the modulus of the wave function is neglected. The solu-
tions have the form given by

n�r�,t� =
15N

8�RxRyRz
�1 −

x2

Rx
2 −

y2

Ry
2 −

z2

Rz
2� , �9�

v��r�,t� = 1
2�� �
xx

2 + 
yy
2 + 
zz

2� , �10�

valid until the right-hand side of �9� is �0 otherwise
n�r� , t�=0. The existence of this class of solutions for har-
monic traps is due to the harmonic nature of the external and
self-consistent potentials and the Bernoulli term. The density
n�r� , t� and the velocity field v��r� , t� depend on time only
through the time dependence of the condensate radii Rj�t�
and the 
 j�t� coefficients. The latter are simply given by


 j�t� =
�

�t
ln�Rj�t�� . �11�

The time dependence of the condensate radii Rj are given by
solving a simpler equation which can be written in a compact
form as

Nm

7

d2Rj

dt2 = −
�

�Rj
Htot�Rx,Ry,Rz� , �12�

where Htot /N is the expectation value of the total energy per
particle. The various contributions to Htot are

�1� the classical contribution to the kinetic energy
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Hkin =
Nm

14
�Ṙx

2 + Ṙy
2 + Ṙz

2� �13�

which does not depend on the radii but only on their time
derivative;

�2� the potential energy in the harmonic trap

Hho =
Nm

14
�	x

2Rx
2 + 	y

2Ry
2 + 	z

2Rz
2�; �14�

�3� the mean-field energy due to s-wave scattering

Hs =
15

7
�N2�2a

m
� 1

RxRyRz
; �15�

�4� the mean-field magnetic dipole-dipole energy

Hdd
x = −

15

7
�N2�2a

m
��ddf��yx,�zx�

RxRyRz
. �16�

Here the magnetic field is assumed parallel to the x̂ axes and
�yx=Ry /Rx and �zx=Rz /Rx are condensate aspect ratios. The
function f is given by

f��yx,�zx� = 1 + 3�yx�zx
E� \ 
� − F� \ 
�

�1 − �zx
2 �
1 − �yx

2
�17�

with

sin  = 
1 − �yx
2 , �18�

sin2 
 =
1 − �zx

2

1 − �yx
2 . �19�

Here F� \
� and E� \
� are the incomplete elliptic inte-
grals of the first and second kinds �42�. The function f is a
smooth and decreasing function with values in the interval
�−2,1�. See figures and discussion on f in Appendix A.

C. Equilibrium configuration and scaling property

The equations for the equilibrium values of the conden-
sate radii can be easily derived from Newton’s equations �12�
and from Eqs. �14�–�16� and are given by

	x
2 = � 15N�2a

m2�Rx�3RyRz
��1 − �ddf�Ry

Rx
,
Rz

Rx
�

+ �dd
Ry

Rx

�f

��1
�Ry

Rx
,
Rz

Rx
� + �dd

Rz

Rx

�f

��2
�Ry

Rx
,
Rz

Rx
�� , �20�

	y
2 = � 15N�2a

m2Rx�Ry�3Rz
��1 − �ddf�Ry

Rx
,
Rz

Rx
�

− �dd
Ry

Rx

�f

��1
�Ry

Rx
,
Rz

Rx
�� , �21�

	z
2 = � 15N�2a

m2RxRy�Rz�3��1 − �ddf�Ry

Rx
,
Rz

Rx
�

− �dd
Rz

Rx

�f

��2
�Ry

Rx
,
Rz

Rx
�� . �22�

These equations are solved numerically for the case of a
trapped Cr condensate. Using the value of the chromium
scattering length obtained from the Feshbach resonance mea-
surements �43�, �dd results of order of �dd

Cr 0.15. To get in-
sight into the modifications of the condensate radii and of the
shape and volume of the condensate, we consider the case of
small �dd, which is also relevant for the chromium conden-
sate. The variations of the condensate radii �Ri=Ri−Ri

0 with
i=x ,y ,z and Ri

0= �15N�2a /m2	i
2�1/5 are given to the first

order in �dd by

�Rx

Rx
0 = − �dd

1

5
f�	x

	y
,
	x

	z
� − �dd

1

2

	x

	y

�f

��1
�	x

	y
,
	x

	z
�

− �dd
1

2

	x

	z

�f

��2
�	x

	y
,
	x

	z
� , �23�

�Ry

Ry
0 = − �dd

1

5
f�	x

	y
,
	x

	z
� + �dd

1

2

	x

	y

�f

��1
�	x

	y
,
	x

	z
� , �24�

�Rz

Rz
0 = − �dd

1

5
f�	x

	y
,
	x

	z
� + �dd

1

2

	x

	z

�f

��2
�	x

	y
,
	x

	z
� . �25�

These can be used to show that the rate of change of the
condensate volume, i.e., the product of V= �4� /3�RxRyRz is
proportional to the function f , i.e.,

�V

V0 = − �dd
3

5
f�	x

	y
,
	x

	z
� . �26�

In contrast, the rate of change of the aspect ratio is related to
the derivative of f

��Ry/Rx�
�Ry

0/Rx
0�

= �dd
	x

	y

�f

��1
�	x

	y
,
	x

	z
� + �dd

1

2

	x

	z

�f

��2
�	x

	y
,
	x

	z
� ,

�27�

��Rz/Rx�
�Rz

0/Rx
0�

= �dd
1

2

	x

	y

�f

��1
�	x

	y
,
	x

	z
� + �dd

	x

	z

�f

��2
�	x

	y
,
	x

	z
� .

�28�

Since the derivatives of f are always negative, the aspect
ratios Ry /Rx and Rz /Rx are always decreasing meaning that
the condensate tends to have a shape elongated in the direc-
tion of the magnetic field. It has been shown numerically that
this result is valid also for any value of �dd in the interval �0,
1� �where the Thomas-Fermi approximation has still a clear
meaning� and in the case of cylindrical symmetry �34�.
Equations �26�–�28� are the generalization of Eqs. 16 and 15
of �41�, which hold in the case of cylindrical symmetry.
Equation 16 of �41� contains an extra term proportional to
the derivative of f , which is rectified by �26�.

It is worth noting that the scaling known for the case of
s-wave scattering only, i.e., Rx ,Ry ,Rz� �Na�1/5 is also valid
in presence of dipole-dipole interaction. The right-hand sides
of Eqs. �20�–�22� are written as the product of two different
terms: the first on the left is proportional to N and is a func-
tion of the condensate radii; the second is a function only on
ratios of radii. Thus the first terms fix the scaling of the radii
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in the same way as in the usual Thomas-Fermi solution with
contact interaction. Therefore, all of the condensate radii Ri
rescaled by N1/5 are independent from the number of atoms.

D. Expansion

The expansion can be studied numerically integrating
Newton’s equations �12� for the particular case

	x�t� = 0, 	y�t� = 0, 	z�t� = 0 for t � 0 �29�

with initial condition Ri�0� at t=0 the initial equilibrium con-
densate radii. We write below a general set of equations of
motion for the rescaled variables

bi�t� = Ri�t�/Ri�0� . �30�

These are given by

d2bx

dt2 = − 	x
2�t�bx +

	̄x
2

bx
2bybz

�1 − �ddf�by

bx
�y

0,
bz

bx
�z

0�
− �ddbx

�f

�bx
�by

bx
�y

0,
bz

bx
�z

0�� ,

d2by

dt2 = − 	y
2�t�by +

	̄y
2

bxby
2bz

�1 − �ddf�by

bx
�y

0,
bz

bx
�z

0�
− �ddby

�f

�by
�by

bx
�y

0,
bz

bx
�z

0�� ,

d2bz

dt2 = − 	z
2�t�bz +

	̄z
2

bxbybz
2�1 − �ddf�by

bx
�y

0,
bz

bx
�z

0�
− �ddbz

�f

�bz
�by

bx
�y

0,
bz

bx
�z

0�� , �31�

where �y
0=Ry�0� /Rx�0� and �z

0=Rz�0� /Rx�0� are condensate
aspect ratios at equilibrium at t=0. Here

	̄i
2 =

15N�2a

m2�Ri�2RxRyRz
, �32�

with i=x ,y ,z. From these equations, we see that, as for the
case of contact interaction, the condensate radii once res-
caled obey equations that are independent from the number
of atoms for a general time-dependent harmonic confine-
ment. The scaling is valid during the dynamics as the time
scale of any evolution is uniquely fixed by the trap frequen-
cies �41�. The scaling properties have important practical
consequences as the number of condensate atoms is a diffi-
cult parameter to control experimentally.

Before discussing the physics of an expanding dipolar
condensate, we shall briefly discuss the expansion dynamics
in the case of only contact interaction present �see, e.g.,
�30,35��. The density distribution of the trapped condensate
has the shape of an inverted paraboloid reflecting the trap
anisotropy, e.g., for an isotropic trap the density distribution
is also symmetric as depicted in Fig. 1. When the condensate
is released from the trap the only force acting on the conden-
sate atoms in the Thomas-Fermi limit is �apart from the ho-

mogeneous gravity� equal to minus the gradient of the
s-wave scattering mean-field potential, which is proportional
to the gradient of the condensate density. Thus the accelera-
tion is stronger in the directions of stronger confinement of
the condensate. Since the aspect ratio of the expanded con-
densate is asymptotically equal to the ratio of the rate of
which the condensate radii expand, an inversion of the aspect
ratio is generally expected. Therefore, a cigar-shaped con-
densate results in a pancake-shaped condensate after long
times of expansion and vice versa �see also Fig. 3�.

The effect of dipolar interaction on the condensate expan-
sion can be a little counterintuitive. As already discussed, a
trapped cigar-shaped condensate oriented in the direction of
the magnetic field has a more pronounced cigar shape before
expansion. On the other hand, the more pronounced cigar
shape does not manifest in a more pancake shape after the
condensate expansion �see Fig. 5� as one would expect from
the experience of the expansion without dipolar forces. On
the contrary, the expanded condensate has a less pancakelike
shape. The general trend of deforming the condensate with
an elongation along the magnetization and a contraction in
the transversal directions is kept also during the expansion of
the condensate as can be seen from the schematic drawing of
Fig. 3. Let us discuss that in more details.

To get insight into this behavior, we should look at the
dipole-dipole mean-field potential �dd. The general expres-
sion of �dd is given in Appendix B. Its main characteristics
relevant for the present discussion are contained in the spe-
cial case of a spherical symmetric condensate with radius

FIG. 1. �Color� Inverted parabolic profile of a BEC in the
Thomas-Fermi limit without a dipole-dipole interaction. When the
trapping potential is symmetric the distribution is also spherically
symmetric.

FIG. 2. �Color� Saddle shaped dipole potential generated by
dipolar atoms of a BEC in a spherical trap. The atomic dipoles
which are illustrated as small magnets in the figure are aligned by
an external magnetic field B. Note the orientation of the saddle
potential relative to the magnetic field direction.
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RTF �see Fig. 2�. For r�RTF, the dipole-dipole mean-field
potential at a position r� with distance r from the center of
mass is given by �8�

�dd�r�� =
�ddm	0

2

5
�1 − 3� e�� · r�

�r� �2�r2 for r � RTF.

�33�

From this equation, it becomes clear that the potential is
harmonic in r but has an angular dependence. Note that the
term in square brackets varies depending on the angle
between the orientation of the dipoles e�� and the position
vector r� between −2 if the position and the polarization

are parallel and +1 if they are orthogonal. The potential
therefore has the form of a saddle with a negative curvature
along the direction of magnetization and a positive curvature
in transverse direction.

After a sudden switch-off of the external potential, the
only forces stem from the gradient of the contact mean-field
potential �repulsive in all directions� and the gradient of the
dipole-dipole mean-field interaction �repulsive and attrac-
tive�. Due to its direct proportionality to the local density, the
contact part of the mean-field potential reveals the same pa-
rabola shape as depicted in Fig. 1. The dipole-dipole poten-
tial �dd�r�� still has its �harmonic� saddle shape �see Fig. 2�.
Note that in the direction of magnetization, the gradient of
the potential energy of the total mean field �Umf =g���r���2
+�dd�r��� will be larger than without dipole-dipole interac-
tion. Therefore the atoms will obey a larger acceleration
along the direction of magnetization than without the dipole-
dipole interaction. In the directions perpendicular to the mag-
netization, the condensate atoms attract each other. Thus the
repulsive contact interaction is weakened by the dipole-
dipole interaction in transversal direction and the accelera-
tion that atoms feel perpendicular to the magnetization will
be smaller. This explains why the general trend of deforming
the condensate with an elongation along the magnetization
and a contraction in the transversal directions is kept also
during the expansion of the condensate �see Fig. 3� .

III. EXPERIMENT

To measure the effect of the magnetic dipole-dipole inter-
action on the expansion dynamics of the condensate, we pre-
pare a BEC in a crossed optical dipole trap. The details of the

FIG. 3. �Color� Figure to illustrate the change of the condensate
shape under the influence of magnetization in trap �top row� and
during time of flight �bottom row�. Left column, magnetization in
transversal direction; center column, nondipolar atoms; right col-
umn, longitudinal polarization. Dashed ellipses represent the non-
dipolar condensate.

FIG. 4. �Color� Experimental cycle for measuring the dipole-dipole interaction. �a� and �c�: alignment of the field relative to the chamber
just before releasing them. Gravity g� marks y as the vertical axis. �b� and �d�: schematic cycle. The magnetic field during preparation is in
both cases along the y axis. To measure with the z polarization �a� and �b�, the field has to be turned slowly �within 40 ms� within the trap
before releasing the atoms. After 1 ms of expansion, the field is switched to the x direction. For y polarization �c� and �d�, the field is kept
in y direction until 1 ms after release.
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preparation of the chromium BEC are discussed in �44�. By
decreasing the intensity of the horizontal trapping beam from
initially 9.3 W to 280 mW and keeping the vertical intensity
constant at 4.5 W, we produce almost pure condensates con-
taining on average a number of 40 000 atoms. A schematic
illustration of the subsequent experimental cycle is depicted
in Fig. 4. After 250 ms equilibration,
the intensity of the horizontal beam is increased adiabatically
to 2.3 W to form an anisotropic trap �trap parameters
fx=942 Hz, fy =712 Hz, and fz=128 Hz�. Throughout the
preparation procedure, we keep a homogeneous offset field
of �11.5 G along the y axis until the trap has been ramped
up �44�. After this change of the trap parameters, we either
keep the field aligned along y �situation �b� in Fig. 4� or we
rotate the field adiabatically from the y to the z direction
�situation �a� in Fig. 4�. This is done by increasing the field in
z direction linearly within 40 ms to �11.5 G while reducing
the field in y direction during the same time to 0 G. After the
field has reached the steady state, we keep the atoms for
another 7 ms in the trap to give them enough time to redis-
tribute. The total storage time in both cases of longitudinal
�z� or transversal �y� magnetization is equal. Subsequently,
the atoms are released by a sudden switch-off of the trapping
beams. The polarization field is kept constant for 1 ms after
release from the trap and then rotated quickly to the trans-
versal x axis in either case by switching on the field in the x
direction and switching off the z or y fields. The field along
x is needed to align the atomic magnetic moments for ab-
sorption imaging in this direction. The 1 ms of free expan-

sion before switching the field is long enough for the mean-
field energy to drop to such a small part of its initial value
that changing the alignment of the dipoles after this time
does not influence the expansion anymore. In other words,
after this time, the gas is already so dilute that any kind of
interaction among the atoms can be neglected compared to
the kinetic energy. After an additional time of flight of up to
18 ms plus 1 ms for the detection field to settle �total time of
flight 2–20 ms�, an absorption image of the cloud is taken.

The images were evaluated by two-dimensional fits to the
density profiles. Figure 5 shows 1D cuts through the density
profile of an expanded, almost pure condensate in the y and
z direction, respectively. The most convenient quantity to
analyze the expansion is the aspect ratio �=Ry /Rz since it is
insensitive to fluctuations of the number of atoms. The only
quantities that have to be known exactly are the trap param-
eters and the ratio �dd between magnetic dipole-dipole inter-
action and contact interaction �5�. The trap frequencies have
been determined using a parametric heating technique �44�.

Figure 6 shows the aspect ratio of the BEC for different
times of ballistic expansion. The set of data marked with red
squares represents the experiments performed with polariza-
tion in vertical �y� direction and black circles represent the
results with horizontal �z� polarization. The upper graph
shows the result of sequential experiments where the total
time of flight was varied between 2 and 14 ms. Since one run
�i.e., catching atoms in the magnetic trap with Ioffe-Pritchard
�cloverleaf� configuration, Doppler cooling, compressing, rf-
cooling, transfer to the optical dipole trap, pumping, plain
evaporation in the optical dipole trap, forced evaporation,
modification of the trap and the fields, taking an image, re-
setting the system� takes about 1 min and 20 s, the data of
the time of flight series presented in Fig. 6 corresponds to a
total measuring time of more than 4 h. To reduce the influ-
ence of systematic drifts during that time, the time of flight
of subsequent pictures was chosen randomly. For the same
reason, we also changed between y and z polarizations every
10 runs. An 11-point linear moving average �corresponding
to averaging over 2.2 ms in the figure� has been applied to
both sets of data in the left graph to average out fluctuations
in the determined condensate widths. A moving average of
that length is reasonable since the expected behavior does
not show features on shorter time scales that could be con-
cealed by the averaging. This has been proven by applying
the same moving average to the theoretical values. To be able
to display also all the measured data for short times of flight,
the range of the moving average was increased from 1 to 11
within the first six data points. The data point corresponding
to 2 ms time of flight �TOF� is thus not averaged, the one at
2.2 ms is averaged over 3 points, the one at 2.4 ms over 5,
and so on. Thus, only the data corresponding to 2–2.8 ms
TOF are averaged over less than 11 points.

A. Comparison of experiment and theory

The measured data for the condensate aspect ratio are
compared to the numerical results obtained integrating New-
ton’s equations �12� in Fig. 6. The theory contains no adjust-
able parameters. It only relies on known or measured quan-

FIG. 5. �Color� �a� and �b� show the density profiles in the y and
z directions of an almost pure condensate after 90 ms of expansion,
respectively. Data in the gray shaded areas have been used to fit the
thermal cloud.

GIOVANAZZI et al. PHYSICAL REVIEW A 74, 013621 �2006�

013621-6



tities, namely the trap frequencies, the magnetic moment,
and the s-wave scattering length that characterizes the con-
tact interaction �43�. The dotted line represents the expecta-
tion for a gas interacting solely via s-wave scattering. Com-
pared to this nondipolar behavior, the expansion of the
condensate shows a dependence on the polarization of the
atoms that is in agreement with the theory: With transversal
polarization �field along the y axis�, the condensate is elon-
gated in the transversal direction and the aspect ratio is in-
creased; if the polarization is in longitudinal direction �field
along the z axis�, the condensate is contracted in vertical
direction and the aspect ratio is decreased. Also the quanti-
tative agreement is remarkable.

The error bars in the first graph of Fig. 6 include only
error that stem from the fit of the condensate size. Systematic
errors, e.g., uncertainty of the magnification are not con-
tained. These systematic errors can be found in the lower
graph of Fig. 6 where the mean value of the results of 42 and
32 measurements with y and z polarizations, respectively, are
presented. All these measurements were performed after the
same time of flight of 10 ms. In all, 50 measurements have
been performed at 10 ms with both polarizations. However,
some of the measurements had to be withdrawn due to an
obvious instability of the system which on the one hand lead
to a number of shots where the number of atoms was sub-
stantially smaller than the average �4.0±0.6��104 of the re-
maining measurements. On the other hand, some of the con-
densates did not fall down vertically but moved significantly
to one or the other side during their flight, which we consid-
ered as a signature that the condensate was kicked �probably
by mechanical noise on the optical table� prior to or when

switching of the trap and also these images were withdrawn.
The error bars directly connected to the two data points are
the statistical errors of all measurements and represent ±1
standard deviation from the mean value. The error bars on
the left represent the systematic errors, that are additionally
contained in the data, assuming a systematic 2% uncertainty
in the size of the cloud. Note that such an error is contained
in all data points in the same way and would not change the
relative difference between the expansion data for the two
polarizations. Taking also this systematic error into account,
also the upper data point for y polarization, which deviates a
little from the theoretical expectation, is also within error
bars with respect to the theoretical prediction obtained with
�dd

Cr0.15. A finer investigation of the agreement between
the theory and the experiment will be the subject of a further
work.

IV. CONCLUSION

The observed mechanical manifestation of dipole-dipole
interaction in a Bose-condensate gas of chromium is in very
good quantitative agreement with the theory of dipolar gases
in the Thomas-Fermi limit. The trapped condensate atoms
redistribute depending on the direction of the applied mag-
netic field. Similar to what occurs with magnetic solid par-
ticles or liquids �ferrofluids�, the strongly magnetic chro-
mium atoms align preferably along the direction of
magnetization. This induces a change in the shape of the
condensate. The micron-sized chromium condensate needs to
be released from the trap in order to be imaged after expan-
sion. The induced change in shape remains visible also after

FIG. 6. �Color� Aspect ratio of the expanding dipolar condensate. Data points in �a� are averaged with an 11-point moving average. Error
bars in the upper graph represent errors from the fits to the density distribution. Upper, red data: Field aligned in a vertical y direction. Lower,
black data: Field in a horizontal z direction. The solid lines represent the corresponding theoretical predictions. The blue dotted line is the
behavior that one would expect for pure contact interaction without the presence of dipole-dipole interaction among the atoms. �b� illustrates
the evolution of the condensate shape as seen by the camera. �c� shows in detail the gray shaded area in �a�. At ten milliseconds time of flight,
we have performed a series of measurements under the same conditions. The two data points represent the mean values of 42 measurements
with y polarization �red circle� and 32 with z polarization �black square�. The solid error bars are derived from the statistics of the measured
value and represent one standard deviation in both directions. They do not include the systematic error on the single measurements. These
errors affect both the measurements with z and y polarization in the same way and do not change the significance of the measured difference
in the expansion dynamics with different polarization. The shift of the measured aspect ratios due to such systematic errors is indicated by
the dashed-dotted representation of the error bars �displaced laterally for clarity� in �c�.
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release of the condensate from the trap and are quantitatively
well described within the framework of a generalized Gross-
Pitaevskii equation, which proves to be an appropriate
description.

The chromium Bose-Einstein condensate opens fascinat-
ing perspectives for the experimental study of dipole-dipole
interaction induced magnetism in gaseous systems. Since
one can exploit Feshbach resonances �43� to adjust contact-
like �isotropic and short-range� atom-atom interactions and
use rotating magnetic fields to tune the dipole-dipole inter-
action �8�, interaction regimes ranging from only contact to
purely dipolar can be realized. Depending on the relative
strengths of these two interactions and on the absolute
strength of the dipole-dipole interaction, many exciting phe-
nomena are expected.
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APPENDIX A: DIPOLE-DIPOLE MEAN-FIELD
ENERGY

The mean-field magnetic dipole-dipole energy is given by

Hdd
x = −

15

7
�N2�2a

m
��ddf��yx,�zx�

RxRyRz
, �A1�

where the magnetic field is assumed parallel to the x̂ axes
and �yx=Ry /Rx and �zx=Rz /Rx are condensate aspect ratios.
The function f is given by

f��yx,�zx� = 1 + 3�yx�zx
E� \ 
� − F� \ 
�

�1 − �zx
2 �
1 − �yx

2
�A2�

with

sin  = 
1 − �yx
2 , �A3�

sin2 
 =
1 − �zx

2

1 − �yx
2 . �A4�

Here F� \
� and E� \
� are the incomplete elliptic inte-
grals of the first and second kinds �42�. Figures 7 and 8 show
the typical behavior of the function f , which is symmetric

f�x,y� = f�y,x� �A5�

and is a smooth and limited function with the property that

1 � f�x,y� � − 2. �A6�

For small values of one of its arguments f is equal to 1

f�x,0� = 1. �A7�

When one of the arguments is very large its asymptotical
values are given by the following function:

fa�x� = f��,x� = 1 − 3
�1 − x�x
1 − x2 �A8�

with the property

fa�x� + fa�1/x� + 1 = 0. �A9�

When both arguments are very large

f��,�� = − 2. �A10�

In the special case of equal arguments, f becomes a function
of only one variable and is given by

fs��� = f��,�� =
1 + 2�2

1 − �2 −
3�2 tanh−1 
1 − �2

�1 − �2�3/2 �A11�

which was already introduced considering the special case of
the cylindrical symmetric condensate �18,34,41�. Moreover,
f obeys the sum rule

FIG. 7. Log-linear plot of the function f�x ,y� defined in Eq.
�A2� versus x and for different values of y �dashed lines�. The
chosen values of y correspond to different powers of 2. Due to the
symmetry property f�x ,y�= f�y ,x� of the function f the asymptotic
values of f�x ,y� for large x correspond to the function fa�y� defined
in �A8� which is also shown as a function of x �solid line�.

FIG. 8. �Color� Log-linear three-dimensional plot of the
function f�x ,y� defined in Eq. �A2� versus x ,y.
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f�x,y� + f� y

x
,
1

x
� + f�1

y
,
x

y
� = 0. �A12�

This equation has the physical meaning that the average over
all directions of the polarization gives zero contribution to
the dipolar energy. Using the above equation, it is possible to
show for instance that

f�x,1� = −
1

2
fs�1

x
� . �A13�

With the above relationship, it is easy to calculate a poly-
nomial expansion of f around the point �x ,y�= �1,1� which
represents a spherical condensate. We give below the expres-
sion of a cubic approximation that can be useful for aspect
ratios of order of unity

f�1 + x,1 + y� 
− 2�x + y�

5
+

9�x2 + y2� − 8xy

35

+
12�x2y + xy2� − 16�x3 + y3�

105
.

�A14�

For aspect ratios in the range of �0.5, 1.6� the absolute error
of the above polynomial approximation fapprox is given by
0� f − fapprox�0.02.

APPENDIX B: THE MEAN-FIELD DIPOLE-DIPOLE
POTENTIAL

The magnetic dipole-dipole contribution to the mean-field
potential for dipoles polarized in the x̂ direction is given by

Vmf
x =

45�ddN�2a

2mRxRyRz
�−

1

3
f + fx

x2

Rx
2 + fy

y2

Ry
2 + fz

z2

Rz
2� , �B1�

where �f , fx , fy , fz� are function of the aspect ratios ��yx ,�zx�
and are given below

fx��yx,�zx� =
1

3
−

�yx
2 �zx

2

�1 − �yx
2 ��1 − �zx

2 �

+ 2
�yx�zx


1 − �yx
2 �1 − �zx

2 �2�1 +
1 − �zx

2

1 − �yx
2 �E� \ 
�

−
�yx�zx


1 − �yx
2 �1 − �zx

2 �2�2 +
1 − �zx

2

1 − �yx
2 �F� \ 
� ,

�B2�

��yx,�zx� =
1

3
+

�yx
2 �zx

2

�yx
2 − �zx

2 +
�yx

4 �zx
2

�1 − �yx
2 ���yx

2 − �zx
2 �

+
�yx

3 �zx��zx
2 − �yx

2 − 1�
�1 − �yx

2 �3/2�1 − �zx
2 �2��yx

2 − �zx
2 �

E� \ 
�

+
�yx

3 �zx

�1 − �yx
2 �3/2�1 − �zx

2 �2F� \ 
� , �B3�

fz��yx,�zx� = fy��zx,�yx� . �B4�

Here F� \
� and E� \
� are the incomplete elliptic inte-
grals of the first and second kinds �42�. Their arguments are
given by

sin  = 
1 − �yx
2 , �B5�

sin2 
 =
1 − �zx

2

1 − �yx
2 . �B6�

The �f , fx , fy , fz� obeys the identity given by

f = fx + fy + fz. �B7�
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