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We map out the detailed phase diagram of a trapped ultracold Fermi gas with population imbalance across
a wide Feshbach resonance. We show that under the local density approximation, the properties of the atoms
in any �anisotropic� harmonic traps are universally characterized by three dimensionless parameters: the nor-
malized temperature, the dimensionless interaction strength, and the population imbalance. We then discuss the
possible quantum phases in the trap, and quantitatively characterize their phase boundaries in various typical
parameter regions.
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I. INTRODUCTION

Recent experiments with ultracold Fermi gases near a
Feshbach resonance, through which the interatomic interac-
tion can be tuned by varying the external magnetic field,
have attracted considerable attention �1�. The latest advance
in this direction features two very recent experiments �2,3�,
which study resonantly interacting ultracold 6Li atoms in a
trap with a population imbalance of different spin compo-
nents. The pairing superfluidity in the Fermi gases with
population imbalance between the two spin components have
been studied before in different physical contexts, mostly in
the weakly interacting regime �4–10�. Some exotic phases
have been proposed to exist due to the competition between
the Cooper pairing and the population imbalance �5,7,8,10�.
The recent experiments near a Feshbach resonance have
raised strong theoretical interest in studying the phase con-
figuration of such a system under a potential trap in the
strongly interacting region �11–18�.

In this work, we map out the detailed phase diagram for
fermionic atoms in a trap with population imbalance, both at
zero and at finite temperature. We use the same theoretical
method as proposed in Ref. �13�, which corresponds to a
generalization of the self-consistent G0G diagram scheme
�19� from the equal population case to the case with popula-
tion imbalance. At zero temperature, this method reduces to
the mean-field approximation for the crossover theory
�13,15,16,20�; while at finite temperature, it includes a
pseudogap in addition to the superfluid order parameter. To
avoid subtle unstable solutions for the ground state of this
system, we directly minimize the thermodynamic potential
under the local density approximation instead of using the
gap equation.

One of the difficulties to map out the detailed phase dia-
gram lies in the fact that the properties of the system seem to
depend on so many different parameters. For instance, we
expect in general, several different phases to exist from the
trap center to the edge, with their characters and boundaries
determined by the temperature of the system, the population
imbalance, the magnetic field detuning, the atom specie, the
trap frequencies along the three spatial directions, and the
total atom number. It is difficult to calculate the phase distri-
bution for all these different parameters. Fortunately, similar
to the homogeneous system with equal spin populations,

there exists a nice universality for this more involved system.
Although the properties of the system depend on all the pa-
rameters mentioned above, the dependence is through some
dimensionless combinations of the physical parameters. As a
result, the phase diagram is completely fixed by three dimen-
sionless parameters after rescaling: the normalized tempera-
ture, the dimensionless interaction strength, and the popula-
tion imbalance. In particular, at zero temperature and at the
resonance point, the phase diagram only depends on a single
parameter: the population imbalance. In this universal frame,
the variations in the trap �anisotropic in general� or in the
atom number do not induce any further complexity for the
description of the system.

To fix the phase diagram, we calculate under various in-
teraction strengths and temperatures, the distribution of the
system’s phases from the trap center to the edge as a function
of the population imbalance. The main results are shown in
Figs. 1 and 3. In the following, we first give the universal
equations of state in Sec. II, written in terms of the three
dimensionless parameters. In Secs. III and IV, we present our
main calculation results with detailed discussions.

II. THE FORMALISM FOR A TRAPPED FERMI GAS WITH
POPULATION IMBALANCE AND THE UNIVERSALITY

As the population of the closed channel molecules is ex-
ceedingly small near a wide Feshbach resonance �19,21�, it is
sufficient to use the following single-channel Hamiltonian to
describe the Fermi gas in the near resonance region:

H = �
k,�

��k − ���ak,�
† ak,�

+ �U/V� �
q,k,k�

aq/2+k,↑
† aq/2−k,↓

† aq/2−k�,↓aq/2+k�,↑, �1�

where �k=k2 / �2m� �m is the atom mass and �=1�, �� is
the chemical potential for the spin-� component ��= ↑ ,↓
labels the two spin states�, V is the quantization volume,
ak,�

† is the creation operator for the fermionic atoms.
The bare atom-atom interaction rate U is connected with
the physical one Up=4�as /m �as is the atomic scattering
length� through the standard renormalization relation
1/U=1/Up− �1/V��k1/ �2�k� �19�. We take the local density
approximation so that �↑=�r+h, �↓=�r−h, �r=�−V�r�,
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FIG. 1. �Color online� The zero temperature phase boundaries of a polarized Fermi gas in a trap with �a� �kFas�−1=3, �b�
�kFas�−1=1.5, �c� �kFas�−1=1, �d� �kFas�−1=0.5, �e� �kFas�−1=0.09, �f� �kFas�−1=0, �g� �kFas�−1=−0.4, �h� �kFas�−1=−1. The solid lines mark
the phase boundaries between the superfluid region �SF/BP1� and the normal region �NM/NP�; the dashed lines are the phase boundaries
between the SF phase and the BP1 phase; the dotted lines show the range of the minority spin component in the normal phase, which are
effectively the phase boundaries between the NM and the NP phase; and the dash-dotted lines mark the range of the majority spin component
in the normal phase. The trap radius r̃ is in the units of the Thomas-Fermi radius for the corresponding directions.
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where V�r� is the external trap potential �slowly varying
in r�. The chemical potential � at the trap center and the
chemical potential imbalance h are determined from the
total atom number N=N↑+N↓ and the population imbalance
P= �N↑−N↓� /N through the number equations below.

As has been shown in Ref. �13�, under the local
density approximation, the thermodynamic potential
�=−T ln�tr�e−H/T�� corresponding to Hamiltonian �1� has the
following expression:

�/V = − ���2/Up − �T/V��
k

�ln�1 + exp�− �Ek↓�/T��

+ ln�1 + exp�− �Ek↑�/T�� − ���2/�2�kT�

− ��k − �↓ − 	�Ek↓�Ek↓ + 	�− Ek↑�Ek↑�/T� , �2�

where the gap � at zero temperature is given by the
order parameter �s=U�k	a−k,↓ak,↑
; and at finite temperature
should be understood as the total gap, with
���=���s�2+ ��pg�2, where �pg is the pseudogap coming
from the contribution of noncondensed Cooper pairs �19�.
The 	 function is defined as 	�x�=1 for x
0 and 	�x�=0
otherwise. Without loss of generality, we take h
0 so
that N↑
N↓ always. Note that different from the
equal-population case, the quasiparticle excitation energies
Ek� are different for the �= ↑ ,↓ branches:
Ek↑,↓=���k−�r�2+ ���2�h. In the case of h
0, Ek↓ is
always positive; while there exists certain parameter regions
where the sign of Ek↑ becomes momentum dependent
and is negative in the range k−� �k��k+, where
k±

2 =max�0,2m��r±�h2− ���2��. In this momentum range, the
atoms stay unpaired, which corresponds to the so-called
breached pair state �7,25�. In deriving the thermodynamic
potential �2�, we have neglected the non-zero-momentum
pairing �the FFLO state �5�, with the pair momentum q�0�.
This is motivated by the fact that the FFLO state is stable
only within a narrow parameter window in the BCS region
�10,12,22� and is absent in the recent 6Li experiments �2,3�.

From the thermodynamic potential, one can get the gap
equation from the condition �� /��=0. However, as dis-
cussed in Ref. �13�, in the presence of a population imbal-
ance, the thermodynamic potential has a double well struc-
ture, and the gap equation may give unstable solutions.
Therefore, instead of solving the gap equation, we directly
minimize the thermodynamic potential � to find its global
minimum with respect to the gap parameter �. To fix the
chemical potentials �� in Eq. �2�, we need to use the number
equations, derived from the relations �� /���=−nr�V, where
nr� is the number density of the spin-� component at the
position r. The number equations have the form

nr� =
1

V�
k

�uk
2 f�Ek,�� + vk

2 f�− Ek,−��� , �3�

where the parameters uk
2 = �Ek+ ��k−�r�� /2Ek,

vk
2 = �Ek− ��k−�r�� /2Ek, Ek=���k−�r�2+ ���2, the Fermi

distribution f�E��1/ �1+eE/T�, and for convenience,
we take—↑=↓ and vice versa. The atom densities nr↑
and nr↓ are connected with the total atom number and

the population imbalance through N=d3r�nr↑+nr↓�, and
P=d3rnr /N �nr�nr↑−nr↓�.

Given an external potential V�r�, we can determine the
properties of the system from Eqs. �2� and �3�. However,
the solution in general depends on too many external param-
eters. If the trapping potential is harmonic with the form
V�r�=�i

1
2m�i

2ri
2 �i=x ,y ,z, anisotropic in general�, the prop-

erties of the system obviously will depend on the tempera-
ture T, the effective scattering length as, the atom mass m,
the total atom number N, the population imbalance P, and
the trap frequencies �i along the three spatial dimensions.
This much involved dependence can be significantly simpli-
fied if we transform the set of equations above into the di-
mensionless form. For that purpose, we choose the unit of
energy to be the Fermi energy �EF� at the center of the trap
for N noninteracting fermions with equal population for the
two spin components. Under the local density approxima-
tion, one can easily figure out EF= �3N�x�y�z�1/3 from its
definition. The harmonic trap in the unit of EF can be ex-
pressed in the standard dimensionless form V�r� /EF=�ir̃i

2,
where r̃i�ri /Ri, with the Thomas-Fermi radius
Ri��2EF /m�i

2 along the ith direction. With these, the num-
ber equations in �3� are cast into the following dimensionless
form:

1 ± P =
6

�3 � d3r̃d3k�uk
2 f�Ek,�� + vk

2 f�− Ek,−��� , �4�

where the energies and the momenta are in the units of EF

and kF �kF��2mEF /�2�, respectively. The dimensionless
thermodynamic potential has the same form as Eq. �2�, ex-
cept that the interaction strength Up is replaced by the di-
mensionless one 8

3�kFas, and that all the energies are normal-
ized by the chosen unit EF �correspondingly, k by kF and T
by TF�EF /kB�.

From these dimensionless equations, it becomes obvious
that the properties of the system depend only on the three
dimensionless parameters T /TF, kFas, and P. The system will
have the same properties as long as these three parameters
are the same, whether it is for different atom species, or with
different total atom numbers, or in traps with different trap-
ping frequencies ��i�. This shows that the properties of this
inhomogeneous system still have nice universality, similar to
the case of a homogeneous Fermi gas without the population
imbalance �20,23�, where the system can be characterized by
two dimensionless parameters kFas and T /TF. Comparing
with the case of a homogeneous gas, we see that in the cur-
rent case, the presence of �anisotropic� traps with various
atom numbers do not add complexity to the description of
the system. This nice feature comes from the local density
approximation and the assumption of harmonic traps �24�,
and is independent of the particular approximation schemes
in deriving the equations of state.

III. PHASE BOUNDARIES AT ZERO TEMPERATURE

Following the formalism outlined in the previous section,
we first map out the phase boundaries for trapped fermions at
zero temperature. The different phases in the trap can be
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FIG. 2. �Color online� The chemical potential �0 and the chemical potential difference h as functions of population imbalance at zero
temperature for: �a� �kFas�−1=3, �b� �kFas�−1=1.5, �c� �kFas�−1=1, �d� �kFas�−1=0.5, �e� �kFas�−1=0.09, �f� �kFas�−1=0, �g� �kFas�−1=−0.4, �h�
�kFas�−1=−1. The solid lines represent �0 /EF, the average chemical potential at the center of the trap; and the dashed lines are h /EF �−h /EF

in �a�–�c� for better comparison with �0 /EF�, where the unit of energy EF is defined in Sec. II.
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FIG. 3. �Color online� The finite temperature phase boundaries of a polarized fermion gas in a trap with �a� �kFas�−1=3, �b�
�kFas�−1=1.5, �c� �kFas�−1=1, �d� �kFas�−1=0.5, �e� �kFas�−1=0.1, �f� �kFas�−1=0, �g� �kFas�−1=−0.4, �h� �k−Fas�−1=−1. The solid lines mark
the phase boundaries between the gapped and the gapless region; the dashed lines are the phase boundaries between the gapped phases
without a Fermi surface and the ones that have; the dotted lines show the zero point of chemical potential of the minority spin component
in the normal phase; and the dash-dotted lines show the zero point of the chemical potential of the majority spin component in the normal
phase. The temperature is taken to be T=0.22 TF, which corresponds to a real temperature T�300 nK for 2.7�107 fermionic 6Li atoms in
a cigar-shaped trap with �z�23 Hz, �x=�y �110 Hz �2�.
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FIG. 4. �Color online� Same as Fig. 2, but � and h are shown as functions of population imbalance at finite temperature �T=0.22 TF�
with: �a� �kFas�−1=3, �b� �kFas�−1=1.5, �c� �kFas�−1=1, �d� �kFas�−1=0.5, �e� �kFas�−1=0.1, �f� �kFas�−1=0, �g� �kFas�−1=−0.4, �h�
�k−Fas�−1=−1. The solid lines represent � /EF; and the dashed lines are h /EF.
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identified from the gap � and the chemical potentials �� of
the two spin components. From the solutions of � and ��,
one can immediately get the density profiles of the trapped
atoms. There are in general four possible phases in this sys-
tem �13,15�: �i� a superfluid �SF� state with �
0 and no
Fermi surface in the momentum space; �ii� a breached pair
�BP1� state with �
0, one Fermi surface in the momentum
space, and gapless fermionic excitations �25�; �iii� a normal
polarized �NP� state with �=0 and one Fermi surface
��↑
0,�↓�0�; and �iv� a normal mixed �NM� state with
�=0 and two Fermi surfaces ��↑
�↓
0�. At zero tempera-
ture, the density profiles of the two spin components are
identical in the SF phase, but are different in the BP1 phase.
This can serve as the measure to distinguish these two phases
at T=0. At finite T, both of the phases have finite polariza-
tion �excess fermions� with different density profiles for the
two spin components �13�. In this case, they can only be
distinguished by the existence of the Fermi surface in the
BP1 phase �see the note �25��.

Figure 1 shows the detailed phase distribution in the trap
at different interaction strengths �kFas�−1 �corresponding to
different magnetic field detunings�. On the BEC side of the
resonance �Fig. 1�a�, with �kFas�−1=3� and at small but non-
zero population imbalances, the Fermi gas separates into
three phases in the trap: an SF core at the center, a BP1 phase
in the middle, and an NP phase at the edge of the trap with
only the majority spin component. As the imbalance param-
eter � increases, the superfluid core becomes smaller until it
vanishes at a critical imbalance, beyond which only the BP1
phase and the normal phase exist in the trap. This critical
imbalance where the phase transition from the SF phase to
the BP1 phase occurs becomes greater towards the reso-
nance, while the parameter range of the BP1 phase shrinks
�Figs. 1�b� and 1�c��. At �kFas�−1=1, the BP1 phase only
exists at small population imbalances in a slim region bor-
dering the SF and the NP phase �Fig. 1�c��. Within our nu-
merical resolution �P� ±1% �, the BP1 phase disappears at
roughly �kFas�−1�0.5, on the BEC side of the resonance.
Note that from numerical analysis, we find that the unpaired
fermions in this BP1 phase are within the momentum range
0� �k��k+ �which implies ��r���h2− ���2 in this region�,
where k+ is given in the previous section. In this BP1 phase,
we therefore have the following phase separation picture in
the momentum space: the paired fermions in the superfluid
fill the outside momentum shell, while the unpaired fermions
of the majority spin component occupy the states inside the
Fermi ball with �k��k+.

Once the BP1 phase disappears, the trap is left with only
the SF phase and the NP phase over a certain range of the
interaction strength �Fig. 1�d�, with �kFas�−1�0.5�. This con-
tinues until a new normal state, the NM phase shows up at
large population imbalances at roughly �kFas�−1�0.1 �Fig.
1�e��, where fermions of both spin components show up in
the normal gas, with different Fermi surfaces for different
spins. The range of the NM phase grows towards the reso-
nance, and at resonance or on the BCS side �Figs. 1�f�–1�h��,
the Fermi gas typically phase separates into three regions at
small P: the SF phase, the NM phase, and the NP phase. The
superfluid phase disappears at a critical population imbal-

ance, where the gas undergoes a phase transition from the
superfluid phase to the normal state. Qualitatively, this pic-
ture agrees pretty well with the recent experimental findings
�2�, although quantitatively, the mean-field type approxima-
tion at T=0 may somewhat overestimate the critical popula-
tion imbalance for the disappearance of the SF core at the
trap center.

To give more detailed information of this system, we also
show in Fig. 2 the chemical potential �0 at the trap center
and the chemical potential difference h as functions of the
population imbalance P at the corresponding interaction
strengths �kFas�−1. Note that the chemical potential differ-
ence h between the two spin components does not change
across the trap. The local chemical potential �r changes, but
given �0 and the trap potential V�r�, it changes through the
simple relation �r=�0−V�r� under the local density approxi-
mation. With the information given in Fig. 2, we know the
local chemical potential �r� for each spin component �, and
it becomes straightforward to calculate other properties of
the system, such as the density profiles.

IV. PHASE BOUNDARIES AT FINITE TEMPERATURE

At finite temperature, we calculate the total gap ��� in the
trap, from which we get the boundary between the gapped
region and the gapless region. As the order parameter for the
superfluid phase �s is smaller than the total gap at finite
temperature, the boundary between the gapped and the gap-
less regions serves as an upper bound for the superfluid
phase �26�. At finite temperature, due to the thermal excita-
tions, the atom density profiles change more smoothly as one
goes from the trap center to the edge, so one cannot easily
use the discontinuity of the density profiles to fix the bound-
ary between the BP1 phase and the SF phase, nor the bound-
ary between the different normal states �NM/NP�. However,
one can still look at the changes of the Fermi surfaces in the
momentum space, which provides an unambiguous signal to
determine the boundaries between different phase/regions.
We should caution, however, that these boundaries do not
necessarily correspond to sharp edges in the atom density
profiles. For instance, in the normal phase with �=0, when
one of the chemical potentials, say �r↑, changes its sign at
the trap edge, which implies the disappearance of the Fermi
surface for the spin up atoms as one moves outside �under
the local density approximation�, the density distribution of
the spin up atoms does not vanish at that point. Instead, it
will follow an exponential decay as the corresponding
chemical potential turns negative. So, although these bound-
aries do not represent sharp spatial edges of the correspond-
ing spin components, they indeed give a good estimation of
the ranges.

The results of our calculation at finite temperature are
shown in Fig. 3. We take the temperature T=0.22 TF, which
corresponds to T�300 nK with the experimental parameters
in Ref. �2� �see the caption of Fig. 3�. The phase diagrams
are qualitatively similar to those in Fig. 1, but there are sev-
eral important differences at finite T which deserve to be
emphasized. First of all, on the BEC side, the finite tempera-
ture BP1 region does not show up until a critical population
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imbalance �see Figs. 3�a�–3�d��. The basic reason behind this
feature is that at finite temperature, the population imbalance
can be carried by the quasiparticle excitations in the conven-
tional BCS superfluid state, as we have emphasized in �13�.
Therefore, different from the zero temperature case, the con-
ventional BCS state becomes partially polarized when there
is a population imbalance, which significantly relaxes the
competition between the population imbalance and the Coo-
per pairing, and which makes the momentum-space phase
separation between the paired state and the excess fermions
�the BP1 phase� unnecessary at small population imbalances.
Secondly, the range of the BP1 region changes significantly
from the zero temperature case. At T=0.22 TF, the BP1 re-
gion disappears near �kFas�−1�0.15, where there already ex-
ists an NM region in the phase diagram �see Figs. 3�d� and
3�e��, which initially appears near �kFas�−1�0.3 for small
population imbalance. Last but not least, at resonance or on
the BCS side, the critical population imbalance at which the
gapped region disappears at the center of the trap, which is
an upper bound for the actual critical imbalance bordering
the SF phase and the noncondensed pairs, becomes signifi-
cantly smaller than the critical population imbalance at zero
temperature �see Figs. 3�f�–3�h��. The results above demon-
strate that the phase boundaries, as well as the evolution of
the different phases as the field sweeps across the crossover
region, can be significantly affected by temperature. As all
the experiments are necessarily done at a finite temperature,
this suggests that it may be important to take the thermal
effects into account for a quantitative interpretation of the
experimental data.

At finite temperature, we also calculate the chemical po-
tentials �r� as functions of the population imbalance P at
various interaction strengths �kFas�−1, in order to provide de-
tailed information of this system. The results are shown in
Fig. 4. The properties can be directly read from the figure,
and as the main features they are qualitatively similar to
those in Fig. 2 for the zero temperature case, we neglect the
detailed discussion here.

V. SUMMARY

In summary, we provide detailed calculations of the phase
diagrams for a trapped Fermi gas with population imbalance
over the entire BCS-BEC crossover region at zero and at
finite temperature. The calculation is done with the self-
consistent G0G diagram scheme. We also emphasize the im-
portance of using the universal dimensionless equations. The
properties of the system then only depend on three dimen-
sionless parameters, from which we can calculate the univer-
sal phase diagrams valid for different atom species with dif-
ferent atom numbers under various trap configurations. The
main results of our calculation are shown in Figs. 1 and 3,
with their prominent features discussed in detail in the cor-
responding sections.
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