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The possibility of using ultracold atoms to observe strong localization of matter waves is now a subject of
great interest, as undesirable decoherence and interactions can be made negligible in these systems. It was
proposed that a static-disordered potential can be realized by trapping atoms of a given species in randomly
chosen sites of a deep three-dimensional �3D� optical lattice with no multiple occupation. We analyze in detail
the prospects of this scheme for observing localized states in 3D for a matter wave of a different atomic species
that interacts with the trapped particles and that is sufficiently far detuned from the optical lattice to be
insensitive to it. We demonstrate that at low energy a large number of 3D strongly localized states can be
produced for the matter wave, if the effective scattering length describing the interaction of the matter wave
with a trapped atom is of the order of the mean distance between the trapped particles. Such high values of the
effective scattering length can be obtained by using a Feshbach resonance to adjust the free-space interspecies
scattering length and by taking advantage of confinement-induced resonances induced by the trapping of the
scatterers in the lattice.
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I. INTRODUCTION

The recent advances in the manipulation of ultracold
gases have made it possible to employ these systems to ac-
curately simulate several nontrivial problems in condensed
matter physics. As examples, we may mention the explora-
tion of the BCS to Bose-Einstein-condensate �BEC� cross-
over �1� and the superfluid to Mott-insulator transition
�2�. Disorder plays an important role in the theory of the
solid state, affecting in a substantial way the transport prop-
erties of various systems. Special attention has in the past
been dedicated to studies of light propagation in strongly
scattering powders and electron transport in the presence of
impurities �3–5�.

It looks therefore interesting to introduce a controlled dis-
order in the experiments with ultracold atoms, in order to
provide a closer modeling of realistic systems of condensed
matter physics. It was indeed predicted that atomic gases
stored in optical lattices would be good candidates to experi-
mentally observe the effect of a disordered or quasiperiodic
potential on an interacting Bose gas or on interacting Fermi-
Bose mixture �6,7�. First experimental results along this re-
search line have been recently reported—i.e., the observation
of a Bose glass in a quasiperiodic potential �8� and the study
of spatial coherence properties of an interacting Bose gas
trapped in a lattice in presence of a disordered ensemble of
fermionic atoms �9�.

In this paper, we consider a variant of this line of
research—that is, the possibility of looking for genuine lo-
calized states of a noninteracting matter wave exposed to
static disorder in continuous space. Localized states are sta-
tionary states with a square-integrable wave function at an
energy where the classical motion is not bounded spatially.

In a paper that dates back to the early years of quantum
mechanics, von Neumann and Wigner �10� showed that the
Schrödinger equation can admit square-integrable eigenstates
embedded in the continuum of states with energy higher than
the maximum of the potential. After the work of Anderson
�11�, it is expected that disordered potentials can generically
lead in three dimensions �3D� to a quantum phase transition,
a macroscopic number of localized states being present at
low energy. Such a phase transition in 3D is not straightfor-
ward to observe, as it is sensitive to decoherence and wave
absorption effects, and requires a mean free path of the wave
l smaller than its wavelength �, as stated by the Ioffe-Regel
criterion

� � l . �1�

The study of the localization of light is a well-developed
experimental subject: strong localization of light has been
reported in semiconductor powders �12�, and weak localiza-
tion effects of light in a gas of cold atoms are the subject of
an intensive experimental study �13�. On the contrary, for
matter waves, no direct evidence of localization was ob-
tained in 3D. Matter waves made of ultracold atoms are good
candidates in this respect, due to their weak coupling to the
environment and to the possibility of tuning their interactions
with a Feshbach resonance �14�. An open problem is, how-
ever, to know if strong enough disorder can be introduced in
these gases to lead to reasonably short localization lengths in
3D.

A natural way to produce a disordered potential in atomic
gases is to use the speckle pattern of a laser beam �15�. Many
experiments on Bose-Einstein condensates in 1D random op-
tical potentials have very recently been reported �16–19�,
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and they provide evidence for disorder-related effects such as
fragmentation of the condensate, suppression of diffusion,
frequency shifts, and damping of collective oscillations.
Theoretically, these effects were discussed in �20�. Genuine
strong localization in 1D, in the noninteracting regime, has
not been reported yet in these experiments, and the imple-
mentation of the disordered optical potential in 3D remains
to be done. Also the theoretical analysis of matter wave lo-
calization in a speckle pattern, recently performed in 2D
�21�, has not been done in a detailed way in the 3D strong
localization regime.

An alternative method to realize a disordered potential
was proposed in �22�: a matter wave, made of atoms of a
species A, scatters off a set of atoms of another species B that
are trapped in randomly chosen sites of a deep optical lattice
with no multiply occupied sites �see Fig. 1�. As we will
choose the lattice to be very far detuned for the species A, the
matter wave moves unaffected through the optical lattice and
interacts only with the B atoms: this excludes classical local-
ization effects in local potential minima. The disorder can be
made very strong, since �i� the correlation length of the dis-
order can be as small as 0.5 �m �the spatial period of the
optical lattice� and �ii� the scattering cross section of the
matter wave off a single B atom can be made as high as
allowed by quantum mechanics �the so-called unitary limit�
by use of an A-B interspecies Feshbach resonance, making it
possible to dramatically reduce the mean free path of the
matter wave. Furthermore, as we shall take advantage of, this
model allows a straightforward exact numerical analysis
even in 3D, when B atoms are modeled as fixed pointlike
scatterers, as is known for light waves �23,24�.

It is the 3D version of this scheme that we analyze in this
paper. After the detailed presentation of our model and its
practical implementation given in Sec. II we show numeri-
cally in Sec. III that it leads to the appearance of a large
number of localized states for a range of parameters acces-
sible in present experiments, provided that the effective cou-
pling between the matter wave and a single scatterer is tuned
to a value of the order of the mean scatterer separation. Sec-
tion IV is dedicated to a quantitative description of the scat-
tering between the matter wave and a single trapped scatterer
and to a discussion of the confinement-induced resonances
thereby arising: we show indeed that large enough effective

coupling constants can be obtained. Our conclusions are pre-
sented in Sec. V, including a discussion of a possible strategy
of observation of strong localization.

II. OUR MODEL

A. Disordered potential

The scatterers are a set of identical particles, whose
chemical species and quantum numbers will be indexed by
the letter B, randomly occupying �with filling factor p�1�
the sites of a 3D cubic optical lattice. The potential seen by
the B atoms is produced by a superposition of three laser
standing waves of common intensity and mutually orthogo-
nal linear polarizations along the x, y, and z axes,

VB�r� = V0
B�sin2�kLx� + sin2�kLy� + sin2�kLz�� , �2�

where V0
B�0 is the modulation depth of the lattice and

kL=2� /�L is the laser wave number. We shall denote the
lattice spatial period along each axis by d=�L /2=� /kL. Mul-
tiple occupation of a lattice well is assumed to be absent by
use of polarized fermions or by creation of vacancies in a
unit occupancy Mott phase state �2� or simply by choosing p
sufficiently small to make it statistically irrelevant.

We choose the lattice depth V0
B to be much larger than the

recoil energy Er
B=�2kL

2 /2mB of the B atoms so that the
tunneling time of B atoms from one lattice site to another
�ttunnel�1.6	104� /Er

B for V0
B=50Er

B� is negligible over the
duration of the experiment and the disordered spatial pattern
of B atoms is static �27�.

We also require that each B atom be prepared in the vi-
brational ground state of the local lattice microtrap, which
can be achieved in practice by raising adiabatically the opti-
cal lattice on top of a condensate cloud of atoms B �2� or by
applying Raman laser cooling sideband techniques �25,26� to
an optical molasses. This condition is crucial to ensure that
each A-B scattering event is elastic when the A atoms have
sufficiently low energy: indeed, energy conservation guaran-
tees that the B atom is left in the vibrational ground state
after scattering with a A atom of momentum k if

�2k2

2mA

 �� = 2�V0

BEr
B�1/2, �3�

where � is the oscillation frequency of a B atom in a
microtrap.

A last point is to ensure that spontaneous emission pro-
cesses are negligible for the B atoms. In order to achieve
large values of V0

B with negligible heating of the trapped
scatterers, we require the lattice to be blue-detuned with re-
spect to the strongest transition of the B atoms �in blue-
detuned lattices, particles are trapped in the minima of inten-
sity of the stationary light field�. Including the Lamb-Dicke-
type reduction factor coming from the trapping of B atoms
close to the nodes of the laser field, one gets the fluorescence
rate

FIG. 1. �Color online� Sketch of the model of disorder consid-
ered here: a matter wave �A, blue� scatters on randomly distributed
B particles �red�, each occupying the vibrational ground state of a
node in a 3D optical lattice �here the average occupancy p is 0.1�.
The lattice does not act on the matter wave A.
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�fluo
B = �B

V0
B

�L − �B

3kL
2

2mB�
, �4�

where �L−�B is the atom-laser detuning and �B is the spon-
taneous emission rate of B atoms.

For the bosonic 87Rb isotope of rubidium ��B,D2
=780 nm, �B,D1=794.8 nm� and an optical lattice tuned at
�L=779 nm, only at 1 nm to the blue of the strongest ru-
bidium transition at 780 nm, at the required lattice intensity
V0

B=50Er
B the tunneling time is ttunnel�0.7 s �27� and the

fluorescence rate is �fluo
B �10−4Er

B /��3 s−1, allowing ex-
perimental times up to 300 ms. The same calculation, taking
for B the fermionic isotope 40K of potassium ��B,D2
=766.5 nm, �B,D1=769.9 nm� and an optical wavelength
�=765.5 nm leads to ttunnel�0.32 s and �fluo

B �5 s−1.

B. Model Hamiltonian for the matter wave and its limitations

The matter wave to be strongly localized is made of atoms
of another species, which we will label by A. We shall ignore
interaction effects among these A atoms. One way to fulfill
this condition in a real experiment would be to take spin-
polarized fermionic atoms: s-wave interactions are prohib-
ited by the exclusion principle and p-wave interactions are
very weak at low energies in the absence of a p-wave
resonance.

The A atoms experience interactions with the trapped spe-
cies B. At low incoming kinetic energy of a A particle, we
model these interactions by static contact potentials, corre-
sponding to infinitely massive pointlike scatterers, each lo-
cated at the center of a microwell occupied by a B atom:

V =
2��2aeff

mA
�
j=1

N


�rA − r j���rA−rj�
��rA − r j� ¯ � , �5�

where the sum is taken over the N scatterers. The effective
scattering length aeff of a A atom on a trapped B atom, when
expressed in units of the harmonic-oscillator length
aho=	� /mB�, is a function of the dimensionless ratios
mB /mA and a /aho, a being the A-B scattering length in free
space. The value of aeff and the validity condition of our
model potential, Eq. �5�, will be given in Sec. IV.

The A atoms also experience the optical lattice potential,
with the same spatial dependence as in Eq. �2� but with a
different modulation amplitude V0

A. We require the optical
lattice to be much closer to resonance with B atoms than with
A atoms, ��L−�A�� ��L−�B�, such that V0

A will be much
smaller than V0

B. In particular, we impose that

�V0
A� 
 Er

A =
�2kL

2

2mA
, �6�

so that, in the absence of B atoms, the A atoms can be safely
considered as free. In this respect, a particularly promising
combination is given by fermionic 6Li for the species
A ��A=671 nm� and 87Rb for the species B: taking
�L=779 nm and a laser intensity such that V0

B=50Er
B, one

finds V0
A=−0.04Er

A. If one takes for B the fermionic 40K with
�L=765.5 nm, one finds V0

A=−0.09Er
A �28�.

We shall therefore neglect the effect of the optical lattice
on the A atoms and take, as a model Hamiltonian for the
matter wave,

H = H0 + V with H0 = −
�2

2mA
�rA

. �7�

We note in passing that in the original Anderson model the A
particles were instead assumed to be in the tight-binding re-
gime, so that the strong localization reported in this paper is
not stricto sensu Anderson localization.

To end this section, we briefly discuss two effects not
included in our model Hamiltonian that may impose limita-
tions in a real experiment. As we shall see, the production of
localized states with a short localization length �of the order
of the lattice spacing d� requires the use of a large and posi-
tive value of aeff�d, obtained by a A-B Feshbach resonance.
As a consequence, the matter wave A has a weakly bound
state with a trapped atom B, of spatial extension �aeff. A first
undesired effect is therefore the formation of such A-B
dimers.

A first stage that may lead to a dimer production is during
the Feshbach ramp of aeff from �0 to �d. This may be
avoided by using a ramping time longer than the inverse of
the dimer binding frequency, 2mAaeff

2 /��30 �s for our pre-
vious example with lithium and rubidium. Once aeff is set to
�d, one may fear that three-body collisions A+A+B lead to
the formation of a dimer. For our model Hamiltonian, Eq.
�7�, the A particles are an ideal gas and the dimer formation
does not happen: the trapped B particle, being replaced by a
fixed scatterer with no degree of freedom, cannot mediate an
A-A interaction. In the opposite limit where the B scatterer is
supposed to move freely, the rate of dimer formation per B
atom is �dim=Cdim�kFd�8Er

A /�, where we used Eqs. �11� and
�12� of �29�, taking a dimer binding energy �=�2 /2�aeff

2

with � the A-B reduced mass, aeff=d, and assuming that the
A atoms are degenerate fermions of Fermi momentum kF
with kFd�1; the constant Cdim is 6	10−5 for the A= 6Li,
B= 87Rb case, resulting for kFd�1/2 in a dimer formation
rate much smaller than, e.g., the B fluorescence rate �fluo

B due
to the lattice �30�. The calculation of the actual dimer forma-
tion rate in our model, taking into consideration the trapping
of the B atoms, requires the solution of a three-body problem
with no center-of-mass separability, which is beyond the
scope of the present work.

A second undesired effect is the one of gravity. If the
lattice is arranged to be stationary in a free-falling frame, this
frame having initially an upward velocity component V in
the laboratory frame and finally a downward velocity com-
ponent V, the overall vertical motion of the lattice in such a
fountainlike experiment is less than 3 cm for a total time of
150 ms. Longer times may be obtained if one compensates
gravity—e.g., by a using the inflection point of the optical
potential produced by a far-detuned Gaussian laser beam
or by using electro-optical potentials �59�. A drastic solution
is of course to perform the experiment in a microgravity
environment �60�.
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III. LOCALIZED STATES

The Ioffe-Regel criterion, Eq. �1�, is considered as a nec-
essary condition to achieve strong localization �5�. It is
simple to check that the setup that we consider can satisfy
this criterion for experimentally reasonable parameters. As
we will see in Sec. IV, the effective scattering length presents
confinement-induced resonances that allow one to reach the
unitary regime for the interaction of the matter wave with a
trapped B atom, with the maximal cross section �=4� /k2. In
this case, the Ioffe-Regel criterion reads

kd � �4�p�1/3, �8�

which for a filling factor p=0.1 yields k�1/d=kL /�,
achievable with subrecoil laser cooling techniques or with a
low-density degenerate Fermi gas with a Fermi wave vector
kF�kL /�.

Since the Ioffe-Regel criterion is not proved to be suffi-
cient, we numerically investigate in this section the possibil-
ity for the disordered model Hamiltonian, Eq. �7�, to lead to
matter-wave localization. In particular, we shall find that the
unitary regime aeff=� is not the most favorable one.

A. How to find localized wave functions

A criterion of strong localization presented by Kramer and
MacKinnon �5� for electrons in a solid consists in showing
that, at the Fermi energy E=EF, off-diagonal elements of the
resolvent G= �E+ i0+−H�−1 in real space decrease exponen-
tially with the distance between the two considered points.

For our model Hamiltonian, the calculation of the matrix
elements of the resolvent is straightforward to implement
numerically, using a technique well known for scalar light
waves in a gas of scatterers �23,24�. These matrix elements
are indeed given in presence of N pointlike scatterers by


r�G�r�� = g0�r − r�� +
2��2

mA

	 �
j,l

g0�r − r j��M−1� jlg0�rl − r�� . �9�

Here g0 is the propagator in free space of a particle of posi-
tive energy E��2k2 /2mA, k�0,

g0�r − r�� � 
r�G0�r�� = −
mA

2��2

eik�r−r��

�r − r��
, �10�

and we have introduced the N	N matrix M:

M =
I

aeff
+ M�, �11�

where I is the identity matrix and M� a complex symmetric
�not Hermitian� matrix with elements defined by

Mjl
� = 
exp�ik�r j − rl��/�r j − rl� if j � l ,

ik if j = l .
� �12�

The exact calculation of the resolvent in coordinates space is
in this way reduced to the inversion of the N	N matrix M
�31�.

We have implemented the criterion by Kramer and
MacKinnon for a variable energy E, and indeed we found an
exponential decay of �
r�G�r���2 for sufficiently low energies.
However, as shown in Appendix A, this rapid decay is not a
proof of localization but may be due to the fact that E is in a
spectral gap of the system �32�.

The most direct way to prove localization is to exhibit
stationary states that are “localized” inside the disordered
potential—that is, with a wave function strongly peaked in-
side the scattering medium, decreasing exponentially to-
wards the borders of the scattering medium. To this end, we
use the fact that the wave function

��r;r0� � Im
r�G�E + i0+��r0� , �13�

when not identically zero, is an exact eigenstate of H with
energy E, whatever the arbitrary location of its center r0 �33�.
Here we take E�0 so that ��r ;r0� belongs to the continuum
of the energy spectrum of H, like the scattering states. A
useful expression of � is then

��r;r0� = A Im� eik�r−r0�

�r − r0�
+ �

j=1

N

dj
eik�r−rj�

�r − r j�
� , �14�

where A=−mA / �2��2� is a constant factor and dj

=−�l�M−1� jl exp�ik�rl−r0�� / �rl−r0�. In practice, we choose
r0 inside the scattering medium; to see if � is localized or
not, one just has to compare the values of � inside and out-
side the scattering medium; one can even watch how the
modulus of � decays inside the medium.

B. Application of the proposed technique in 1D: Analytical
results

We test the proposed technique in 1D, where analytical
results can be obtained. We assume that a quantum particle
of mass m interacts in 1D with N pointlike scatterers that are
randomly distributed in the interval x� �−L /2 ,L /2�. Using
the transfer matrix formalism, as detailed in Appendix B, we
can obtain exact expressions for the matrix elements of the
resolvent ��x��
x�G�E+ i0+��0� as a function of x. Assuming
that there is no scatterer in x=0, we obtain

��0� =
m

i�2k

�1 + r−��1 + r+�
1 − r−r+

, �15�

where k�0 is such that E=�2k2 /2m, r− is the complex re-
flection coefficient for the set of scatterers in the half-space
x�0 oriented from x=0 to x=−�, and r+ is the complex
reflection coefficient for the set of scatterers in the half-space
x�0 oriented from x=0 to x= +�. In the half-space
x�L /2 we also have a simple expression

��x� =
m

i�2k

t+�1 + r−�
1 − r−r+

eikx, �16�

where t+ is the transmission coefficient of the set of scatterers
in the half-space x�0 oriented from 0 to +�. A similar ex-
pression holds for x�−L /2; see Appendix B.

Using the Furstenberg theorem �34�, we know that in the
thermodynamic limit L→ +�, with a fixed density of scat-
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terers, the modulus of the transmission coefficients tends ex-
ponentially to zero,

�t+� � �t−� � �t� � e−L/2�, �17�

where � is the localization length, so that the modulus of
r+ and r− tends to 1. We then find that the wave function
��x�=Im ��x� outside the scattering medium is of the order
of �t�. To calculate � inside the medium, we first take, to
zeroth order in �t�, �r+�= �r−�=1: Equation �15� then leads to a
purely real ��0� �of order unity�—that is, to a vanishing
��0�. Going to next order, �r±��1− �t±�2 /2 leads to ���0��
��t�2. For a generic value of k, the wave function ��x� has
therefore the behavior depicted in Fig. 2�a�.

However, for specific values k0 of k, the above reasoning
is incorrect. Assume that k is such that r+r− is a real and
positive number. Then the denominator 1−r+r− of Eqs. �15�
and �16� is extremely small, of order �t�2. This leads to ���x��
decreasing exponentially from x=0 outwards, from a value
�1/ �t�2 to a value �1/ �t� �35�, as depicted in Fig. 2�b�. In
this case, ��x� corresponds to a “localized” state inside the
medium.

Strictly speaking, since we consider disorder over a finite
region, ��x� is not localized: the exponential decrease of the
envelope stops outside the scattering medium, so that ��x� is
not square integrable. The state ��x� rather corresponds to a
resonance, whose lifetime is of the order of � over the en-
ergy width of the resonance. In practice, � can be considered
as localized if the resonance lifetime is much longer than the
duration of the experiment. Assuming that the phase of r+r−
varies linearly with k close to k0, one finds that this “local-

ized” state is present on a narrow interval in k of width ��t�2,
so that its energy width, or equivalently its inverse lifetime,
scales as

� �
�t+�2 + �t−�2

2
� �t�2 � e−L/�. �18�

This illustrates how the proposed technique, defined in
Eq. �13�, gives access to localized wave functions.

C. Application of the proposed technique in 3D: Numerical
results

We now present numerical results obtained for a single
realization of a random potential obtained by a Monte Carlo
generation of the positions of a finite number N of scatterers
at the nodes of a cubic lattice with a given filling factor p.

In Fig. 3 we plot the ratio of the square of the amplitudes
of � inside and outside the scattering medium, for N�900
scatterers and a filling factor p=0.1. In order to avoid a
choice that might pick a node of ��r�, we plot �in

2 /�out
2 ,

where both numerator and denominator are averaged over a
few points �36�. The graph reveals that the phenomenology is
similar to the 1D case: one has generically �in

2 
�out
2 , except

for narrow energy intervals, corresponding to the peaks in
the figure, where the matter wave can significantly penetrate
the scattering medium. We have verified for a large number
of peaks that the wave function � is indeed “localized” in-
side the medium.

FIG. 2. Schematic view of the behavior of the wave function
��x�=Im
x�G�0� in presence of a 1D scattering medium of length L
much larger than the localization length �, so that the modulus of
the transmission coefficient for each half of the medium �t+� , �t−�
��t��e−L/2�
1. �a� For a generic positive energy: the wave func-
tion decreases exponentially inside the medium, being of modulus
��t� out of the medium and ��t�2 in the center x=0 of the medium.
�b� For specific values of the energy, the wave function is “local-
ized” inside the medium: its modulus decreases from �1/ �t�2 in
x=0 to �1/ �t� for �x��L /2.

FIG. 3. �Color online� Ratio of the values of �2 in the center
and outside the scattering medium �see text� as a function of
k= �2mAE�1/2 /�, with aeff=d, for a given realization of the disorder
with N�900 scatterers that occupy the nodes of a cubic lattice with
21 sites per side, with a filling factor p=0.1. The value of �out

2 is
calculated as explained in �36� �red solid curve� or with the extrapo-
lation from the far field behavior, Eq. �20� with r=R=20d �green
dashed curve�. The energy intervals where the matter wave signifi-
cantly penetrates the scattering medium correspond to the narrow
peaks in this figure. We have checked that the wave function is
actually spatially localized in such an energy interval. The vertical
lines mark the locations of the resonances obtained by the spectral
method: dashed lines for the very-long-lived resonances ���6
	10−5Er

A /�� and dotted lines for the broader resonances. The tem-
poral decay rate � is obtained from Eq. �23�.
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We illustrate this phenomenology for a generic value of k
and for one that corresponds to a peak in the function
�in

2 /�out
2 , taking now a larger number of scatterers N�3400.

As can be seen in Fig. 4, in the generic case ��r� decays
essentially exponentially when entering the medium,
whereas for the specific value of k the wave function decays
essentially exponentially from the medium center towards
the outside. What is the associated localization length �? If
one takes �� exp�−�r−r0� /��, one obtains from a fit the es-
timate ��d �37�.

D. Comparison with a spectral technique

In this subsection, we adopt a different point of view on
localization �38�, based on the properties of the analytic con-
tinuation of the resolvent G�z�=1/ �z−H� from the half-plane

Im z�0 to the half-plane Im z�0, across the branch cut
Im�z�=0, Re�z��0 corresponding to the continuous spec-
trum of the Hamiltonian. This analytic continuation can have
poles in z=E0− i�� /2, where E0 and � are positive �see Fig.
5�: these poles correspond to resonances. The lifetime of the
state associated with the resonance is given by �−1.

The key property of localized states is that they corre-
spond to resonances with a decay rate � that tends to zero in
the limit of an infinite extension of the disorder, so that they
become in this limit square-integrable stationary states of the
Hamiltonian. We expect that the poles associated with these
narrow resonances will leave signatures on the real axis, in
the form of eigenvalues of the matrix M with vanishing real
part and tiny imaginary part, for an energy E=�2k2 /2mA
close to the real part E0 of the poles. As opposed to the poles
of G, the eigenvalues of M can be calculated in a straightfor-
ward manner, and in Fig. 3 we show with vertical lines the
values of k for which the matrix M has a purely imaginary
eigenvalue: the ones with the smallest imaginary parts
�dashed vertical lines� are in good correspondence with the
narrow peaks in �in

2 /�out
2 .

Now, for a value of k within the width of a peak in Fig. 3,
we give an analytical argument relating the spatial decay of
��r� to the presence of a tiny eigenvalue m0 of M of modu-
lus much smaller than the other eigenvalues. In the large r
limit, Eq. �14� reduces to the far-field expression

��r;r0� = A Im� eikr

r
�e−ikn·r0 + �

j=1

N

dje
−ikn·rj�� , �19�

with n=r /r. As shown in Appendix C, the sum over j in the
right-hand side is typically �Im 1/m0

*�1/2 times larger than the
first term so that the angular average of �2 is given, apart
from oscillating terms �e2ikr /r2, by


��r;r0�2�n � A2d�* · �Im M�d�

2kr2 . �20�

This allows us to estimate �out by extrapolating this far-field
expression down to r=R, where R is a distance of order the
size of the scattering medium �39�; see the green dashed

FIG. 4. Plot of ��r�2 along the straight line passing through r0

and parallel to z axis, for two values of k, �a� a generic value k
=0.3/d and �b� a value k=0.350134274724/d corresponding to a
peak for �in

2 /�out
2 as a function of k �in the spirit of Fig. 3�. Note the

similarity with the 1D case sketched in Fig. 2. In �a� the position r0

is close to the center of the scattering medium, r0= �d /2 ,−d /2 ,
−d /2�; in �b� it is close to the “center” of the localized state:
r0= �15d /2 ,−3d /2 ,−11d /2�. The effective scattering length is
given by d /aeff=1.20530122302. To get a clear evidence of the
exponential decay of �, we used a larger scattering medium than in
Fig. 3: N�3400 atoms on the lattice within a sphere of radius 20d,
with an occupation probability p=0.1.

FIG. 5. �Color online� Analytic properties of the resolvent
G�z�=1/ �z−H� in the complex plane z. The resolvent has poles on
the negative side of the real axis, corresponding to bound states, and
a branch cut on the positive side of the real axis, corresponding to
the continuum. The analytic continuation of the resolvent across the
branch cut from Im z�0 to Im z�0 may present a discrete set of
poles in the fourth quadrant: the associated states are the resonances
of the system.
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curve in Fig. 3. We now need to estimate the wave function
inside the medium. Close to the scattering center located in
r j, one finds ��A Im dj / �r−r j�. This suggests that the dj are
also localized, in the sense that they decrease rapidly from a
center in the medium outwards: this we have checked nu-
merically. Then, averaging spatially over a small volume l3, l
being smaller than the mean distance between scatterers, one
finds that �in

2 is at most of the order of �A / l�2 maxj�Im dj�2, a
value reached when r0 is close to the “center” of the local-
ized wave function. We reach the estimate

�in
2

�out
2 �

R2

l2

maxj�Im dj�2

d�* · �Im M/k�d�
. �21�

On the right-hand side, the first factor has a geometrical ori-
gin whereas the second one is sensitive to matter-wave inter-
ference effects due to multiple scattering on the B atoms:
since the matrix elements of Im M /k are of the order of
unity, only interference effects can indeed lead to a very
small expectation value of this matrix. Using arguments de-
tailed in Appendix C, we ultimately arrive at

�in
2

�out
2 �

R2

l2 Im� k

m0
*� , �22�

which links the spatial decay of the wave function to the
smallness of an eigenvalue of the matrix M. A useful appli-
cation of this formula is to give the shape of the resonances
in Fig. 3. We linearize the k dependence of m0 around the
value k0 such that m0 is purely imaginary: m0�k����k−k0�
+ i�, where ��0. Anticipating Fig. 6, it appears that the
imaginary part of an eigenvalue of M�, when tiny for k=k0,
remains tiny for even lower values of k, so that the derivative
of Im m0 is also tiny; since the real part varies on the con-
trary over an interval of width 1/d, its derivative is not
extremely small: � is essentially real �40�. Equation �22�
then leads to a Lorentzian shape of the peaks in Fig. 3,
in agreement with the numerics. Since the peaks have a
width much narrower than k0, this also leads to a Lorentzian
dependence with the energy E=�2k2 /2mA, with a half width
at half maximum �41�:

��

2
�

�2k0

mA

Im m0�k0�
Re m0��k0�

� Im m0. �23�

When combined with Eq. �22�, this leads to a formula nicely
relating the inverse lifetime � of the localized state to its
spatial decay:

� �
�out

2

�in
2 �k = k0� . �24�

If one then assumes a state with a wave function localized
close to the center of the medium and decaying exponentially
as e−r/� away from the center, Eq. �22� leads to Im m0
�e−L/�, where L is the diameter of the scattering medium,
and Eq. �24� leads to a resonance energy width ��e−L/�, thus
obeying the same scaling as in 1D; see Eq. �18�.

An important practical consequence of the present spec-
tral approach is to give at once the range of values of aeff for
which one can hope to have localized states. For a given

FIG. 6. �Color online� Representation in the complex plane of
the eigenvalues m� of M� for different values of the wave number
k of the matter wave. The eigenvalues of M are then simply de-
duced from these eigenvalues by a shift of 1 /aeff along the real axis.
Left column: cubic lattice with 21 sites/side, p=0.1 and 872 scat-
terers; the inverse mean distance between scatterers is p1/3 /d
�0.46/d �same realization of disorder as in Fig. 3�. Right column:
cubic lattice with 209 sites/side, p=10−4 and 878 scatterers; the
inverse mean distance between scatterers is p1/3 /d�0.046/d. The
green dashed lines mark the values Re�m��=−2p1/3 /d. The real axis
is in units of p1/3 /d, and common values of kd / p1/3 are taken in
both columns, so as to reveal a possible universality in the low p
limit. The imaginary axis is in units of k, as justified by Eq. �22�.
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value of k, M will have a tiny purely imaginary eigenvalue if
1 /aeff is opposite to the real part of an eigenvalue of M� with
a very small imaginary part; see Eq. �11�. In Fig. 6 the ei-
genvalues of M� are shown as points in the complex plane,
for various values of the incoming wave number k and for
two realizations of the disorder with widely different densi-
ties of scatterers. We observe that, as the incoming wave
number k decreases below the inverse of the mean distance
between the scatterers p1/3 /d, many eigenvalues acquire an
extremely small imaginary part and accumulate in the region
Re m��−2p1/3 /d �see the green dashed lines in Fig. 6�,
similarly to earlier calculations for light waves �42�.

In a matter-wave experiment, this suggests to tune aeff
−1 to

a value close to 2p1/3 /d �as we have done in Fig. 3�: this
might be achieved in practice by using a Feshbach reso-
nance, as shown in the next section. In this way, as k de-
creases below 2p1/3 /d, one obtains a very large sequence of
values of k such that M has a tiny purely imaginary eigen-
value; that is, one may have access to a large number of
localized states. This is illustrated in Fig. 7.

Finally, the representation in Fig. 6 is also useful to un-
derstand what happens in the low-energy limit k→0. It
shows that, for each eigenvalue m� of the matrix M, Re m�

and Im m� /k have a finite limit �43�; a numerical inspection
reveals that some of the eigenstates of M��k=0�, having a
tiny value of limk→0 Im m� /k, are localized. Can these local-
ized states in the zero-energy limit be accessed in a real
experiment? For a given realization of disorder, this would
require that aeff be tuned exactly to one of the corresponding
values of −1/Re m�, which is unrealistic.

In the same way, it would be very difficult to adjust aeff to
hit, at a given value of k, one of the peaks in Fig. 7. Fortu-
nately, in a real experiment, aeff is fixed and a broad interval
of k can be populated by the atomic wave packets; then, Fig.
6 shows that the real parts of the eigenvalues of M� with tiny
imaginary parts are increasing functions of k, so that they
have a chance to cross the value −1/aeff for some value of k
within the experimentally populated interval and to lead to a

peak in Fig. 3 and to an observable localized state in the
experiment.

To conclude this section, it is useful to discuss the number
of localized states that can be supported by a finite-size scat-
tering medium, to have an idea of the number of atoms that
may populate these localized states in a real experiment and
to have an estimate of the number of states that can be con-
sidered as localized for a given duration of the experiment.
To this end, we present in Fig. 8 a histogram giving the
number of purely imaginary eigenvalues of M per class of
inverse lifetimes �. It is apparent in this figure how an in-
crease of the volume of the scattering medium �here by a
factor of �3.3� leads to both an increase in the total number
of localized states �for a given lifetime� and to the appear-
ance of a tail of states of significantly longer lifetimes �here
by about two orders of magnitude�.

IV. EFFECTIVE INTERACTION

We will solve here the two-body problem of a free atom
A scattering on a single trapped particle B prepared in
the ground state of a harmonic-oscillator potential. In
the limit of vanishing incoming kinetic energy of the A par-
ticle, this gives access to the effective scattering length in-

FIG. 7. �Color online� For a fixed positive energy, correspond-
ing to k=0.35/d, ratio of the values of �2 in the center and outside
the scattering medium as a function of the effective scattering
length aeff �36�. The dashed line gives the result for aeff=0. The
same realization of disorder is used as in Fig. 3. The inset is a
magnification of the region aeff�d.

FIG. 8. �Color online� For a single realization of disorder, his-
togram giving the number of imaginary eigenvalues of M per class
of inverse lifetimes �−1. The filling factor of the lattice is p=0.1 and
the effective scattering length is aeff=d. Black dashed histogram:
N=872 scatterers within a cube with 21 sites per side. Red solid
line histogram: N=2985 scatterers within a cube with 31 sites per
side. These histograms were constructed by a dichotomy search of
the values k0 of the momentum k� �0,1 /d� such that the matrix M
has a purely imaginary eigenvalue; the associated lifetime was then
calculated with Eq. �23�. Eigenvalues with negative values of � are
of course not included �see �41��. The decay rate � is given in units
of the recoil angular frequency Er

A /�=�kL
2 /2mA of the species A. In

practice, only the eigenvalues with small enough values of � are
expected to produce an observable resonance in �in

2 /�out
2 as a func-

tion of k, see Fig. 3. If the matter wave is made of atoms of 6Li, a
duration of the experiment of 0.3 s corresponds to a minimal ob-
servable inverse lifetime of ��10−5Er

A /� for an optical lattice laser
wavelength of 779 nm.
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troduced in Eq. �5�, which is the key parameter of our model
Hamiltonian with disorder.

A. Calculation of the A-B scattering amplitude

The Hamiltonian for a free A particle and a harmonically
trapped B one is, in the absence of an A-B interaction,

H0 = −
�2�A

2mA
−

�2�B

2mB
+

1

2
mB�2rB

2 . �25�

It admits the s-wave solution �44�

�0�rA,rB� =
sin�krA�

krA
�0�rB� , �26�

which represents a spherical matter wave �A� of wave vector
k and a particle �B� in the ground state of the harmonic
potential, �0�rB�=exp�−rB

2 /2aho
2 � / �	�aho�3/2, with the

harmonic-oscillator length aho= �� /mB��1/2. The state �0 has
an energy

E =
�2k2

2mA
+

3

2
�� . �27�

We model the A-B interaction with a regularized contact po-
tential, which leads to the full Hamiltonian

H = H0 + g
�rA − rB�
�

��rA − rB�
��rA − rB� ¯ � . �28�

Here, the derivative is taken for a fixed value of the center-
of-mass position R of the two particles, the coupling con-
stant g is expressed in terms of the reduced mass �
=mAmB / �mA+mB�, and the free-space scattering length a
�relative to the A-B interaction in the absence of the trapping
potential� by

g =
2��2a

�
. �29�

The Schrödinger equation H�=E� can be reformulated
equivalently in the integral form

��rA,rB� = �0�rA,rB� + g� d�GE�rA,rB;�,���reg���

�30�

in terms of the two-particle retarded Green’s function for the
noninteracting Hamiltonian,

GE =
1

E + i0+ − H0
, �31�

and the regularized part of the two-particle wave function,

�reg�R� = � �

��rA − rB�
��rA − rB���rA,rB���

rA=rB

, �32�

where R= �mArA+mBrB� / �mA+mB� and �reg�R�=�reg�R�
since we consider s-wave scattering only. Inserting Eq. �30�
into the definition of �reg, we find that the regularized part of
the wave function satisfies an equation of the form

�̃reg =
I

I − gÔ
�̃0, �33�

where �̃�R�=R��R�, �̃0�R�=R�0�R�sin�kR� / �kR�, and Ô is
an integral operator independent of the scattering length a.
The detailed derivation of this equation and the explicit form

of Ô are presented in Appendix E.

As we now show, knowledge of �̃reg directly leads to the
value of the scattering amplitude fk for the A wave. Expand-
ing GE on the basis of eigenstates �kA ,n� of H0 and project-
ing into position space, one is able to calculate the integral
over the wave vector kA so that one is left with a sum over
the vibrational states of the B particle:

GE�rA,rB;�,�� =
2mA

�2 �−
eik�rA−��

4��rA − ��
�0�rB��0���

− �
n�0

e−�n�rA−��

4��rA − ��
�n�rB��n���� . �34�

The low-energy assumption �3� ensures that the only open
exit channel corresponds to a B particle in the ground vibra-
tional state and therefore that

−
�2�n

2

2mA
=

�2k2

2mA
− ���nx + ny + nz� � 0, " n � 0 .

�35�

As a consequence, the terms of Eq. �34� involving excited
states of the harmonic oscillator give exponentially vanishing
contributions and can be neglected when A is at a distance
�aho from the center of the harmonic well. Expanding
�rA−���rA−� ·rA /rA and substituting into Eq. �30�, we get

��rA,rB� � � sin�krA�
krA

+ fk
exp�ikrA�

rA
��0�rB�, rA → � ,

�36�

where we have introduced the scattering amplitude

fk = − a
mA

�
� d�

sin�k��
k�

�0����reg��� . �37�

In the limit of zero energy, the scattering amplitude defines
the effective scattering length aeff through

aeff � − lim
k→0

fk = a
mA

�
� d��0����reg

k=0��� . �38�

We have solved numerically Eq. �33�, and in Figs. 9–11
we plot aeff as a function of 1/a for different values of
mB /mA. We choose mB /mA=0.15,1 ,6.67, corresponding to
the physical cases of a mixture of A= 40K and B= 6Li, a mix-
ture of two different internal states of atoms of the same
species, and a mixture of A= 6Li and B= 40K, respectively. It
is apparent that aeff presents a series of intriguing resonances,
which can be used to tune aeff to a high value and whose
physical original are discussed in Sec. IV B.

In Figs. 10 and 12 we also plot, in the case mB=mA,
the behavior of the effective range re. It is defined as a
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coefficient in the low-k expansion of the inverse scattering
amplitude:

fk
−1 = − �aeff

−1 + ik − rek
2/2 + ¯ � . �39�

The replacement of a trapped B particle by a fixed pointlike
scatterer, as done in Eq. �5�, is allowed when the k2 term in
the above expansion is negligible—i.e., when

�re�k2 
 �aeff
−1 + ik� . �40�

In the ideal regime for matter-wave localization, k�aeff
−1

�1/d. Since re is generally of order aho
d, this condition,
Eq. �40�, is satisfied. Note that re diverges when aeff→0, a

generic phenomenon: expanding fk rather than fk
−1 in powers

of k,

fk = − aeff + ikaeff
2 −

1

2
reaeff

2 k2 + ¯ , �41�

one generically expects that reaeff
2 has a finite limit when

aeff→0. This was demonstrated analytically both for a
square well �45� and a van der Waals interaction potential
�46�. In this limit, Eq. �40� is thus violated for any finite k;
however, this is not an ideal regime to obtain matter-wave
localization.

B. Resonances of the effective scattering length

We now show that the effective coupling constant experi-
ences an infinite set of resonances due to the presence of the

FIG. 9. �Color online� Effective scattering length aeff �solid line�
as a function of a−1 for mB /mA=0.15 �trapped 6Li and free 40K�.
The vertical lines �red� mark the positions of the resonances �a step
of aho/a=0.01 is used to sample the curves, and some of the reso-
nances are too narrow to be seen on the graph�.

FIG. 10. �Color online� Same as Fig. 9 for two particles of equal
mass. The blue dashed line is the effective range re, and the ma-
genta dotted line is re,Born=−�� /mA�aho

2 /a, obtained in the Born
approximation by replacing �reg��� with �0�� ,�� in Eq. �37�. A
green dot at a=−1.6aho marks the position where aeff�d if
V0

B=50Er
B.

FIG. 11. �Color online� Same as Fig. 9 for mB /mA=6.67
�trapped 40K and free 6Li�. The blue dashed line is the Born ap-
proximation aeff,Born=amA /�, obtained by replacing �reg

k=0��� by
�0��� in Eq. �38�.

FIG. 12. �Color online� Energy dependence of the scattering
amplitude for two particles of equal mass at a=−1.6aho �green
marker in Fig. 10�. The linear fit at low energy, Re�1/ fk�=−1/aeff

+rek
2 /2, yields aeff=8.3aho and re=1.135aho �units of aho

−2 and aho
−1

on the horizontal and vertical axis, respectively�.
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external confinement. In the limit k→0, the resolvent has
real matrix elements in position space �see Eq. �34��; so does

the symmetric operator Ô, which then admits real eigenval-
ues �i and orthonormal eigenvectors �ei� �see Eqs. �E18� and
�E19��. We then rewrite Eq. �38� as

aeff = a
mA

�

�̃0

k=0��I − gÔk=0�−1��̃0
k=0� =

mA

2��2�
i

�
�̃0
k=0�ei��2

g−1 − �i
,

�42�

where the scalar product of functions of the single variable R
is defined as 
u �v�=4��0

+�dRu*�R�v�R�. This means that a
singularity in aeff is expected whenever the denominator of
Eq. �42� vanishes—i.e., whenever the inverse free-space
scattering length 1/a equals 2��2�i /�, provided that the
noninteracting wave function has nonzero overlap with the
corresponding eigenstate �ei�.

Confinement-induced resonances have been been ana-
lyzed theoretically in different contexts, such as 1D wave
guides �47–49�, 3D optical lattices �50�, and quasi-2D con-
densates �51�. In 1D wave guides the effect is particularly
remarkable: due to the presence of the transverse confine-
ment, a contact potential acquires a bound state for any value
of the 3D scattering length �while in free space the contact
potential has a bound state only for a�0�. Confinement-
induced modifications of two-body scattering properties have
very recently been observed experimentally by the Zurich
group in 1D waveguides �52� and in 3D optical lattices �53�.
In most of the cited papers, the underlying translational sym-
metry and the harmonic nature of the confinement permit the
factorization of the center-of-mass motion: this in turn im-
plies that a single confinement-induced resonance can exist,
since only one state in the closed channel is coupled to the
open channel �48�. When this factorization is not possible, as
in our setup or in the case of a 1D waveguide with anhar-
monic transverse confinement �49�, an infinite set of states in
the closed channel has nonzero coupling to the open one and
an infinite number of resonances appears. In practice, how-
ever, only a few of them may be resolved and relevant in an
experiment since they become increasingly sharper as aho/a

becomes larger �i.e., �
�̃0 �ei��2→0 for large i�. The position
of these resonances can be predicted analytically in various
limits, depending on the sign of a, as we now discuss.

1. Position of the resonances for a�0

When a�0, the pseudopotential admits a bound state in
which the two particles can “sit” for a variable time, forming
a molecule that oscillates in the harmonic well. To under-
stand this point, we rewrite the two-body Hamiltonian �28�
as

−
�2�R

2�mA + mB�
+

1

2
mB�2R2 −

�2�r

2�
+ g
�r�

�

�r
�r · �

+ �1

2

mA�

mA + mB
�2r2 − ��2R · r� �43�

and treat the terms in the square parentheses as a perturba-
tion. The unperturbed part admits the factorized eigenstates

�n,l=0�R ,r�=�n,l=0�R���r� that describe a bound molecule
with internal wave function ��r�=exp�−r /a� /	2�ar and
center of mass in an eigenstate of the harmonic oscillator of
angular momentum l=0 and radial quantum number n�0.
Since both the initial state and the Hamiltonian are spheri-
cally symmetric, conservation of angular momentum allows
only l=0 intermediate molecular states. Within this unper-
turbed approximation, aeff diverges each time the energy of
the oscillating molecule corresponds to the ground-state en-
ergy of the pair of atoms—i.e., at the values of a=ares that
satisfy

�2n +
3

2
���	 mB

mA + mB
−

�2

2�ares
2 =

3

2
�� . �44�

As can be seen in the upper part of Fig. 13, this formula
describes the position of the resonances with a�0 in a wide
region of the graph, since corrections to it are only O�a /aho�2

�54�.

2. Existence of a resonance for a�0

For a�0 and for a large enough mA /mB ratio, the pres-
ence of at least one resonance can be demonstrated by a very
simple variational argument performed at the unitary limit
1 /a=0. A contact potential characterized by the scattering
length a can be replaced by the simple boundary condition
��R ,r�=C�R��r−1−a−1�+o�1�, r→0, where C is an arbi-
trary function of the center-of-mass coordinate R. The
s-wave ansatz

FIG. 13. �Color online� Position of the broadest resonances for
positive �upper graph� and negative �lower graph� a as a function of
mB /mA. The dashed lines are the theoretical predictions: for a�0
they are given by Eq. �44�; for a�0 and mB�mA they are given by
the Hamiltonian in Eq. �48�; for a�0 and mB�mA it is given by
Eq. �51�. In the upper graph, from top to bottom symbols corre-
spond to n=4,3 ,2 ,1 in Eq. �44�. The dotted vertical line indicates
the value of the mass ratio mB /mA when A= 6Li and B= 87Rb.
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��R,r� = N exp�− R2/�2�
exp�− r2/�2�

r
, �45�

with � and � variational parameters, satisfies the boundary
condition imposed by a unitarity-limited contact potential—
i.e., characterized by 1/a=0. Its energy can be calculated
from the Hamiltonian �43�: the term R ·r has a vanishing
contribution when averaged over this state, and the varia-
tional energy assumes the minimum value

E� =
3

2
��	 mB

mA + mB
+

1

2
��	 mA

mA + mB
. �46�

We might imagine continuously tuning a from 0−, where no
bound state can exist, towards −�. If E��3�� /2 �i.e., if
mA /mB�9/16� a bound state for 1 /a=0 is guaranteed by the
former ansatz, and at least one resonance for aeff must exist
in the a�0 region.

The following more elaborate calculation allows us to
prove the existence of a resonance for a�0, for an arbitrary
mass ratio mA /mB. One performs a variational calculation

directly on the integral operator Ôk=0, taking as a variational
function f�R�=R exp�−R2 /2aho

2 �. Using Eqs. �E18� and �E19�
and performing Gaussian integrals we obtain, in harmonic
oscillator units,


f �Ôk=0�f� = ��

2
�3/2�

0

+�

d����1 + ����−3/2

− �� + � − � exp�− ���−3/2� . �47�

From the inequality exp�−���1−� valid for any ��0, we
conclude that the integrand is a negative function, so that


f �Ôk=0�f��0. Since the trial wave function f�R� is propor-

tional to �̃0
k=0�R�=R�0�R�, we conclude that Ôk=0 admits at

least one eigenvector �ei� with a nonzero overlap with �̃k=0

and with a negative eigenvalue �i�0. The identity, Eq. �42�,
then implies the existence of a resonance in aeff for a�0.

3. Position of the resonances for a�0

When a�0 and mB /mA
1, the position of the reso-
nances can be found with the aid of the Born-Oppenheimer
approximation. For a fixed position of the massive particle A,
one calculates the energy of the B particle, which then con-
stitutes an effective potential for the A particle. Restricting
ourselves for simplicity to the mean-field regime �a�
aho,
one can assume that the particle B remains in the ground
state of the well, thereby creating an effective Gaussian at-
tractive well for the A particle. Hence the effective Hamil-
tonian for A:

Heff = −
�2

2mA
�rA

−
2���a�

mB

exp�− rA
2/aho

2 �

�	�aho�3
. �48�

As argued above, the characteristic range of the potential is
of order aho. This Hamiltonian can be easily solved numeri-
cally and predicts a divergence of aeff whenever the combi-
nation ��a� /aho��mA /mB� equals the critical value for the ap-
pearance of a new bound state �see Fig. 13, dashed lines in

lower graph�.
In the opposite limit mB /mA�1, there is one resonance

left on the a�0 side. It is intuitive that its position ares tends
to −� in this limit, the B particle being then perceived by A
as a fixed scatterer of scattering length a, for which the reso-
nance is obtained for a=−�. At k=0, one then expects that
�reg�R���0�R�. To formalize this intuition, we expand the

integral operator Ô in powers of the mass ratio �=mA /mB
→0: from Eqs. �E18� and �E19�, we get

Ôk=0 = �3/2Ô0 + �5/2Ô1 + ¯ . �49�

It is then possible to check analytically, by calculation of

Gaussian integrals, that one has exactly Ô0��̃0�=0, with
�̃0�R�=R�0�R�. Using perturbation theory, we obtain the se-

ries expansion of the lowest eigenvalue of Ôk=0:

�0 = �5/2
�̃0�Ô1��̃0� + O��7/2� = −
�5/2

�	2
+ O��7/2� �50�

in harmonic-oscillator units. The resulting lowest-order ex-
pression for the resonance position is

aho

ares
= − 	2�mA

mB
�3/2�1 + O�mA

mB
�� �51�

and is shown as a dashed line in Fig. 13 �55�.

V. EXPERIMENTAL OUTLOOK AND CONCLUSIONS

In this paper, we have shown numerically that the way of
producing a disordered potential for matter waves proposed
in �22�—i.e., the use of atoms randomly trapped at the nodes
of an optical lattice—indeed leads to the appearance of ex-
ponentially localized states in a three-dimensional geometry.
Our numerical method allows us to directly compute the
wave function of the localized states; it is based on the fact
that the matrix elements of the resolvent of the Hamiltonian
can be calculated extremely efficiently for the interaction of
the matter wave with point scatterers, a fact already used
with success in the context of light localization �23,24,42�.
The method also allows us to obtain analytical results in a
straightforward manner, such as a check of the existence of
localized states in 1D from the Furstenberg theorem or the
derivation of a link between the inverse lifetime of a local-
ized state and its spatial decay in 3D, for a finite spatial
extension of the scattering medium.

The main physical result is that numerous long-lived lo-
calized states appear for a wave number of the matter wave
smaller than the inverse of the mean separation between scat-
terers, when the effective scattering length aeff of the matter
wave on a trapped atom is positive and of the order of the
mean separation of the scatterers. For the numerical ex-
amples of this paper, with a 10% occupancy of the lattice
sites and for a wave number of the matter wave as large as
�0.5/d, there are localized states with localization lengths
that can be as small as the lattice period d, usually a submi-
cron quantity. This extremely strong localization allows us to
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have very-long-lived localized states �lifetime larger than 104

inverse recoil angular frequency of the matter wave� even in
disordered samples with a radius as small as 10 lattice peri-
ods. By a full solution of the scattering problem of a free
atom with a harmonically trapped one, we have shown that
the required large values of aeff�d can be obtained by using
an interspecies Feshbach resonance, and we have character-
ized intriguing confinement-induced resonances that appear
in this two-body scattering process.

How to proceed in a real experiment to get evidence of
these localized states? A possibility is to extend to matter
waves what was proposed for light in �24�: one introduces
the matter-wave wave packets inside the scattering medium
at a low value of aeff; then, one tunes aeff to the desired high
value and one lets the matter wave evolve in the presence of
the scattering medium �but in the absence of an external
trapping potential�. After an adjustable time �, one measures
the number of remaining matter-wave atoms Nrem��� in the
scattering medium. Since the component of the matter-wave
wave function in localized states decays exponentially in
time with very weak rates �, the function Nrem��� should
have a long tail, as compared to the case of a purely ballistic
or even diffusive expansion �56�. A further check that this
long tail has a decay rate varying exponentially with the size
of the scattering medium would be a very convincing evi-
dence of strong localization �58�.
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APPENDIX A: SPATIAL DECAY OF Šr�G„E+ i0+
…�r�‹

As illustrated in Fig. 14, in our model the off-diagonal
matrix elements of the resolvent 
r�G�E+ i0+��r�� decay ex-
ponentially in �r−r�� at low energy E. Is this a signature of
localization? No, because this decay may be due to the fact
that the energy E is in a spectral gap of the system. And this
occurs as well in the forbidden bands of a periodic system.

To illustrate this statement for our system, we have en-
closed our lattice of scatterers in a box of side L, imposing
periodic boundary conditions on the walls of the box. This
amounts to replacing Eq. �10� by the particle propagator sat-
isfying the correct boundary conditions:

g0
box�r� =

2m

�2L3�
q

eiq·r

k2 − q2 , �A1�

with q=2�n /L and n�Z3 �a triplet of integers�. Indeed we
found that, for the ensemble of scatterers used in Fig. 14, the

ground state of the system, once enclosed in a box of side
L=23d �slightly larger than the scattering medium�, is char-
acterized by a wave number kmin=0.7202d−1. The exponen-
tial decay shown at k=0.3d−1 by �
r�G�r���2 is therefore sim-
ply indicating that at such low energy no state can exist deep
inside the medium. In a scattering experiment, we might
imagine a plane wave coming from infinity that scatters on
the trapped B atoms: if k�kmin, the incoming wave under-
goes total reflection and inside the random medium only pen-
etrates an evanescent wave, which decays exponentially from
the boundary of the medium towards its interior. This ex-
ample clearly points out that an exponential decay of
�
r�G�r���2 is not a sufficient criterion to prove localization in
our system, since it does not guarantee the existence of states
deep inside the random potential.

In the criterion of Kramer and MacKinnon, introduced for
a solid, the energy is taken equal to the Fermi energy, with
the assumption that the density of states does not vanish at
the Fermi energy. This criterion then turns out not to be
practical in our case, since it requires a diagonalization of the
Hamiltonian in order to calculate the density of states.

APPENDIX B: ANALYTICAL RESULTS IN 1D

We consider a 1D free-space geometry with N Dirac scat-
terers located in distinct positions x1� ¯ �xN. A quantum
particle of mass m interacts with the N scatterers, with a
coupling constant g. Using the transfer matrix formalism we
calculate the resolvent G�z�, for z=E+ i , E real, and  �0,
which will give access to stationary wave functions in the
limit  →0+. Taking for simplicity x0=0 different from the
positions xi, we use the fact that ��x��
x�G�z��x0=0� solves
Schrödinger’s equation with a source term:

FIG. 14. �Color online� Decay of the off-diagonal real space
matrix elements of the resolvent as a function of the distance from
the center of the cloud of scatterers �in units of the lattice spacing
d�, averaged over 100 different realizations of the random potential.
The �4600 scatterers �aeff=0.3d� are distributed in a cubic box of
side 21d, occupying each site of the lattice with p=0.5. The y axis
is in units of ��2 /2mA�−2.
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�z +
�2

2m

d2

dx2 − g�
i=1

N


�x − xi����x� = 
�x� . �B1�

Over a position interval containing neither one of the xi nor
x0=0, ��x� is an eigenstate of d2 /dx2 so that, introducing the
unique kc such that z=�2kc

2 /2m with Im kc�0, one has

��x� = A0
+eikcx + A0

−e−ikcx, x ! x1,

��x� = Aj
+eikcx + Aj

−e−ikcx, xj ! x ! xj+1,

��x� = As
+eikcx + As

−e−ikcx, xs ! x ! 0,

��x� = Bs
+eikcx + Bs

−e−ikcx, 0 ! x ! xs+1,

��x� = Bj�
+ eikcx + Bj�

− e−ikcx, xj� ! x ! xj�+1,

��x� = BN
+eikcx + BN

−e−ikcx, xN ! x ,

where we assumed that the first s scatterer positions
x1 , . . . ,xs are �0 and the N−s other ones xs+1 , . . . ,xN are �0,
and where j runs from 1 to s−1 and j� from s+1 to N−1. All
the unknown coefficients A± and B± shall now be determined
from boundary conditions obeyed by ��x�.

A first boundary condition is that ��x� should not diverge
exponentially in x= ±�. This imposes A0

+=0 and BN
− =0.

The other boundary conditions originate from the fact that
each Dirac distribution in Eq. �B1� introduces a discontinuity
of the first-order derivative of ��x�, whereas ��x� remains
continuous. Integrating Eq. �B1� over an infinitesimal inter-
val around xj leads to ���xj

+�−���xj
−�=2mg��xj� /�2 with

��xj
+�=��xj

−�=��xj�. These two equations allow us to con-
nect the unknown coefficients on the right of xj to the ones
on the left by a two-by-two transfer matrix. For j=1, . . . ,s
we thus have

�Aj
+

Aj
− � = Pj�Aj−1

+

Aj−1
− � , �B2�

and for j=s+1, . . . ,N,

�Bj
+

Bj
− � = Pj�Bj−1

+

Bj−1
− � . �B3�

A simple calculation leads to the explicit expression

Pj = � 1 − i� − i�e−2ikcxj

i�e2ikcxj 1 + i�
� , �B4�

with �=mg / ��2kc�. We then introduce the two following ma-
trices, one associated to the first s scatterers,

A � Ps ¯ P1, �B5�

and the other one to the N−s last scatterers:

B � Ps+1
−1

¯ PN
−1. �B6�

They allow us to express the coefficients As
± in terms of A0

−

and the coefficients Bs
± in terms of BN

+:

�As
+

As
− � = A� 0

A0
− � , �B7�

�Bs
+

Bs
− � = B�BN

+

0
� . �B8�

The last two unknowns A0
− and BN

+ are obtained from
the boundary conditions imposed by 
�x� in Eq. �B1�,
��0−�=��0+� and ���0+�−���0−�=2m /�2, which imposes
two equations on the coefficients Bs

± ,As
±,

As
+ = Bs

+ −
m

i�2kc
, �B9�

As
− = Bs

− +
m

i�2kc
. �B10�

Combined with Eqs. �B7� and �B8�, this leads to the system

�B11 − A12

B21 − A22
��BN

+

A0
− � =

m

i�2kc
� 1

− 1
� , �B11�

which can be solved explicitly:

A0
− =

m

i�2kc

B11 + B21

B11A22 − B21A12
, �B12�

BN
+ =

m

i�2kc

A12 + A22

B11A22 − B21A12
. �B13�

We then proceed with the limit z tending to a real
and positive energy E:  →0+ and kc→k= �2mE�1/2 /�. The
Pj then become physically meaningful transfer matrices
in the SU�1,1� group. In the main text we introduced
the reflection and transmission coefficients r+, t+ of the last
N−s first scatterers on the axis oriented from x=−� to
x= +�. This means that there exists a stationary solution
of the usual Schrödinger equation equal to eikx+r+e−ikx for
x�xs+1 and equal to t+eikx for x�xN. By definition of the
transfer matrices,

B�t+

0
� = � 1

r+
� . �B14�

Similarly, introducing the reflection and transmission coeffi-
cients r− , t− of the first s scatterers on the axis oriented this
time from x= +� to x=−�, we imply the existence of a
solution of Schrödinger’s equation equal to e−ikx+r−eikx for
x�xs and equal to t−e−ikx for x�x1, which imposes

A�0

t−
� = �r−

1
� . �B15�

This allows a physical interpretation of the coefficients of A
and B:

A12 = r−/t−, A22 = 1/t−, �B16�
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B21 = r+/t+, B11 = 1/t+. �B17�

This leads to very simple expressions for the Green’s func-
tion ��x� out of the scattering medium and over the interval
between two scatterers containing x0=0:

��x� =
m

i�2k

t−�1 + r+�
1 − r+r−

e−ikx, x ! x1,

��x� =
m

i�2k

�1 + r+��e−ikx + r−eikx�
1 − r+r−

, xs ! x ! 0,

��x� =
m

i�2k

�eikx + r+e−ikx��1 + r−�
1 − r+r−

, 0 ! x ! xs+1,

��x� =
m

i�2k

t+�1 + r−�
1 − r+r−

e+ikx, x � xN.

APPENDIX C: AN APPROXIMATE RELATION FOR
SOME EXPECTATION VALUES OF Im M

This appendix is useful to derive Eq. �22�, an equation
which relates the spatial decay of ��r ;r0� to the smallness of
an eigenvalue of M.

Let us assume that we are at a positive energy E such that
the matrix M has an eigenvalue m0 extremely close to zero,
much closer to zero anyway than all the other eigenvalues.
Let v�0 be the associated eigenvector of M. The correspond-
ing adjoint vector is an eigenvector of M† with the eigen-
value m0

*. Since the matrix M is �complex� symmetric, M† is
simply M*, the complex conjugate of M, so that one may
take as adjoint vector the complex conjugate v�0

* of v�0. The
imposed normalization condition is then


v0
*�v0� = v0

� 2 = 1. �C1�

For compactness we use here Dirac’s notation, even if M
does not act in a Hilbert space.

One has to calculate the vector d� to fully determine
��r ;r0�; see Eq. �14�. This vector solves the linear system

Md� = s� , �C2�

with the source term sj =−exp�ik�r j −r0�� / �r j −r0�. As the ei-
genvalue m0 of M is the only one to be extremely close to
zero, we take the approximate expression

M−1 �
1

m0
�v0�
v0

*� . �C3�

This leads to

d� �
1

m0
v0
� �v0

� · s�� . �C4�

To have access to an estimate of �out, we have to calculate
the expectation value of the imaginary part of the matrix M

on the vector d� . Since M is symmetric, both the real part and

the imaginary part of M are Hermitian matrices, with real
expectation values, so that

d�* · �Im M�d� = Im�d�* · Md�� = Im�d�* · s�� . �C5�

Then using the approximation, Eq. �C4�, we obtain

d�* · �Im M�d� � Im� �v0
� * · s�*��v0

� * · s��
m0

* � . �C6�

An immediate application of this result is that the quantity
f�n�=� jdje

−ikn·rj, where n is a unity vector, is typically much
larger than unity. The calculation of the average of �f �2 over
the unit sphere indeed leads to


�f �2�n =
d�* · �Im M�d�

k
. �C7�

Since �f ��1 in the low-m0 limit �63�, it is correct to neglect
the term e−ikn·r0 in Eq. �19� as was done in the main text.

To have access to an estimate of �in, we have to calculate
the maximal value of all the �Im dj�. Let us call n the index
such that �Im dn� is the largest one. According to the approxi-
mation, Eq. �C4�, we then have

Im dn � Im�v0,n�v0
� · s��

m0
� , �C8�

where v0,n denotes the component n of the vector v�0.
The expressions �C6� and �C8� greatly simplify when one

chooses a position r0 that tends towards rn. The fact that the
results shall not depend on this specific choice of r0 is estab-
lished in Appendix D. In this limit, all the components sj of
the source term s� are negligible as compared to sn�−1/ �r0
−rn� so that v�0 ·s��−v0,n / �r0−rn� and so on. Then Eq. �21�
reduces to

�in
2

�out
2 �

kR2

l2 Im�v0,n
*2

m0
* � . �C9�

As shown in Appendix D, the components of the vector v�0
are real in the limit of a vanishing �m0� so that v0,n

2 may be
pulled out of the imaginary part. Since the �v0,j�2 decrease
roughly exponentially at large distances �r j −rn� over a length
scale b of the order of the mean scatterer separation, as was
known from studies of light localization �23,24,42�, the nor-
malization condition, Eq. �C1�, leads to v0,n

2 �1/ ��b3��1,
where � is the mean scatterer density. We then get Eq. �22�.

APPENDIX D: THE FACT THAT SOME QUANTITIES ARE
ALMOST REAL

We consider here a value of k such that the matrix M has
one �and only one� eigenvalue m0 of extremely small modu-
lus. We then show that the corresponding eigenvector v�0 of
M, normalized as in Eq. �C1�, is close to a vector with real
components, a property used in Appendix C and necessary to
obtain Eq. �22�.

First we give a physical argument. Starting from the ap-
proximation, Eq. �C3�, and keeping terms only to leading
order in 1/m0, we obtain, from Eq. �14�,
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��r;r0� � − A Im�F�r�F�r0�
m0

� , �D1�

where

F�r� = �
j=1

N

v0,j
eik�r−rj�

�r − r j�
. �D2�

Now let us assume that the phase of F�r0� �modulo ��
changes significantly �that is, in a way not tending to zero
with m0� when r0 is varied. This means that the r-dependent
wave function ��r ;r0� spans a subspace of the Hilbert space
of dimension 2 when r0 is varied, a subspace generated by
the wave functions Re F�r� and Im F�r� or, equivalently, by
F�r� and F*�r�. This leads to the physically suspect situation
that two independent localized states can be associated to a
given resonance.

To avoid this suspect situation, one is led to the assump-
tion that the function F�r� has a constant phase �modulo ��.
Taking the limit r→r j, this implies that all the v0,j have
the same phase �modulo ��. From the normalization
condition, Eq. �C1�, we conclude that all the v0,j are real,
apart from small terms tending to zero with m0. Furthermore,
this leads to the conclusion that the function F�r� has to be
real everywhere, apart from terms that tend to zero with m0
�64�. A consequence that is important for Appendix C is that
v�0

* ·s��v�0
* ·s�*=−F�r0�* are approximately real, so that the

result, Eq. �C9�, does not depend indeed on the specific
choice of r0.

Now we give a mathematical argument to show that v�0 is
almost real. We start from Mv�0=m0v�0, and we split the ma-
trix M in a real part and an imaginary part, M =MR+ iMI.
Since M is symmetric, both MR and MI are real symmetric.
Taking the squared norm of the identity MRv�0= �m0I
− iMI�v�0, where I is the N	N identity matrix, leads to

�MRv0
� �2 = v0

� * · �MI
2 + Re�m0

2�I�v0
� , �D3�

where we used the fact that

v0
� * · MIv0

� = Im�m0�v0
� * · v0

� , �D4�

which can be proved as in Eq. �C5�. Next, we expand v0 in
the orthonormal eigenbasis of MI, v0=��c� �mI,��, so that

v0
� * · MI

2v0
� = �

�

�c��2mI,�
2 . �D5�

It remains to use the following property of MI, valid for an
arbitrary vector x�,

x�* · MIx� = k� d2n

4� ��
j

xje
ikn·rj�2

, �D6�

to show that 0!mI,�!Nk �65�. As a consequence,
mI,�

2 !NkmI,�. Using the expansion, Eqs. �D5� and �D4�, one
gets an upper bound on v0

* ·MI
2v0 so that

�MRv0
� �2 ! �Nk Im m0 + Re�m0

2���v0
� �2. �D7�

In the large scattering medium diameter L→ +�, an ex-
ponential decrease of the imaginary part of m0 is expected,
�exp�−L /��. Close to the center of a resonance peak,
�Re m0 � � Im m0, so that ��MRv�0 � � / ��v�0 � �=O(�Nk�1/2

	exp�−L /2��). On the contrary, the density of states for the
spectrum of MR is not expected to be exponentially peaked:
the spacing between successive eigenvalues is expected to
scale as 1/N at most. This is apparent in Fig. 5, and we have
checked it numerically for increasing numbers of scattering
centers. This implies that v0, when expanded on the eigen-
vectors of MR, populates essentially one eigenvector of MR,
the one with the eigenvalue nearest to zero. Since this �unit
norm� eigenvector of MR is proportional to a real eigenvec-
tor, we deduce from Eq. �C1� that the components of v0 are
almost real, at the O�Im m0�1/2 accuracy level.

APPENDIX E: INTEGRAL EQUATION FOR �reg

To calculate the noninteracting two-particle Green’s func-
tion numerically, we adapt a technique used in �66�. The
Feynman propagator K associated with the noninteracting
Hamiltonian H0 �67�,

Kt�rA,rB;�A,�B� = 
rA,rB�e−iH0t/���A,�B� , �E1�

can be factorized as the product of the two factors,
Kt=Kt

AKt
B, the first term describing a free particle,

Kt
A�rA;�A� = e−i�3/4� mA

2��t
�3/2

exp� imA

2�

�rA − �A�2

t
� ,

�E2�

and the second one a particle in a 3D harmonic oscillator,

Kt
B�rB;�B� = ��t�e−i�3/4� mB�

2���sin��t���
3/2

	exp� imB�

�
� rB

2 + �B
2

2 tan��t�
−

rB · �B

sin��t��� ,

�E3�

where ��t�=exp�i�n /2� for n���t� �n+1��. Setting
Kt=0 for t�0, GE is obtained as the Fourier transform of Kt,

GE = −
i

�
�

0

�

dtei�E+i0+�t/�Kt. �E4�

For simplicity, we introduce dimensionless variables
by expressing quantities in harmonic-oscillator units and,
even though the derivation has been carried out for a generic
mass ratio, we restrict ourselves here to the special case
mA=mB=m �see end of this appendix for the case k→0 with
an arbitrary mass ratio mA /mB�.

In order to find the equation satisfied by �reg, we rewrite
Eq. �30� as
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��rA,rB� = �0�rA,rB� + g�reg�R� � d�GE�rA,rB;�,��

+ g� d�GE�rA,rB;�,����reg��� − �reg�R��

�E5�

and let the two particles approach each other. We introduce
here the center-of-mass and relative coordinates R= �rA

+rB� /2 and r=rA−rB. Let us turn our attention to the first
integral appearing in Eq. �E5�:

U �� d�GE�R +
r

2
,R −

r

2
;�,�� . �E6�

Performing the Gaussian integration over � �68� one finds

U =
ei�3/4

�2��3/2�
0

�

dt
�̃�t�ei�Et+W�

�sin�t� + t cos�t��3/2 , �E7�

where

W =

�R +
r

2
�2

2t
+

�R −
r

2
�2

2 tan�t�
−

1

x
�R +

r

2

2t
+

R −
r

2

2 sin�t��
2

.

�E8�

We have here introduced the shorthand notation x�t�= �1/ t

+1/ tan�t�� /2 and the phase factor �̃�t�, which equals
exp�i�n /2� for tn� t� tn+1, where t0=0 and t1=2.029, t2

=4.913, . . . are the consecutive solutions of x�t�=0. In the
latter expression, Eq. �E7�, the contribution of the neighbor-
hood of t=0 diverges as 1/r for r→0:

�2��3/2

ei�3/4 U = �
0




dt
eir2/4t

�2t�3/2 + �



�

dt ¯

= �
0

�

dt
eir2/4t

�2t�3/2 + �



�

dt�−
1

�2t�3/2 + ¯ �
=

1

r
	�

2
ei�/4 + �




�

dt�−
1

�2t�3/2 + ¯ � . �E9�

We finally find

g�reg�R� � d�GE�R +
r

2
,R −

r

2
;�,��

= �reg�R��gF1�R� −
a

r
� + o�1�, r → 0, �E10�

which separates out the expected divergent contribution as
1/r and defines

F1�R� =
ei�3/4

�2��3/2�
0

�

dt� �̃�t�ei�Et+W0�

�sin�t� + t cos�t��3/2 −
1

�2t�3/2� ,

�E11�

with W0=R2�cos�t�− t sin�t� /2−1� / �sin�t�+ t cos�t��. The
term �2t�−3/2 regularizes F1 in the neighborhood of t=0, and
we have taken the limit 
→0.

Let us now consider the remaining term appearing in Eq.
�E5�: when r→0 and u=R−�→0, the Green’s function GE
diverges as �u�−4, or equivalently as ��rA−�A�2+ �rB−�B�2�−2,
but the second integral in Eq. �E5� is convergent in u�0:

� d�GE�R +
r

2
,R −

r

2
;�,����reg��� − �reg�R��

=� du

�u�4�u� ��reg

�u
�

u=0
+ O��u�2��

r→0
, �E12�

�the first-order term vanishes due to spherical symmetry�. In
this term therefore no divergence arises and we may set
r=0. The angular integrations can be performed analytically,
and we obtain

� d�GE�R,R;�,����reg��� − �reg�R��

=
1

R
�

0

�

d���̃reg��� −
�

R
�̃reg�R��F2�R,�� , �E13�

with

F2�R,�� = �
0

�

dt
��t�ei�Et+�R2+�2�x�

�t�sin�t���3/2

sin�2R�y�
�2��2y

, �E14�

which is symmetric under the exchange of � and R. We have

here introduced the radial wave function �̃�R�=R��R� and
the function y�t�= �1/ t+1/sin�t�� /2.

Writing

��rA,rB� = �reg�R��1 −
a

r
� + o�1�, r → 0, �E15�

we can cancel the divergent contribution on both sides of Eq.
�35�, and the remaining terms constitute the implicit integral
equation

�̃reg�R� = �̃0�R,R� + gF1�R��̃reg�R� + g�
0

+�

d�F2�R,��

	��̃reg��� −
�

R
�̃reg�R�� , �E16�

which needs to be solved numerically in order to determine
�reg. The latter equation can be written in a symbolic, more
compact form as

�̃reg =
I

I − gÔ
�̃0, �E17�

where Ô is a symmetric integral operator, which is real in the
limit k→0.
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If one only aims at calculating strictly zero-energy
properties �i.e., aeff, and not fk or re�, the treatment presented
in this appendix can be drastically simplified, setting
�= it /� in Eqs. �E2�–�E4� and E=3�� /2 in Eq. �E4�:
the derivation of Ô proceeds in an analogous way, but

the resulting integral equation is much easier to solve
since the integrand in both F1 and F2 become real damped
functions with no finite time singularities. For an
arbitrary value of the mass ratio ��mA /mB, they are given
by

F1�R� = −
1

�2��3/2�
0

�

d��−
1

��1 +
1

�
���3/2 +

exp�3�/2�

�sinh��� +
�

�
cosh����3/2exp�− R2

cosh��� +
�

2�
sinh��� − 1

sinh��� +
�

�
cosh��� �� �E18�

and

F2�R,�� = − �3/2�
0

�

d�
exp�− �R2 + �2�x�

�� sinh���exp�− ���3/2

sinh�2R�y�
�2��2y

, �E19�

with x���=� / �2��+1/ �2 tanh���� and y���=� / �2��+1/ �2 sinh����.
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ground energy band in a 1D standing wave of modulation
depth V0

B: 
E0=� / ttunnel��8/	���V0
B�3/4�Er

B�1/4

	exp�−2�V0
B /Er

B�1/2�, a formula taken from R. Campbell,
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exp�−Dt2 / ttunnel
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+
�2k3

2

2mB
−

�2�k1
� + k2

� + k3
� �2

2�mB + 2mA�
�

�2

2�aeff
2 , �E20�

where �−1=mA
−1+mB

−1, k�1, k�2 are the wave vectors of the two A
atoms and k�3 is the wave vector of the B atom. Whereas low
enough values of k1 ,k2�kF may be chosen by adjusting the
density of A atoms, the value of k3 is fixed by the zero-energy
oscillation of the trapped B particle, �2k3
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��
2mA

mB + 2mA
�

�2

2�aeff
2 . �E21�

In the limit mA
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