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Transmission of matter-wave solitons through nonlinear traps and barriers
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The transmissions of matter-wave solitons through linear and nonlinear inhomogeneities induced by the
spatial variations of the trap and the scattering length in Bose-Einstein condensates are investigated. The
enhanced transmission of a soliton through a linear trap by a modulation of the scattering length, is exhibited.
The theory is based on the perturbed inverse scattering transform for solitons, and we show that radiation
effects are important. Numerical simulations of the Gross-Pitaevskii equation confirm the theoretical

predictions.

DOI: 10.1103/PhysRevA.74.013604

I. INTRODUCTION

The transmission of matter wave packets through inhomo-
geneities of different types of Bose-Einstein condensates
(BECs) has recently attracted a lot of attention, because this
phenomenon is important for the design of control methods
of the soliton parameters and atomic soliton lasers [1]. The
transmission and reflection of bright and dark matter wave
solitons has been studied in the case of linear inhomogene-
ities, induced by the variations in space of the potential field
[2-8]. In particular, the effect of a potential step or impurity,
including the soliton train evolution, has been analyzed in
Ref. [6]. The adiabatic dynamics of a dark soliton, as well as
the radiative wave emission leading to the dark soliton deg-
radation, has been studied in Ref. [7]. Finally, the continuous
wave emission by a bright soliton in an optical lattice has
been addressed in Ref. [8]. The case of inhomogeneities pro-
duced by spatial variations of the scattering length has been
less investigated. In Refs. [9-11] the variational approach
has been applied and numerical simulations have been per-
formed. When the linear and nonlinear inhomogeneities
compete with each other, direct numerical simulations of the
soliton propagation have been carried out. The enhanced
soliton transmission through a linear barrier is observed for
well-chosen parameters of the nonlinear potential [12]. The
explanation of this phenomenon, as shown in this paper, re-
quires to take into account the radiative effects when the
soliton interacts with the nonlinear potential.

The purpose of this work is to develop the theory describ-
ing the transmission of matter wave solitons through nonlin-
ear barriers and traps. Such barriers can be produced by us-
ing the Feshbach resonance method, namely by the local
variation of the external magnetic field B(z) in space near the
resonant value B, [13]. By the small variation of the field
near the resonant value we can induce the large variations of
the scattering length in space according to the formula
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where a, is the background value of the atomic scattering
length and A is the resonance width. Optical methods for
manipulating the value of the scattering length are also pos-
sible [14]. As a result, the mean field nonlinear coefficient
(which is proportional to the scattering length a,) in the
Gross-Pitaevskii equation has a spatial dependence. We will
use the perturbed inverse scattering transform theory (see,
for example, Refs. [15-17]) to describe the transmission of
bright matter wave solitons through the nonlinear barriers.
This approach allows us to analyze the adiabatic dynamics of
solitons as well as the radiative processes during the soliton
propagation through inhomogeneities.

II. THE MODEL

The quasi-one-dimensional Gross-Pitaevskii (GP) equa-
tion describing the wave function of BEC in an elongated
trap has the form [18]

h2
it it 5= V@Y= gip@lyfY=0. (1)
m

Here g,p(z)=2% o, a,(z), where w, is the transverse oscilla-
tor frequency, a,(z) is the spatially dependent atomic scatter-
ing length, and V(z) is the linear potential. Both a,(z) and
V(z) are assumed to be constant outside a given domain,
where we assume that the scattering length takes the constant
negative value ay, and V is zero, [|¢|*dz=N, where N is the
number of atoms. We denote by g,p=2% w, a,, the reference
value of the nonlinear coefficient.

We first rewrite the GP equation in dimensionless vari-
ables. We introduce the healing length zo=7%/\nyg,pm and
the corresponding time 7,=2z,/c, where c=\nogp/m is the
Bogoliubov speed of sound and n the peak density. Denot-
ing x=z/zy, t=7/7, and u=/\ny, the normalized mean
field wave function u satisfies the dimensionless GP equation
in the form of the nonlinear Schrédinger (NLS) equation
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ity + e+ 2JulPu = V() [ul*u + Vi(x)u, (2)

with V,,(x)=2-2a,(zpx)/ayy and V,(x)=7V(zpx)/h. If V,
=V,;=0, then this equation can be reduced to the standard
NLS equation that supports soliton solutions. The bright soli-
ton solution is

uy(x,t) = 2v sech{2 1] x — x,(r) [}exp{2iu[x — x,(£) ]| + i py(1)}.

The soliton amplitude is 2v and its velocity is 4u. The soli-
ton center and phase x,(r) and ¢,(¢) satisfy

dx do
—=du, =407+ 40).
5 S =)

The matter-wave soliton moving in the linear and nonlinear
potentials V; and V,; experiences velocity and mass modula-
tions and emits radiation. To describe this process we use the
perturbation theory based on the inverse scattering transform
(IST). The IST is a linearization of the NLS equation based
on the fact that u can be characterized by a set of spectral
data for a linear operator in which u plays the role of a
potential [19]. The matter wave can be decomposed as the
sum of localized soliton parts (associated to the discrete ei-
genvalues) and delocalized radiation (associated to the con-
tinuous spectrum). The perturbed IST for the perturbed NLS
equation (2) describes the evolutions of the localized soliton
part of the matter wave and the delocalized radiation in a
complete but complex way [15]. A tractable perturbation
analysis can be carried out by using series expansions with
respect to the amplitudes V), and V,;,, of the linear and
nonlinear dimensionless potentials. In physical variables,
Vauo=2 sup|ay(x)/a—1| and Vjo=7, sup,|V(x)| /%.

II1. QUASIPARTICLE APPROACH

Applying the first-order perturbed IST theory [15], we
obtain the system of equations for the soliton amplitude and
velocity

d d 1
Lo, Eo —wn,
dt

ax_y,
dt - 4w e

dt

where the prime stands for a derivative with respect to x and
the effective potential has the form

W(V’x) = WI(V’X) + Wnl(V’x)’
with
o 1 z )
——V)| —+x]dz, 3
.. cosh?(z) 1(21/ ) 3

Wi(v,x) = Vf

e} 1 z
W (vx)=2vP| ———V (— )d. 4
nl(V )C) » COSh4(Z) nl 20 +Xx)dz ( )

In this first approximation terms of order V3, and V2, are
neglected. We can thus write the effective equation
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describing the dynamics of the soliton center as a quasipar-
ticle moving in the effective potential W,

d*x, ,
dt2 =-W (VO’xs)7 (5)

Yo
where 4y, is the mass (number of atoms) of the incoming
soliton. This system has the integral of motion

vo [ dx, \?

EO(E) + W(vg.x,) = 8wpud, (6)
where 4 u, is the velocity of the incoming soliton. Note that
this approach gives the same result as the adiabatic perturba-
tion theory for solitons that is a first-order method as well.
This adiabatic perturbation theory was originally introduced
for optical solitons [20] and it was recently applied to matter-
wave solitons [21]. In this work, it is the first step as we will
include second-order and radiation effects in the next sec-
tion. Let us briefly discuss the main results that can be ob-
tained with the quasiparticle approach.

Barrier potential: Let us first examine the case where the
potential V is a barrier, meaning that V=0 and
limy .. V(x)=0. When the soliton approaches the barrier, it
slows down, and it eventually goes through the barrier if its
input energy is above the maximal energy barrier, meaning
8voatg > Winax(v). For a linear barrier potential which is an
even function, we have W, (v)=W(v,0), where W, is given
by (3). For a nonlinear barrier potential which is an even
function, we have W, (v)=W,,(v,0). After passing through
the barrier, the soliton recovers its initial mass and velocity.
In that sense, the transmission coefficient is one.

If, on the contrary, the velocity of the incoming velocity is
such that 8vous < W, (), then the soliton is reflected by
the barrier. After the interaction with the barrier, the soliton
velocity takes the value —4 . In that sense, the transmission
coefficient is zero.

Trap potential: We now examine the case where the po-
tential is a trap, meaning that V=0 and limy,_.. V(x)=0.
When the soliton approaches the trap, it speeds up, and it
eventually goes through the barrier whatever its initial veloc-
ity is. This is the prediction of the quasiparticle approach.
However, we shall see that the interaction with the trap gen-
erates radiation and reduces the mass and energy of the soli-
ton. As a result, the soliton may not be able to escape the trap
if its initial velocity is too small. We shall discuss this point
in the next section.

IV. RADIATION EFFECTS

The properties of the radiation emitted by the soliton in-
teracting with the potentials V; and V,; are determined by the
Jost coefficients a(z,\) and b(z,\) of the continuous spec-
trum of the associated linear spectral problem [15-17]. We
assume that the linear and nonlinear potentials are localized

functions, and we denote by V(k)=[ V(x)exp(ikx)dx their

Fourier transforms. If the soliton goes through the potential,
then we find
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This formula is obtained from the first-order perturbation
IST theory [15] and it allows us to capture the second-order
evolution of the soliton parameters, as we show now. The
total mass (number of atoms) and energy (Hamiltonian) are
preserved by the perturbed NLS equation (2),

NZJ .,

* 1
"= [|Mx|2—|M|4+VI(X)|M|2+EVnz(X)|M|4 ar.

The total mass and energy have contributions from the radia-
tion and from the soliton. The idea is to compute the radiated
mass and energy, and to use the conservation of the total
mass and energy to derive the decay of the soliton mass and
energy, which in turn gives the decay of the soliton param-
eters (v, u). As shown in Ref. [19], the radiated mass density
is given by n(\)=In[1+|b/a(\)|*]/ . 1t is therefore propor-
tional to V}, and V2, so we can use the second-order ap-
proximation

2

TN LI
ma

The total mass and energy can be expressed in terms of the
radiation and soliton components as

N=4V+f n(N)d\,

—o0

[

16
H = 16vu® - ?f +2W(v,x,) + 4f N2 n(N)d\.

—oo

Note that this expression of the energy H is valid up to
second order and it generalizes the first-order expression (6).
Therefore, the emission of radiation involves a decay of the
soliton mass and energy which is proportional to Vlzo and
V2. The coefficients (v, uy) of the transmitted soliton are

| (*
V= vy — é_lf n(N)d\, (7)

—o0

These formulas allow us to study and characterize the trans-
mission of a soliton through a general barrier in various re-
gimes. We can consider the transmission and/or reflection of
a bright soliton through a nonlinear barrier, the transmission
and/or trapping in a nonlinear trap, and competition effects
for the transmission through the superposition of nonlinear
and linear potentials.

In the next sections, we compare our theoretical predic-
tions with results from numerical simulations of the one-
dimensional GP equation, with a Gaussian linear potential
and/or a nonlinear Gaussian potential,

2 2
X X
Vi(x) =V exp(— ;)7 V(%) = Voo CXP(— ;) .

c c

We consider the transmission of a soliton incoming from the
left homogeneous half-space with parameters (v, u). We
plot the variations of the soliton parameters versus the value
of the velocity for vy=0.5 and x,=0.5. We consider different
combinations of linear and nonlinear potentials.

Nonlinear barrier: We consider the case V;y=0 and
V,0=>0. We have seen in Sec. III that the condition for
the transmission through a nonlinear barrier is that the
velocity of the incoming velocity is large enough so that
8vomts > Winax(vy). Note that this means that the critical
velocity parameter u.;, defined by the identity 81/0,ufn-t
=Wonax(%), is of the order of VY5 for Vo< 1. If the trans-
mission condition fails, then the soliton is reflected.

These results are obtained in the quasiparticle approach
and neglect the radiation emission phenomenon. Taking into
account radiation yields that the transmission is not complete
in the case SVO,U,§> Woax(¥0), in the sense that the transmit-
ted soliton mass is not equal to the incoming soliton mass
(see Fig. 1). The mass loss is described by (7), and it is of the
order of V,; for V,,0< 1.

Nonlinear trap: We consider the case V=0 and V,;,<0.
The quasiparticle approach predicts full soliton transmission,
but neglects radiation phenomena. When taking into account
radiation emission, we can exhibit the mass and energy loss
during the interaction with the trap potential. The losses are
described by (7) and (8) and are accurate for an initial ve-
locity large enough. Indeed, if the initial velocity is not large
enough, then the energy loss during the interaction with the
potential does not allow the soliton to escape the trap.

For small initial velocity, the expression for the radiation
is not precise enough, because the velocity experiences a
modulation which is relatively large compared to its initial
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FIG. 1. Soliton parameters variations versus input velocity pa-
rameter w for a nonlinear barrier. The theoretical reflection condi-
tion is 8V0,LL3< Wnax(v9) which gives u;=0.21 for V,;0=1 and
Meii=0.15 for V,;0=0.5, in excellent agreement with the simula-
tions. The predicted mass and velocity reductions are also quantita-
tively accurate, especially for V,;=0.5.

value. When the soliton center is x, the soliton velocity is
given by 4u(x) with

/ W, (vy,x)
_ 2_ ni\*0»
w(x) = [ mg 167, .

Its maximal value is py= \J/,ug—Wn,(VO,O)/ (16vy) where
W, (vy,x) <0 is given by (4). During the interaction with the
barrier, the soliton velocity is about 4w, so the energy loss
can be estimated by —4 [ A>n(\)d\, where g, is substituted
for ug in the expression of b/a. If a negative value uy is
obtained in (8), then this means that the soliton has not been
transmitted, but was trapped by the nonlinear potential (see
Fig. 2). Note that n(\) ~ V2, so that the critical value g for
trapping is of the order of V.

If the initial velocity is large enough to ensure transmis-
sion, then the soliton emits radiation and loses mass. The
mass loss is described by (7) and it is of the order of V,, for
Vo< 1.

Enhanced transmission by nonlinear modulation: As
pointed out in Ref. [21], the nonlinear potential V,,; can help
a soliton going through a trap potential V,. We illustrate this
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FIG. 2. Soliton parameters variations versus input velocity pa-
rameter u, for a nonlinear trap. The theoretical trap condition is
ur<O which gives u.;=0.12 for V,,p=-1 and wu.;=0.07 for
V,i0=—0.5. The agreement with the simulations is noticeable for
V,10=—0.5, while the case V,;o=—1 is only in qualitative agreement
with the simulations.
assertion based on numerical experiments in this section and
justify it with our perturbed IST approach.

By comparing the transmission through a linear trap in
presence or in absence of a nonlinear positive potential, we
confirm the numerical conjecture that the transmission coef-
ficient can be significantly increased by a nonlinear modula-
tion (see Figs. 3 and 4). In fact, the radiation emitted by the
soliton due to the interaction with the linear trap and with the
nonlinear potential can cancel each other, resulting in an en-
hanced soliton transmittivity.

A similar result can be obtained with a linear barrier. A
nonlinear negative modulation can help the soliton going
through the linear barrier by reducing the radiation emission
and by reducing the minimal velocity reached by the soliton
during the interaction. This was predicted by numerical
simulations in Ref. [12].

For consistency we propose an experimental configuration
where the enhanced transmission could be observed for the
"Li condensate. The transverse frequency w, ~2m X 10°
Hz and the density is n=10° m~'. The healing length and
speed of sound are zp=2 wm and c=~5 mm/s, respectively.
As a typical experiment, we could consider a soliton with
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FIG. 3. Soliton parameters variations versus input velocity
parameter u, for a linear trap. The theoretical trap condition is
pur<O which gives w.;=0.15 for Vjp=-1 and u.,=0.1 for

Vip=—0.5, in good agreement with the simulations in the case
VIOZ—O.S.

about 10° atoms and width =2z;,~4 um (so that »=0.5) and
a linear trap with Gaussian shape, normalized amplitude 0.5
and width =z,=2 um (so that x,=0.5). The theoretical pre-
diction is that such a soliton is trapped if its velocity is below
0.55¢ (because p.;=0.14, see Fig. 3). However, in this ex-
periment, we can consider variations of the external mag-
netic field B around the value 352 G, where the scattering
length has the minimal value =~-0.23 nm. Increasing the
field to the value B=450 G we can increase the scattering
length to the value =—0.18 nm. This means that the scatter-
ing length can be varied by 25%, and thus a nonlinear barrier
V,, with normalized amplitude 0.5 can be generated. The
theoretical prediction is that, in the presence of the linear trap
and the nonlinear barrier, the soliton will be trapped only if
its velocity is below 0.2¢ (because .. =0.05, see Fig. 4),
and it will be transmitted otherwise. This means that the
nonlinear modulation dramatically enhances the domain of
parameters for which solitons can be transmitted through the
linear trap.

V. CONCLUSION

In this paper we have investigated the time-dependent
nonlinear scattering of bright solitonic matter waves through
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FIG. 4. Soliton parameters variations versus input velocity pa-
rameter u for a linear trap superposed with a nonlinear barrier. The
theoretical trap condition is uy<<O which gives wu;=0.08 for
an():l, VIOZ—l and Mcrit=0.04 for V,”O:O.S, V/0=—0.5, in gOOd
agreement with the simulations in the case V,;,=0.5, V;4=-0.5.

different types of barriers. We have considered the transmis-
sion of matter waves through inhomogeneities in the form of
localized linear and nonlinear potentials. The adiabatic dy-
namics of the wave packets as well as the radiative processes
during the transmission have been analyzed.

To analyze the dynamics we use the perturbed IST theory,
which allows us to predict the trapping of a bright soliton by
a trap potential and the reflection of a soliton by a barrier
potential. The parameters (mass and velocity) of the trans-
mitted soliton can be estimated by computing the radiated
mass and energy and by using the conservations of the total
mass and energy. The enhanced transmission of a soliton
through a linear trap by a nonlinear modulation of the scat-
tering length is explained by this theory.

The analytical predictions have been checked by compari-
sons with numerical simulations of the GP equation. The
formulas are valid in the asymptotic framework where the
potentials have small amplitudes. It turns out that, for small
or moderate potential amplitudes |V,y| =0.5, |V,0| =0.5, the
perturbed IST theory gives quantitatively accurate predic-
tions. For large potential amplitudes |V,y| =1, |V,;0| =1, the
theoretical predictions of the perturbed IST theory are still in
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qualitative agreement with the numerical results. This means
that the perturbed IST theory is useful for probing the param-
eter space and exhibiting interesting phenomena. The en-
hanced transmission can be observed in the experiments with
bright matter wave solitons in elongated trap with proper
variation in space of the external magnetic field and the trap
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potential [21-23]. One of the problems that should be ad-
dressed for future consideration by this approach is the non-
linear resonant scattering on the (periodic or random) chain
of nonlinear barriers [24] and the scattering on time-
dependent linear and nonlinear barriers [25]. The latter prob-
lem is important for many areas of condensed matter.
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