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In this paper we analyze atom lasers based on the spatial modulation of the scattering length of a Bose-
Einstein condensate. We demonstrate, through numerical simulations and approximate analytical methods, the
controllable emission of matter-wave bursts and study the dependence of the process on the spatial shape of the
scattering length along the axis of emission. We also study the role of an additional modulation of the
scattering length in time.
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I. INTRODUCTION

Atom lasers are sources of coherent matter waves that use
an ultracold gas of trapped alkali-metal atoms as a reservoir
from which coherent pulses of thousands of atoms are ex-
tracted. Since the experimental achievement of Bose-
Einstein condensation �BEC� in gases �1�, several methods
have been proposed to deliver atoms from their confinement.
The first of these devices used short radio-frequency pulses
as outcoupling mechanism, flipping the spins of some of the
atoms to release them from the trap �2�. Later, other atom
lasers were built leading to pulsed, semicontinuous, or
single-atom coherent sources �3–7�.

The quality of an atom laser is given by the amount of
atoms that can be delivered from the trap and by the purity of
the emission process. Concerning this point, it has been re-
cently shown �8� that spin-flipping techniques present serious
limitations in the number of atoms that can be emitted. This
effect is related to the fluctuations at high flux due to the fact
that the output-coupling mechanism populates all accessible
Zeeman states. This constitutes a strong drawback for prac-
tical applications of atom lasers in high-precision measure-
ments like matter-wave gyroscopes �9�.

On the other hand, an atomic soliton laser using the
mechanism of modulational instability was proposed in Ref.
�10�. In this case, the emission is obtained by the combina-
tion of purely nonlinear effects in the atom cloud and the
relaxation of the trap, it being necessary that the total number
of particles in the cloud exceeds a critical threshold. This
system has the advantage over standard atom lasers of pro-
ducing matter-wave pulses in the form of solitons �11–13�, a
kind of nonlinear waves generated by a perfect balance be-
tween dispersive and nonlinear effects, yielding robust wave
packets that propagate without shape distortion �14�. Other
types of atom lasers based on nonlinear effects have been
proposed �15�.

However, although one could extract a few coherent soli-
tons from a Bose-Einstein condensate by the mechanism of
modulational instability, the final output would be very lim-
ited since the number of atoms per pulse generated by this
phenomenon is only a small fraction of the initial number of
atoms in the condensate due to collapse processes. Moreover,
the number of solitons generated is not large and half of

them would be directed backward. Finally, the trap must be
destroyed for outcoupling and the pulses travel at different
speeds once the trap is removed. Thus, it is important to
discuss new outcoupling mechanisms for atom lasers. This is
specially interesting since the techniques for generating
BECs with large numbers of particles and their physical
properties are nowadays well established and the current
challenges in the field concern the design of practical devices
�16�.

In a recent work �17� a novel outcoupling mechanism for
an atom laser was proposed. The method is based on the fact
that a spatial variation of the scattering length �a� �see Fig. 1�
can be used to extract a controllable train of up to several
hundreds of atomic solitons from a BEC without altering the
trap properties. In Ref. �17�, a simple model for the spatial
variation of the scattering length �a step function� was used
in order to introduce the basic ideas and illustrate the phe-
nomenon. However, for the practical realization of such a
device, a deeper analysis must be done, including studying
the role of more physical distributions of the spatial depen-
dence of a and the temporal control of the output by consid-
ering an additional time dependence of the scattering length.
In this paper we study in detail these aspects of the soliton

FIG. 1. �Color online� Sketch of the system we will study in this
paper for the case of optically controlled scattering length showing
the BEC in the optical dipole trap, the transverse magnetic confine-
ment, and the laser beam used to manage the scattering length re-
gion. For a critical number of atoms or equivalently below a critical
value of the scattering length, a burst of matter-wave solitons is
emitted along the weakly confining axis.
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emission process which are relevant for the theoretical un-
derstanding and experimental demonstration of this new type
of atom laser.

The structure of this paper is as follows. In Sec. II, we
present the configuration of the system and the mathematical
model to be used for the theoretical analysis. In Sec. III we
study the mechanism of emission of single solitons. To do so
we first study a simplified model for which an analytical
study can be done. We also analyze theoretically and numeri-
cally more realistic schemes with Gaussian-shaped spatial
variations of the scattering length. In Sec. IV we have exam-
ined the problem of partial outcoupling and multisoliton
emission. Finally, in Sec. V we study the effect of temporal
variations of the scattering length induced by pulsed beams.

II. SYSTEM CONFIGURATION AND THEORETICAL
MODEL

As in Ref. �17�, we assume a BEC that is strongly con-
fined in the transverse directions �x ,y� and weakly along the
longitudinal one �z� leading to a cigar-shaped configuration.
We will consider the effect of a spatial variation of the scat-
tering length along z from positive �or zero� to negative val-
ues. In principle this can be done by magnetic �18� or optical
�19� means, for instance by using an appropriate laser beam
that shines along one of the edges of the condensate as in the
sketch of the system plotted in Fig. 1. In this case the region
of negative scattering length can be varied and displaced
along the condensate by simply moving the laser beam. The
variation of a can also be controlled in time by using pulsed
laser beams. Similar arguments apply for the magnetically
controlled scattering length, although laser tuning allows for
faster and easier manipulation of the spatial variations of the
scattering length. In any case the point is that we will depart
from the model of steplike spatial variation of the scattering
of Ref. �17� to more realistically achievable smoother depen-
dences.

The spatial modulation of the scattering length acts as
follows. The part of the cloud that overlaps the region with
a�0 �shaded region of Figs. 2 and 3� decreases the strength
of the confinement in this zone �see potential curves of Fig.
3� resulting in an asymmetric effective trap with a minimum
shifted toward the outcoupling laser. The exact form of this
new potential depends on the strength of the nonlinear ef-
fects �i.e., the product aN, N being the number of atoms in
the cloud�. For values of aN large enough, the dipole trap is
overcome and part of the cloud is delivered and emitted out-
ward. When the condensate refills the gap left by the outgo-
ing pulse the process starts again and a new soliton is emit-
ted. This process will continue while there is a large enough
remnant of atoms in the trap and will lead to a soliton burst
escaping from the BEC.

Therefore, we will consider that the cloud of N equal
bosons of mass m is tightly trapped in �x ,y� by a harmonic
potential V� of frequency �� and weakly confined along z by
the effect of an optical dipole trap Vz �20,21� that can be
produced by a laser beam of a given width along z �see Fig.
1�. Thus, we have

V�r�� = V� + Vz =
m��

2

2
�x2 + y2� + V0�1 − exp�−

z2

L2�� ,

�1�

where V0 is the depth of the shallow optical dipole potential
and L its characteristic width along z. The choice of a shal-
low Gaussian trap is very important, since the goal is to
obtain outcoupling of solitons along the z axis. This can be

FIG. 2. �Color online� Dependence of the number of particles in
the condensate N on the chemical potential � for the simple case of
a square-shaped potential. The values are normalized by Nmin and
�min which correspond to the minimum of the curve. For the ex-
perimental values considered in the text for 7Li we find Nmin=2
�104 and �min=��� /2 for a=−0.3 nm. The dashed part of the
curve ��N� corresponds to an unstable region. The insets show the
eigenmode profiles for different values of �, the dotted lines indi-
cating the boundaries of the trap. The region of negative scattering
length is the shaded one.

FIG. 3. �Color online� Effective potentials obtained for two dif-
ferent shapes of a�z�: a step function and a Gaussian+step distribu-
tion. The potentials correspond to a=acr for each form of the scat-
tering length. The continuous line shows the effective potential for
a=0 �the linear trap�. The shaded zone indicates the region of nega-
tive scattering length in the step model. Inset: emission of a single
soliton in the case of a Gaussian+step modulation of a �dotted
curve�. Time goes from t=0 to 1000��

−1. The spatial width of the
window is 150r�. The red false color corresponds to the maximum
density of atoms and the blue to the minimum.

CARPENTIER et al. PHYSICAL REVIEW A 74, 013619 �2006�

013619-2



achieved with a potential barrier that can be overcome by the
self-interaction effects. The dynamics of the previous system
in the mean-field limit is described by a Gross-Pitaevskii
equation of the form

i�
��

�t
= −

�2

2m
�2� + V�r��� + U�z�	�	2� , �2�

where � is the condensate wave function, and its norm N
=
	�	2d3r gives the number of particles. The coefficient
U�z�=4��2a�z� /m depends on the scattering length a, which
characterizes the two-body interactions between atoms. As
commented previously, we will consider a to be a function of
z with a localized region in which it becomes negative.

We will concentrate on situations in which the spatial size
of the ground state of the optical dipole trap is much larger
than that of the ground state of the transverse harmonic po-
tential leading to effectively one-dimensional dynamics. In
this situation we can describe the dynamics of the condensate
in the quasi-one-dimensional limit as given by a factorized
wave function of the form �11� ��r , t�=�0�x ,y�	�z , t�, sat-
isfying

i
�	

�

= −

r�
2

2

�2	

�z2 + f�z�	 + g			2	 , �3�

where r�=�� /m�� is the transverse size of the cloud, f�z�
=Vz / �����, 
=��t is the time measured in units of the in-
verse of the radial trapping frequency, and g�z�=2�r�

2 a�z� is
the effective interaction coefficient.

As an example we will present specific numbers in this
paper corresponding to 7Li, using the experimental param-
eters of Ref. �12�, V0=��� /2, ��=1 kHz, L=4r�, N=3
�105, w=5.4r�, a=−1.4 nm, and times ranging from t=0 to
1 s. However, our results hold for different atomic species
like 85Rb and 133Cs, with adequate parameters.

III. SINGLE-SOLITON EMISSION

A. Exact theory for square potentials

As we have pointed out before, we will consider a situa-
tion in which the scattering length is changed in a localized
region near the edge of the optical trap. In that case, it is
possible to understand the basics of the phenomenon of the
emission of a single soliton using a simple model. We con-
sider a square trapping potential of width L and depth V0 and
a steplike scattering length, as illustrated in Fig. 2. Math-
ematically

V�z� = �0, z � − L ,

V0 � 0, − L � z � L ,

0, z � L ,
 �4a�

and

a�z� = �0, z � L ,

a* � 0, z � L .
� �4b�

Although this model is a rough simplification of the more
realistic situations to be described in detail later on, it cap-

tures the big picture of the process. In fact, from the experi-
mental point of view it will be simpler to have a�0 instead
of a=0 in the confining zone. This is because setting a=0
needs the addition of an extra magnetic field. However, we
have checked that the effect of a positive scattering length in
the confining zone is only to slightly reduce the confinement.
This yields a lower threshold in the emission and the same
qualitative behavior as in the case of a=0. The previous
model can be solved analytically, by simply calculating the
solution of the Schrödinger equation in the three zones. De-
fining �1=2� /r����, �2=2��−V0� /r����, and �3

=2� /r����, we get

��z� = �A1 exp�− �1z� , z � − L ,

A2 cos��z − z2��2� , − L � z � L ,

A3 sech��z − z3��3� , z � L .
 �5�

As can be appreciated in the insets of Fig. 2, the shape of the
wave function depends on a*. Thus, a potential connected to
a region where atom-atom interactions are activated displays
a continuum of stationary fundamental states. For values of
a* close to zero, �or equivalently a low number of atoms N in
the BEC�, the cloud is located at the center of the trap. As the
product Na* is increased, the center of the cloud is displaced
toward the boundary between zones 2 and 3. For higher val-
ues of Na*, the cloud is completely located in the region with
a�0 and takes the form of a soliton with a hyperbolic secant
profile. The continuity of the wave function of the conden-
sate and its derivatives at the boundaries between the three
regions yields the following relationships:

z2 = − �L +
1

�2
tan−1�− �1

�2
�� , �6a�

z3 = L −
1

�3
tanh−1��2

�3
tan��2�L − z2��� , �6b�

A1 = A3 sech��3�L − z3��sech��2�L − z2�� , �6c�

A2 = A1 cos�− �2�L + z2��e�1L, �6d�

A3 =
1

sech z
�2 sech2 z − 2�/r�

2 ��� + 1
�8�r�a*

. �6e�

The number of atoms N in the stationary state can be easily
calculated by integrating 			2 over z,

N =
A2

2

2�1
exp�− 2�1L� +

A3
2

�3
�1 − tanh��3�L − z3���

+
A1

2

2
�2L +

sin�2�2L�cos�2�2z2�
�2

� . �7�

The previous equation provides the dependence of the
chemical potential of the ground state on the number of at-
oms. As can be seen in Fig. 2 the curve N vs � for all the
stationary ground states has one maximum and one mini-
mum, and displays a negative slope between them. It is well
known from the theory of nonlinear Schrödinger equations
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�22,23� that the stationary states corresponding to the zone
with dN /d��0 are unstable; this is known as the Vakhitov-
Kolokolov criterion of stability. This fact implies that any
small perturbation will affect dramatically the eigenstates in
this zone, which are basically nonlinear surface waves lo-
cated in the boundary between the linear potential and the
nonlinear region. As a consequence of this instability, the
surface wave is reflected by the boundary and emitted to the
nonlinear zone.

B. Approximate theory for realistic potentials

The analysis of the previous section, although exact, is
only a crude representation of the real potentials which can
be used in experimental scenarios. To study more physical
spatial distributions of a we will combine the use of numeri-
cal methods with approximate averaged Lagrangian formal-
isms �24� consisting in minimizing the Lagrangian density
over a family of trial wave functions which we will choose
as

	�z,
� = A exp�−
„z − z0�
�…2

2w2 �exp�iv�
�z� . �8�

This ansatz leaves a single free degree of freedom for the
atom cloud: its center z0�
�, which moves with speed propor-
tional to v�
�.

To study a scenario close to a possible experimental setup
in which the scattering length is optically managed, we will
analyze the soliton emission when the laser beam used to
manage the scattering length takes the form

a�z� = �a exp�− � z − D

wg
�m� , z � D + wg,

a , z � D + wg,
 �9�

i.e., a hyper-Gaussian ramp connected at its maximum to an
infinite plateau. This choice allows us to cover many cases
between the two limits m=2 corresponding to a Gaussian
distribution and m→ representing a step function. The
standard calculations taking a�z� as given by Eq. �9� lead to
a Newton-type equation of the form

z0̈ = −
d�

dz0
, �10a�

where ��z0� is given by

��z0� = r�
2 � V0

���

�1 −
e−z0

2/�w2+L2�

�1 + w2/L2�
+

N

2w2�
�

−



exp�− 2�z − z0�
w2 �a�z�dz� . �10b�

From Eq. �10a� we see that the center of gravity of the cloud
�z0� behaves like a classical particle under the effect of a
potential ��z0�. This provides a qualitative understanding of
the soliton emission: for the linear case �a=0� the center of
the cloud is located at the bottom of the Gaussian trap and
approximates its fundamental eigenstate �Fig. 2�a��; as a

takes more negative values the effective trapping of the
cloud is deformed and the minimum of the equivalent poten-
tial moves to the region with z�0.

The calculations in the particular cases of m=2—a Gauss-
ian beam—and m→—a step function—lead us to the ef-
fective potentials

�g�z0� = r�
2 � V0

���

�1 −
e−z0

2/�w2+L2�

�1 + w2/L2�
+

aN

w�2�
�erfc��2�D − z0�

w
� +

wg

�wg
2 + w2/2

�exp�−
�D − z0�2

wg
2 + w2/2

�
��erf�− 2z0wg + 2wgD + 2wg

2 + w2

w�2wg
2 + w2 �

− erf�− 2z0wg
2 − Dw2

wgw�2wg
2 + w2���� , �11a�

�s�z0� =
��

2
r�

2 � V0

���

�1 −
e−z0

2/�w2+L2�

�1 + w2/L2�
+

1
�2�

aN

w
erfc��2�D − z0�

w
�� , �11b�

where g and s refer, respectively, to the step and Gaussian
ramps. The functions erfc�u� and erf�u�= 2

��

0

u exp�−v2�dv
=1−erfc are the complementary error and the error func-
tions, respectively. Figure 3 shows the equivalent potentials
� given by Eqs. �11a� and �11b� for different values of a. As
the scattering length becomes more negative, it reaches a
limiting value acr for which the potential ��0�=���; thus if
the atom cloud is initially placed at z0=0 it will oscillate
around the minimum and escape z0�
�→ for 
→, a phe-
nomenon that is called soliton emission �25�. The critical
value of a that corresponds to the threshold for soliton emis-
sion can be obtained within our formalism from the condi-
tion ��0�=���, which leads to

Nacr
g =

V0w�2�

���
�1 + w2/L2�� 1

�2
erfc�D + wg

w
�2�

+
wg

�2wg
2 + w2

exp� − 2D2

2wg
2 + w2�

��erf�− 2wgD + 2wg
2 + w2

w�2wg
2 + w2 �

− erf� − Dw

wg
�2wg

2 + w2��� −
2
�2
�−1

, �12a�

Nacr
s =

�2�V0

���

wL
�L2 + w2�erfc��2D

w
� − 2�−1

. �12b�
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In both cases, it is possible to find approximate expres-
sions that hold for D�w and V0=����, with ��1, which
provides a shallow trap. Thus, it is possible to write

Nacr
g � − 2.655

�wL
�L2 + w2

, �13a�

Nacr
s � − 2.565

�wL
�L2 + w2

. �13b�

In order to check the validity of this approach, we have per-
formed a numerical integration of Eq. �3� with a split-step
Fourier method using as initial condition a Gaussian distri-
bution for the cloud, which is initially located at the center of
a dipole trap. We have used absorbing boundary conditions
in a grid with 520 points. Adding more points to the discreti-
zation do not changed the results of the simulation. We have
found a good agreement between the exact numerical value
and the prediction from Eq. �13a�. The variational model is
more accurate for Gaussian potentials. The main discrepancy
we have found after a wide numerical exploration of the
parameter space is a factor �2 that is mainly due to the
choice of the ansatz.

IV. PARTIAL OUTCOUPLING AND MULTISOLITON
EMISSION

The distance D between the edge of the region in which
the scattering length varies and the center of the trap plays an
important role in the emission process as shown in Fig. 4. As
can be seen in the plots, there is a critical overlapping be-
tween the a�0 region and the trap, for which the effective
potential shows a central maximum between two adjacent
minima. In this case, part of the cloud is reflected backward
by the intermediate barrier and thus it is not possible to ex-
tract the whole cloud �see inset of Fig. 4�. Thus, the emission
will be of higher quality in traps of width below a certain
critical threshold, which can be numerically calculated from
the conditions d� /dz=0 and d2� /dz2�0.

A deeper numerical exploration based on Eq. �3� reveals
interesting effects beyond those contained in the averaged

Lagrangian description. An example is shown in Fig. 5. As
a* becomes more negative we obtain the emission of an in-
teger number of solitons.

In this section and to approximate our analysis to realistic
scenarios we have considered the scattering length to be of
the form

a�z� = a exp�− � z − D

wg
�m� , �14�

i.e., a super-Gaussian of finite width.
In Fig. 5 we illustrate the dependence of the emission for

different shapes of the function a�z�. We begin with a profile
close to the step form �m=100� and then we relax the shape
by diminishing the value of m until we reach a Gaussian
function. We have also observed that for finite a�0 regions,
once the emitted solitons reach the opposite edge of the zone
with negative scattering length, they are reflected backward
and thus remain trapped in the vicinity of the BEC reservoir
�see Figs. 5�d� and 6�a��. This effect may have applications
in the control of the emitted solitons once outcoupled and in
the design of practical devices like laser tweezers for atoms
�26–28�.

Another interesting consideration in order to construct ex-
perimentally wide regions of negative scattering length is to
use the superposition of several mutually incoherent laser

FIG. 4. �Color online� Same as Fig. 3 for the Gaussian+step
distribution. The effective potentials correspond to different values
of the penetration parameter D.

FIG. 5. �Color online� Emission of atomic solitons for different
outcoupling laser beams �shaded region in the top plots� of super-
Gaussian shapes with different values of the parameter m: m= �a�
100, �b� 8, �c� and �d� 2 �Gaussian distributions of different widths�.
The small frames in the top of each picture display a�z� and the
profile of the solitons at t=600��

−1. Vertical axis in bottom pictures
is time from t=0 to 600��

−1. Horizontal axis is 60 times the width L
of the Gaussian trap. In all cases the product Na is eight times the
value of Fig. 4. The rest of the parameters are the same as in Fig. 3.
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beams as shown in Fig. 6. In Fig. 6�a� the region of negative
scattering length is generated by a single outcoupling beam
as in Fig. 5�c�. As a result of the finite width of the outcou-
pling beam, the atomic soliton rebounds at the boundary as it
is redirected backward to the reservoir. In Fig. 6�b� three
equal Gaussian beams separated by the outcoupling beam
width are used to generate a wider region of negative scat-
tering length. In the pictures, the vertical axis is time from
t=0 to 1000��

−1. The other parameters are the same as in Fig.
5�c�.

We have also observed in the numerical simulations that
the soliton emission is more efficient if the scattering length
varies abruptly in space. Moreover, to avoid the return of the
solitons once they have been emitted, it is desirable that the
shape of the outcoupling beam be asymmetric. In the case in
which laser beams are used to control the scattering length
this could be achieved by partially overlapping parallel la-
sers. In order to generate an extended negative scattering
length region, more lasers can be added or the outcoupling
beam can be displaced following the motion of the emitted
soliton.

V. EFFECT OF TEMPORAL MODULATION OF THE
OUTPUT

Finally, we have also studied the temporal control of the
emission process by simulating the dynamics of the solitons
outcoupled with pulsed beams. We have run calculations for
different temporal sizes of the beams. The results are shown
in Fig. 7. In these simulations we have used temporal profiles
made with a Gaussian ramp connected to a flat top of vari-
able size tp. The spatial profiles are step functions. As can be
seen in the pictures, depending on the duration of the pulse
�i.e., the size of the flat top�, the quality of the outcoupling
varies, yielding a broadening in the profile of the solitons as
the nonlinearity vanishes. In some cases the solitons can fuse
after the emission. By varying the time that a is switched to
a negative value, it is possible to obtain a periodic recon-
struction of the individual solitons. The results are summa-
rized in Fig. 7�c�. In this simulation, the spatial profile of the
outcoupling beam is a step function that is modulated in time
with a Gaussian ramp connected at its maximum to a flat top
of variable size that ends with a final Gaussian decay. The
captions correspond to different sizes of the plateau tp and
separation between applied pulses ts. In all cases time goes
from t=0 to 500��

−1. Figure 7�a� corresponds to a continuous
beam �i.e., no modulation�; in Figs. 7�b� and 7�c� we applied
three pulses with tp=100��

−1 in both cases and ts=5��
−1 and

ts=15��
−1, respectively. The rest of the parameters are the

same as in Fig. 5�a�.

VI. CONCLUSIONS AND DISCUSSION

In summary, we have analyzed in detail the recently pro-
posed mechanism for outcoupling coherent matter-wave
pulses from a Bose-Einstein condensate. By using this tech-
nique it might be possible to obtain a regular and control-
lable emission of atomic soliton bursts that are easily ex-
tracted by an adequate choice of the control parameters.

The particular shape of the spatial dependence of the scat-
tering length used for outcoupling the solitons does not affect
essentially the emission process although it is of higher pu-
rity for sharp variations of the scattering length, and for re-
gions of negative scattering length of finite extent the soliton

FIG. 6. �Color online� Emission obtained with the superposition
of parallel Gaussian beams. In �a� the region of negative scattering
length is generated by a single outcoupling beam as in Fig. 5�c�. In
�b� three equal Gaussian beams separated by the width of the beam
are used to generate a wider region of negative scattering length.
Top plots display a�z� and the output at t=1000��

−1. In the pictures,
vertical axis is time form t=0 to 1000��

−1. The other parameters are
the same as in Fig. 5�c�.

FIG. 7. �Color online� Effect of a temporal modulation in the emission process. The spatial profile of the outcoupling beam is a step
function that is modulated in time with a Gaussian ramp connected at its maximum to a flat top of variable size that ends with a final
Gaussian decay. The captions correspond to different sizes of the plateau tp and separation between applied pulses ts �plotted in the top
graphs�. In all cases time goes from t=0 to 500��

−1. �a� corresponds to a continuous beam �i.e., no modulation�; in �b� and �c� we applied
three pulses with tp=100��

−1 in both cases and ts=5��
−1 and 15��

−1, respectively. The rest of the parameters are the same as in Fig. 5�a�.
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is reflected back when it reaches the boundaries. The tempo-
ral control of the solitons can be easily implemented with
pulsed beams.

A warning is in order: all of our numerical predictions
have been based on the one-dimensional model �3�. It is well
known that three-dimensional Bose-Einstein condensates
with negative scattering length can collapse if the atom den-
sity is large enough �29,30�. The particular values of the
critical number of atoms in the condensates and maximum
atom densities depend on the specific choice of the trans-
verse frequency ��. Thus for our predictions to be valid ��

must be large enough to force the system to stay in the quasi-
one-dimensional regime, i.e., the soliton size as described in
Ref. �11� must be much larger than the typical transverse
scale � /�m��.

The management of the scattering length could be accom-
panied by losses when crossing a Feshbach resonance. Con-
cerning this point we must stress that the amount of negative
a necessary in our model can be achieved in 7Li without
crossing the resonance. However, we have checked the effect
of three-body inelastic collisions by adding the correspond-
ing term to Eq. �3�. The result of our simulations is that the
same number of solitons are emitted for the same values of
the product Na independently of the value of losses, pro-
vided they are not too high. The effect of losses is a decrease

in the number of solitons per atom, but not in the total num-
ber of solitons emitted. We believe that this behavior adds
extra support to the robustness of the method.

We must stress that our results hold for different atomic
species like 85Rb and 133Cs, with adequate parameters. For
the case of 133Cs the scattering length can be controlled with
high precision and can be made negative and large. This
could provide a system in which a very high number of
solitons could be generated.

Using the mechanism proposed in this paper a train of
even several hundreds of solitons could be coherently out-
coupled from a condensate. As the techniques for coherently
feeding the remaining condensate progress, our idea could
provide an outcoupling mechanism for a continuous atomic
soliton laser.
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