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Decay by tunneling of bosonic and fermionic Tonks-Girardeau gases
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We study theoretically the few-body dynamics of atoms which leak out of a trap by tunneling through a thin
barrier. We consider the two cases of bosons with strongly repulsive contact interactions and spinless fermions
with strongly attractive contact interactions (Bose and Fermi Tonk-Girardeau gases, respectively). The tunnel-
ing is studied as a function of the number of particles N and the barrier opacity. The fermionic case reproduces
a nonexponential decay of a single particle, but with a signal enhanced by a factor of N. In the bosonic case,
we find a different regime of nonexponential decay due to the contribution of different resonances of the trap.
The relevant physical realization is that of atoms confined to an optical box with an end-cap laser barrier, and

the prospects for future experiments are discussed.
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I. INTRODUCTION

Decay of a metastable system via tunneling is one of the
most remarkable and old effects in quantum mechanics.
Since Gamow’s analysis of alpha decay, resonance theory,
which applies to virtually all fields from particle to molecular
physics, has been motivated by this phenomenon. Simple
treatments examine the escape or survival of single-particle
wave functions in one dimensional (ID) potentials. At this
level much attention has been paid to deviations from expo-
nential decay, and Zeno or anti-Zeno effects. Also, exact re-
sults are typically available, by means of analytical models
or numerically. The more complex decay of a multiparticle
unstable system is treated by more sophisticated multichan-
nel, or reactive-scattering approaches, sometimes with statis-
tical approximations or, depending on the system and envi-
ronment, in a phenomenological way, and also using mean-
field approximations. In “macroscopic quantum tunneling,” a
macroscopic variable, such as the phase difference of the
Cooper pair wave function across a Josephson junction
obeys a simple tunneling equation for an effective particle
subjected to dissipation [1,2]. The effect of dissipation due to
the perturbing environment has thus been extensively dis-
cussed and measured. Other macroscopic quantum tunneling
effects much studied in recent times is the tunneling and
decay of Bose-Einstein condensates; in particular, the effect
of an effective atom-atom interaction and the nonlinear term
in the Gross-Pitaevskii mean-field approach [3-5].

Some works go beyond the mean-field theory using sim-
plified Hamiltonians [6], which are particularly relevant for
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few-body systems. These systems with not too many par-
ticles may still be amenable of exact treatments but will
show differences from single and many-particle ones. The
experimental study of few-body tunneling is a formidable
prospect, as it requires initial preparation of a ground few-
body Fock state, precise control over the tunneling time, and
the ability to count single atoms with unit quantum effi-
ciency. Until recently, such capabilities did not exist so that
any experimental tests seemed unlikely. However, recent de-
velopments now open the door for few-body tunneling ex-
periments and motivate the present work in anticipation of
such results. The starting point was the development of an
optical box trap that confines a degenerate Bose gas, together
with single-atom counting [7,8]. The same box trap was used
to produce a number squeezing of atoms by confining a de-
generate Bose gas and controlled lowering of the walls until
a final value [9]. The observed fluctuations in number were a
factor of 2 below the Poissonian limit, but the residual noise
can be accounted for by known sources of technical noise, so
that these experiments are consistent with number-state pro-
duction. This simple procedure, called “laser culling of at-
oms” has recently been analyzed theoretically, and is shown
to produce atomic few-body Fock states for sufficiently slow
ramp time and neglecting quantum tunneling through the
barrier [10]. The latter effect can be highly suppressed by
sculpting the shape of the barrier using the techniques de-
scribed in [8]. The barrier width can then be reduced at a
well-defined time, allowing quantum tunneling to occur. This
system should, therefore, to the best of our knowledge, en-
able the first experimental study of few-body quantum tun-
neling in different regimes of interaction and with a con-
trolled number.

In this paper we study the decay from a trap by tunneling
through a delta barrier of a few-body Tonks-Girardeau gas
with the aim of obtaining exact results of a few-body decay
problem for which the experimental verification is in view
[7-9]. In particular, we find few-body deviations from the
exponential decay law. For one particle, deviations from ex-
ponential decay have been long predicted at both short and
long times. Short time deviations were observed experimen-
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tally with ultracold atoms [11], whereas long time deviations
have been observed very recently for the first time in dis-
solved organic materials [12]. A suitable system to test de-
viations from exponential decay at the few-body level is the
bosonic Tonks-Girardeau (BTG) gas [13]. Such a gas actu-
ally mimics the fermionic behavior to minimize the strongly
repulsive interaction. At low densities, the TG regime can be
reached under a strong enough radial confinement [14] such
that the transverse degrees of freedom are reduced to zero-
point oscillations, resulting in a 1D effective system. Indeed,
experimental observations have already been reported [15].

As another striking example of the Fermi-Bose duality
[16], the fermionic Tonks-Girardeau (FTG) gas has been de-
scribed as a 1D spin-aligned fermionic gas in the limit of
highly attractive interactions mediated by a 3D p-wave Fes-
hbach resonance [17]. The FTG gas is in a sense the opposite
of the BTG gas and exhibits “bosonization” because of the
strong attraction.

In this work we study the tunneling dynamics of both
bosonic and fermionic TG gases, initially confined in a hard
wall potential. For the bosonic case, the Fermi-Bose (FB)
map [13,16,18,19] relates the wave function of N strongly
interacting bosons, ¥, to the one of an ideal Fermi gas with

all spins frozen in the same direction, J/F, where the tilde
indicates the “dual,” or auxiliary system. The Fermi wave
function, is built as a Slater determinant,

- 1
p(xy, .oxy) = W det{j,k:l du(xy), (1)

where ¢,(x;) are the eigenstates of the trap. To account for
the proper quantum statistics, the “antisymmetric unit func-
tion”

A= 11

1<j<ks=N

sgn(x; - x;) 2)

is introduced in such a way that

(ﬂB(xl, ,XN) = A(.xl, ,xN)J/F(.xl, ,)CN). (3)

In so doing, ig(x;, ...,xy) becomes totally symmetric under
the permutation of particles. Moreover, since .4 is involutive
and does not include time explicitly, for any unitary evolu-
tion it can be proved that the time-dependent density profile
can be calculated as [19]

pp(x,1) =Nf |p(xX,20, ... xy:0)|2dxs, ... dxy

N
=2 |0 (4)
n=1

In a similar way, one can deal with the Fermionic TG (FTG)
gas [17], but using now the generalized FB mapping in the
opposite direction. The wave function of the FTG gas can be
written in terms of the Hartree product describing the dual
(auxiliary) system, which is now the ideal Bose gas
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N
Pp(xrs -xy) = T o). (5)
i=1

The proper symmetrization is carried out also through the
antisymmetric unit function

Pp(xy, . xy) = Alxy, ... ’XN)'ZB()C]’ Xy, (6)

in such a way that the density profile can be written as

pr(x,1) = N|gho(x, 0. (7

The trap we will consider is of a hard-wall kind after its
experimental realization in its all-optical [20] or microelec-
tronic chip version [21]. These traps have recently generated
much theoretical work in the field of ultracold atoms in low
dimensions [22-25].

II. SINGLE EIGENMODE DYNAMICS

First of all we shall study the time evolution of the nth
eigenstate of a hard-wall trap. As it is well known they have
the general form

2 .
¢n(x’t= O) = \/; Sin(%)X[O,L](x)’ (8)

with n e N and xpo z1(x) the characteristic function in [0,L].

At a time to equal zero the right wall is substituted by a
delta potential, V(x)=7'S8(x—L), which is to represent a far-
detuned laser from the atomic resonance, so that the atomic
excitation becomes negligible. This model has been recently
considered to study nonexponential decay at both short and
long times at the single-particle level in [26]. The time evo-
Iution of a given initial state may be written in terms of the
retarded Green’s function g(x,x’;f) as

L
hu(x,1) = f g(x.x";1) b, (x",0)dx" . 9)
0

Equation (9) may be calculated using an expansion in the
eigenfunctions of the Hamiltonian {|k*)|k € R*}, i.e., the so-
called physical wave solutions,

bx.1) = f ARGl | g e T2, (10)
0

2 | sin(kx)/J . (k), x<1L
<x|k+> = \/j . —ik: ikx (1 1)
| (i12)[e™™ = S(k)e™], x=L,
where the S matrix S(k)=J_(k)/J,(k), with J_(k)=J,(k), and
the Jost function J, (k) reads

1y ik
J.(k)=1+ 2ik(e 1). (12)

Above and in the rest of this work we take k=[2mE/h*]"?
and n=[2m/h*]7’, E being the energy of the decaying par-
ticle and m its mass.

The position of the pole k; of the S matrix in the k plane
gives us information about the lifetime 72/I"; of the resonance
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FIG. 1. (Color online) Diagram on the complex k plane of the
first five resonance and antiresonance poles of the hard-wall leaking
trap at two different strengths of the end-cap laser. Here and in all
figures we use dimensionless units with L=1 and 2m=A=1.

and its real energy &; in the leaking trap (see Fig. 1): E;
—k2ﬁ2/ (2m)=&;~il’; /2 We notice that for a weaker laser
(smaller 7), the resonance decays faster. Besides, j is chosen
so that the width of the resonance increases monotonically
with it, j=1 corresponding to the longest lived resonance.

The limit »— 0 is an important reference corresponding
to free evolution in the presence of a wall at the origin, once
the end-cap laser at x=L has been turned off. In such case, a
fully analytical solution is available invoking the method of
images [27], see a detailed study of the BTG expansion dy-
namics in the absence of the wall in [25].

The decay of the different eigenstates of the hard-wall
trap is shown in Fig. 2. It exhibits the characteristic transition
to long times as an inverse power of time. The scale of the
figure conceals an interesting behavior at short times, which
is exhibited in Fig. 3. We observe, with the exception of the
first decaying state, that each state presents some character-
istic oscillations at short times and then tends to decay with
the same slope as the first state. Physical insight regarding
this behavior may be obtained making use of the formalism

0.0

-10.0 1

In [P(t)]

-20.0

-30.0 L - =
0.0 20.0 40.0 60.0

FIG. 2. Single particle nonescape probability exhibiting the long
time nonexponential behavior for the first ten eigenstates of the
hard-wall trap, tunneling through a delta potential with »=5. From
top to bottom: n=1,...,10.
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FIG. 3. Single-particle nonescape probability for the first ten
eigenstates of the hard-wall trap, tunneling through a delta potential
with =5 at short times. From top to bottom: n=1,...,10.

of resonant states. In this representation one Laplace trans-
forms g(x,x';¢) in Eq. (9) into the complex & plane to exploit
the analytical properties of the corresponding outgoing
Green’s function G*(x,x’;k) [28]. This leads to an alterna-
tive expression to Eq. (11), namely,

_ —ifik2112
b, (x,1) = 2‘; ci(m)u;(x)e” """
j:

. L
+ if ¢n(x,,0)dx,f G+(.X,.X, ;k)e_iﬁkzl/ka dk,
m™Jo c

L

(13)

where the sum runs over the so-called proper complex poles
i.e., those on the fourth quadrant of the complex k plane with

at x=L and satisfy the Schrodinger equation with complex
eigenvalues E;=E&;—il';/2; the coefficients c;(n) give the
overlap of the initial state ¢, with the resonant states u; of
the problem, namely, c;(n)=/ 6¢n(x,0)uj(x)dx; the integral
term involving G*(x,x’;k) stands for the nonexponential
contribution, which, in general, may be neglected except at
ultrashort or very long times. The path C; of the integral is
chosen, without loss of generality, as a straight line 45° off
the real k axis along the complex k plane passing through the
origin k=0 [28].
The nonescape probability is defined as

L
mm:f|@unﬁu (14)
0

(to be distinguished from the “survival probability”
[{,(t)| $,(0))]?, which is harder to measure). Using the ex-
ponential contribution to Eq. (13) into Eq. (14) yields the
nonescape probability for each decaying eigenstate as

013605-3



DEL CAMPO et al.

N

Py(0) = 2 ¢jm)e (e e e LI, (15)
8.

where /= éu j(x)uj(x)dx. The exponential term in Eq. (15),
with N=n, reproduces very well the regime depicted in Fig.
3. It reflects a transient regime where each eigenstate ¢,
makes eventually a transition into the longest lived eigen-
state (j=1). As shown in Fig. 2, after the exponential regime,
it follows the long time #~* inverse power law governed by
the integral contribution to Eq. (13). Standard asymptotic
analysis gives the result

Pl(mg(t) S (2_m>3 L Cz(n)
"\ k) R2a(l+ L)t P

where C(n)=[%¢,(x,0)x dx=L\2L(~1)"/(nm). Clearly the
transients in the transition from exponential to nonexponen-
tial behavior observed in Fig. 2 originate from the interfer-
ence between the exponential and long time expressions of
¢, (x,1). The transition may be displaced to earlier times and
made more easily observable by decreasing the ratio R
=&,/T'; of the longest lived resonance [29,30].

; (16)

III. TONKS-GIRARDEAU GAS

We next generalize the notion of a nonescape probability
to a few particle system, associating it with the average num-
ber of particles within the trap at a given time,

L
Nr(t)=J dx p(x,1), (17)
0

where p(x,?) is the density normalized to the total number of
particles N. The nonescape probability per particle thus be-
comes P(1)=N/N. From this definition it is clear that for the
FTG gas, P(1) is identical to the single-particle nonescape
probability associated with the ground state of the trap. How-
ever, this means that the total signal is enhanced by a factor
corresponding to the number of particles, a key advantage
for the experimental study of deviations from the exponential
decay law. In other words, In N for an N-particle FTG gas in
its ground state, is obtained by shifting upwards the curve for
n=1 in Figs. 2 or 3 by In N.

More remarkable yet, the BTG gas exhibits few-body de-
cay features. In particular, a new regime of nonexponential
decay arises from the sum of contributions of the single-
particle exponentials. Figure 4 shows that, for the BTG gas,
the higher the number of particles the faster is the tunneling
rate and, as a result of the different energy contributions, the
short time dependence is affected.

The effect of the end-cap laser intensity can be simulated
by varying #. In so doing, we have learnt that the resonance
poles shift towards the real axis in the k plane for increasing
7, see Fig. 1. For vanishing 7, even for the single-particle
case, and therefore the FTG gas, there is no reason to expect
exponential decay since the potential is not a trap anymore
and there are no resonances.

This behavior is shown in Fig. 5. For a given 7, a clear
difference between BTG and FTG gases is the decay rate,
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FIG. 4. Logarithm of the average number of particles within the
trap for a BTG gas as a function of time, for different values of the
total number of particles. From top to bottom, N=1,...,10 with
n=5. The curve for the FTG gas of N particles is obtained by
shifting up the N=1 BTG gas curve (single-particle case) by In N.

which is larger for the former at short times, a direct conse-
quence of the different ground state energy for both systems,
namely,

Egrg=h*mN(N + 1)(2N + 1)/(12mL?)
and
EFTG = ﬁzﬂzN/(szz) .

However, the high resonance contributions eventually dimin-
ish, and the rates become finally equal being governed by the
longest lived resonance, deep into the purely (single) expo-
nential regime. Note that at short times, the decay is domi-
nated by high-energy components and it is essentially inde-
pendent of the strength of the delta potential. Moreover, at
short times the nonexponential deviation is concave-up for
the BTG system and concave-down for the fermionic case.
Regarding the long time behavior, it follows from Eq.
(16) that N(1)=NP,(t) for the FTG gas exhibits the 1/¢3
dependence. This is also the case for BTG gas where [31]

2.0 : ' '—
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FIG. 5. Logarithm of the average number of particles in the trap
for a BTG gas (dashed lines) and FTG gas (continuous lines) of ten
particles for different intensities of the end-cap laser (for both cases,
from top to bottom 7=10,5,0).
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N N Cz
AOEIACEDD tﬁ”). (18)
n=1 n=1

This result guarantees that the generalization for our few-
body systems of the dwell time (the average time spent by a
particle in a spatial region) is possible, being a meaningful
finite quantity [32].

In conclusion, we have studied exactly two related few-
body tunneling problems, namely, that of bosonic and fermi-
onic TG gases. The FTG gas has been pointed out as a good
system to observe long time deviations from exponential de-
cay because of the strength of the signal, proportional to the
number of particles. The recent first measurement of long
time deviations [12] is based on the important effect of the
environment in organic molecules in solution, so that the
deviation for “pure,” isolated systems remains to be observed
[30]. For the bosonic case a new deviation of the exponential
decay appears, which can be understood as a sum of N
single-particle contributions.

It is still an experimental challenge to get to the strong TG
limit in a flat box, the main limiting factor being the confine-
ment in transverse directions. Assuming, according to Re-
ichel and Thywissen [33], a “maximal practical value” of
transversal frequency of 1 MHz, N=10, a box of 10 wm, and
the constants for rubidium 87 (scattering lenght a =5 nm),
the ratio a of interaction energy to the potential energy is
a=440, whereas the ratio of chemical potential to the ki-
netic energy is y= 88, see [33]. For rubidium 85 at a Fesh-
bach resonance the scattering length, @ and 7y may increase
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by a factor of 100 [34], making optical traps a viable alter-
native to magnetic confinement. These values point out at a
TG gas regime not too far away from current capabilities, but
the actual implementation may still be difficult also because
of the need for accurate single atom detection.

We may in any case expect that reaching a strict TG re-
gime is not absolutely essential to find interesting few-body
decay effects. The upshot of our analysis is that for the few-
body ground state of the box, the BTG gas exhibits maximal
deviations from the exponential law at short times, whereas
they are completely absent in the FTG gas or ideal Bose gas.
The behavior between the ideal Bose gas and BTG gas could
be smoothly extrapolated by increasing the effective interac-
tions [35]. Moreover, the Bose-Fermi duality [16] opens up
the possibility of observing experimentally such effects in a
wider class of systems.
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