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We propose a trap scheme for cold alkali-metal atoms with an efficient intensity-gradient induced Sisyphus
cooling in a weak standing-wave hollow-beam gravito-optical trap, which is composed of the interference of
two well collimated, counterpropagating doughnut hollow beams with an intensity difference and a plug beam.
We calculate the intensity distribution of the weak standing-wave hollow-beam field and its intensity gradient
one, and find that such an optical dipole trap with an extremely high intensity gradient is desirable to realize an
efficient intensity-gradient cooling for alkali-metal atoms in the trap. We also calculate the optical potentials,
instantaneous dipole forces and spontaneous emission rates for a three-level dressed atom and study the
dynamic process of intensity-gradient cooling of 87Rb atoms in the weak standing-wave hollow-beam trap by
Monte Carlo simulations. Our study shows that the minimum optical potential at each node in our dipole trap
is high enough to trap almost all cold atoms with a temperature of 120 �K released from a standard magneto-
optical trap, and an ultracold 87Rb atomic sample with a temperature of �0.73 �K can be obtained in the trap.
Starting from this stage, an all-optical Bose-Einstein condensation �BEC� could be realized by using the
optical-potential evaporative cooling.
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I. INTRODUCTION

It is well known that sub-Doppler laser cooling mecha-
nisms of neutral atoms can be classified as polarization-
gradient cooling �PGC� �1� and intensity-gradient one �2�. So
called “intensity-gradient cooling �IGC�,” that is an
intensity-gradient induced Sisyphus cooling of neutral atoms
trapped in a blue-detuned inhomogeneous light field, such as
a standing-wave light field, or an evanescent-wave light
field, or a dark hollow-beam field. The cooling mechanism of
the IGC can be briefly described as follows: In the dressed-
state picture as shown in Fig. 1, when an atom in the lower
dressed state �1,n� entering a blue-detuned inhomogeneous
�i.e., intensity gradient� light field can make a spontaneous
transition to the less repulsive upper dressed state �2,n−1�
by scattering a photon. Soon after the inelastic reflection of
the atom from the blue-detuned light field, the atom is
pumped back to the original dressed state �1,n−1� by the
repumping beam. Then, a closed and repeatable Sisyphus
cooling cycle is formed, and the loss of the atomic kinetic
energy is proportional to the difference �U1−U2� between the
light-shift potentials of two dressed states. So this Sisyphus
cooling resulting from the intensity gradient of the inhomo-
geneous light field is usually called intensity gradient cooling
�2�, and such an IGC was demonstrated both theoretically
and experimentally in a blue-detuned standing-wave light
�3,4� and a blue-detuned evanescent-wave light �5–7�, or a
blue-detuned hollow beam �8–12�.

A gravito-optical trap �GOT� for cold atoms with
evanescent-wave induced Sisyphus cooling was proposed
and demonstrated experimentally, and an ultracold Rb �or
Cs� atomic sample with a temperature of �10 �K �or

�3 �K� was obtained �5–7�. Although the intensity gradient
of the evanescent-wave light is very high, its optical poten-
tial will be rapidly weakened by van der Waals attractive
potential near the interface of a mirror. So the atoms will be
stuck to the surface of the mirror and then lost from the GOT
if the kinetic energies of some atoms are larger than the
optical potential. In addition, it is not easy to manipulate and
control the motion of cold atoms by using evanescent-wave
light field. To overcome these disadvantages, a new GOT
using a blue-detuned dark hollow beam �DHB� was proposed
to trap cold atoms, even to cool them by using the DHB-
induced IGC �8–12�. However, since the intensity gradient
inside a doughnut-hollow beam or other DHBs is far smaller
than one in the evanescent-wave light field, the DHB-
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FIG. 1. Dressed-states picture of the three-level atom and basic
principle of intensity-gradient induced Sisyphus cooling of atoms in
a blue-detuned, inhomogeneous light field.
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induced Sisyphus cooling effect is much less than the
evanescent-wave induced one, which was verified both theo-
retically �11� and experimentally �13�, also by our simulated
results �see Fig. 9�a��. So it would be interesting and worth-
while to find some new hollow-beam traps so as to realize an
efficiently DHB-induced IGC, even to realize an all-optical
atomic BEC in a blue-detuned hollow-beam trap.

In 2001, Yin et al. proposed a GOT using a blue-detuned,
pyramidal-hollow beam �PHB� and investigated the PHB-
induced IGC of alkali-metal atoms by using Monte Carlo
simulations �14�, and found that an ultracold 133Cs atomic
sample with a temperature of �2 �K can be obtained in the
PHB GOT. To further improve the DHB-induced IGC, in this
paper, we propose a unique GOT scheme to trap and cool
neutral atoms by using a weak standing-wave hollow-beam
GOT and its efficient IGC, and study the dynamic process of
the IGC of 87Rb atoms in our proposed GOT by Monte Carlo
simulations. In Sec. II, we present a GOT scheme and ana-
lyze the intensity distribution of our weak standing-wave
hollow-beam field and its intensity gradient profile. In Sec.
III, to perform a Monte Carlo study under the case of strong
light-atom interaction, we use the dressed atomic approach to
derive more exact analytic expressions on the optical poten-
tials, instantaneous dipole forces and spontaneous emission
rates for a three-level dressed-atom in a light field. In Sec.
IV, we study the dynamic process of the IGC of 87Rb atoms
in our GOT by Monte Carlo simulations, and obtain some
new and interesting results. The main results and conclusions
are included in the final section.

II. SCHEME OF WEAK STANDING-WAVE HOLLOW
BEAM GOT

Our unique trap scheme with an efficient IGC of atoms is
shown in Fig. 2. A blue detuned, linearly polarized, well-
collimated doughnut-hollow beam is propagated downwards,
and reflected upwards by a mirror M, and then a standing-
wave hollow-beam field will be formed. To avoid cold atoms
escape from a series of nodes of the standing-wave hollow-
beam field, an intensity modulator �IM� in the front of the
mirror is used to adjust the intensity of the reflected beam
from zero to a maximum one, which will provide a minimum
optical potential at each node where cold atoms cannot be
lost from each node. Then a weak standing-wave hollow-
beam gravito-optical trap �GOT� for cold atoms will be
formed above the blue-detuned plug beam. Since the
standing-wave hollow-beam field has a high intensity gradi-
ent, our GOT cannot only be used to trap cold atoms, but
also to efficiently cool the trapped atoms combined with a
weak, near-resonant repumping beam �WRB� propagating
downwards.

The electric field distributions of two linearly-polarized
doughnut-hollow beams that propagate in the opposite direc-
tion can be described by two standard TEM01

* doughnut
beams, and in the polar coordinates given respectively by

E1�r,�,z� = E01 exp�i��exp�i��t + kz�� , �1a�

E2�r,�,z� = E02 exp�i��exp�i��t − kz�� , �1b�

where

E01 =�P1

�

2r

w2 exp	−
r2

w2
 , �2a�

E02 =�P2

�

2r

w2 exp	−
r2

w2
 , �2b�

where w is the waist of the well-collimated doughnut-hollow
beam and can be regarded as a constant, P1 and P2 are the
powers of input hollow beam and reflected one, respectively.
For the sake of convenience, we define a beam parameter �
�we called it “standing-wave parameter”� to describe the in-
tensity ratio of the incident hollow beam to the reflected one,
that is, �= P2 / P1, which can be adjusted from 0 to 1.0 by
using the intensity modulator IM. It is clear that �=0 and
�=1 represent a single traveling-wave hollow-beam light
field and a standard standing-wave one, respectively, while
the case of 0���1 stands for a weak standing-wave
hollow-beam field. The intensity distribution of the standing-
wave hollow-beam field is given by

I = E01
2 + E02

2 + 2E01E02 cos�2kz� . �3�

From Eq. �3�, we can see that the intensity distribution in
the z direction is periodic with a spatial period of � /2. When
�=1, there are a series of zero-intensity rings at z= �2n
+1�� /4 �i.e., at each node� in the standing-wave hollow-
beam field, here n is integer. In or near these rings, cold
atoms released from a standard magneto-optical trap �MOT�
will be escaped from the standing-wave hollow-beam GOT.
So we should choose the standing-wave parameter � to make
the optical potential at z= �2n+1�� /4 far larger than the root-
mean-square �rms� kinetic energy of cold atomic sample so

FIG. 2. Scheme of the gravito-optical trap for cold atoms using
a weak standing-wave hollow-beam field and a gravity field. M,
MOT, IB, RB, PB, IM, and WRB stand for mirror, magneto-optical
trap, input beam, reflected beam, plug beam, intensity modulator,
and weak repumping beam, respectively.
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as to let nearly all cold atoms stay in the GOT. When the
beam radius of the DHB is r0=0.5 mm, and taking P1
=1000 mW and �=0.28, we calculate the intensity distribu-
tion of the weak standing-wave hollow-beam field, and the
result is shown in Fig. 3. We can find from Fig. 3 that the
maximum intensity is 1.1�106 W/m2 at z=n� /2 as r=r0
and the minimum intensity is 1.0�105 W/m2 at z= �2n
+1�� /4 as r=r0, the corresponding optical potential will be
greater than atomic rms kinetic energy �see below�.

The intensity gradient distribution of our standing-wave
hollow-beam field is given by

�I =
�I

�r
r̂ +

�I

�z
ẑ , �4�

where the radial and axial intensity gradients are given re-
spectively by

�I

�r
= �2E01

2 + 2E02
2 + 4E01E02 cos�2kz���1

r
−

2r

w2� , �5a�

�I

�z
= − 4kE01E02 sin�2kz� . �5b�

It is clear from Eqs. �3� and �4� that the axial intensity
gradient inside the traveling-wave hollow beam �i.e., when
�=0� in the z direction will be zero. From Eq. �5�, we cal-
culate the dependence of the radial and axial intensity gradi-
ents on the radial position r �and on the propagation distance
z� as r0=0.5 mm, P1=1000 mW, and �=0.28, and find that
the maximum radial intensity gradient inside the weak
standing-wave hollow beam is about two times that inside
the traveling-wave hollow beam �its maximum intensity gra-
dient is about 1.9�109 W/m3�. We also find that the maxi-
mum axial intensity gradient can be reached 8
�1012 W/m3, which is about 8 times that of the evanescent-
wave surface trap �9.7�1011 W/m3� in Ref. �7�. So the IGC
of atoms in our weak standing-wave hollow-beam GOT will
be more efficient than that of the evanescent-wave surface
trap �7�.

III. QUASIANALYTIC SOLUTIONS OF A THREE-LEVEL
DRESSED-ATOM SYSTEM

A. Eigenenergies and optical potentials

We consider a 	-configuration three-level atom with one
excited state �e� and two hyperfine ground states �g1� and
�g2�, which is interacted with an intense laser field with a
frequency of �L /2� and a detuning of 
 /2� from the atomic
resonant frequency �0 /2� between the lower hyperfine
ground state �g1� and the excited state �e�, as shown in Fig.
4�a�. If the coupling between the laser mode and the atom is
not considered, the eigenstates of the dressed Hamiltonian
are bunched in the well-separated three-dimension manifolds
E1 , . . ., En−1, En , . . ., which are separated by the energy of
��L, here n is integer. Each En manifold is composed of
three states �g1 ,n+1�, �g2 ,n+1�, and �e ,n� �atom in the in-
ternal states �g1�, �g2�, or �e� with n+1, n+1, or n laser pho-
tons�, as shown in Fig. 4�b�.

We assume that the detuning �
� between �L and �0 is
much lower than �L or �0, so we can safely neglect the
coupling between different three-dimension manifolds.
Moreover, the diagram of the dressed Hamiltonian is peri-
odic, and in which there are many �or infinity� invariable
three-dimension subspaces. Corresponding to three-
dimension manifold of En, the equation of eigenstates �con-
sidering atom-laser mode coupling� in the dressed-state pic-
ture can be written by

�
�n + 1��L + 
hfs 0 G2
�n + 1

0 �n + 1��L G1
�n + 1

G2
�n + 1 G1

�n + 1 n�L + �0
�
Ai

Bi

Ci
�

= EDri
Ai

Bi

Ci
� , �6�

where 
hfs /2� is the level splitting between two hyperfine
ground states, and G1 �G2� is a real coupling parameter cor-
responding to Rabi frequency �1 ��2� between �g1 ,n
+1���g2 ,n+1�� and �e ,n� by �1=2G1

�n+1 and �2

FIG. 3. The intensity distribution of the weak standing-wave
hollow-beam light field for r0=0.5 mm, P1=1000 mW, and �
=0.28.

FIG. 4. Atomic energy-level diagram: �a� 	-configuration three-
level atom diagram; �b� States of the combination of atom-laser
mode system without the coupling, which are bunched into three-
dimension manifold En; �c� Atom-laser mode coupling produces the
dressed atom states.
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=2G2
�n+1. In Eq. �6�, Ai, Bi, and Ci are the probability

amplitudes respectively in �g2 ,n+1�, �g1 ,n+1�, and �e ,n�
corresponding to the dressed eigenstate �i ,n� in the dressed
atom picture, as shown in Fig. 4�c�, here i=1,2 ,3.

Since the exact eigenenergies �see Appendix A� from Eq.
�6� are too complex to give clear analytic relationships be-
tween the eigenenergies �or optical potentials� of three
dressed eigenstates and the parameters �
 ,
hfs ,�1 ,�2� of
atom-light interaction system, we cannot obtain analytic or
quasianalytic solutions of the optical potentials, instanta-
neous dipole forces and spontaneous emission rates. For this
reason, we substitute a trial solution EDr1

t = �n+1���L

−�
 /2±��
2+�1
2�1/2 /2 into Eq. �6�, and then derive two

other solutions EDr2
t and EDr3

t . Here the trial solution EDr1
t is

the eigenenergy of the dressed eigenstate �1,n� coming from
the two-level atom model �9,15,16�, and EDr2

t , EDr3
t corre-

spond to dressed eigenstates �2,n� and �3,n�, respectively. To
obtain a general �for any detuning� and more exact �with a
permissible error� quasianalytic relationships between the
eigenenergies and the parameters �
 ,
hfs ,�1 ,�2�, by further
substituting EDr2

t �which is one of the solutions in Ref. �17��
into Eq. �6�, and adjusting the corresponding coefficients in
front of �
 ,�1�� and as well as considering the conservation
of energy, we derive two other eigenenergies, by which we
can obtain three more exact expressions of the eigenenergies
corresponding to the dressed eigenstates �1,n�, �2,n�, �3,n�
as follows:

EDr1 = �n + 1���L −
�


2
±

��
2 + �1
2

2
, �7a�

EDr2 = �n + 1���L −
�

2
�
 − 
hfs� + sgn

���
 + 
hfs�2 + �2
2

2
,

�7b�

EDr3 = �n + 1���L + �
 − �
 +
�
hfs

2
�

��
2 + �1
2

2

− sgn
���
 + 
hfs�2 + �2

2

2
, �7c�

where


 � ±
�1�

32
+

31


32
�7d�

is defined as a generalized laser detuning, and “�” and “�”
in “�” or “�” and “�” in “�” represent the case of 
�0
and 
�0, respectively, sgn is 1 when 
�−
hfs, and −1 when

�−
hfs, which have the same meaning in the following
equations. If we suppose that the laser field is initially in a
coherent state with a Poisson distribution for n, and its width

n is very small compared with the average photon number
n̄ and much larger than 1, we can neglect the dependence of
�1 and �2 on the photon number n. In Eq. �7�, �1�
=�
2+�1

2, and for the alkali-metal atom, � j may be ex-
pressed by � j =�I /2Isat�f j

1/2=�f j
1/2, and I is the laser inten-

sity, Isat is the saturation intensity of the atom, f j =2/3 is the

relative transition strength from �e� to �gj�, j=1,2, �
=�I /2Isat�, � is the spontaneous emission rate of the excited
state �e�. Taking the atom of 87Rb as an example, we com-
pared EDri in Eq. �7� with the exact solutions from Eq. �6�,
here i=1,2 ,3. For a 87Rb atom, 
hfs /2�=6.835 GHz, Isat
=16 W/m2, and � /2�=6.0 MHz, we find from Appendix B
that the maximum relative error between expressions EDri
− �n+1���L in Eq. �7� and the exact expressions �see Eqs.
�A2� and �A3�� is about 3.0% as I=2.5�106 W/m2 for ar-
bitrary detuning 
 /2�. This shows that Eq. �7� can be indeed
regarded as a general and more exact solution of Eq. �6� and
safely used to calculate the eigenenergies EDri and their op-
tical potentials and eigenstates and so on for arbitrary detun-
ing and I�2.5�106 W/m2.

From Eq. �7�, we can obtain three general expressions of
optical potentials corresponding to eigenenergies EDr1, EDr2,
and EDr3 in the dressed atomic system

U1 = −
�


2
±

��
2 + �1
2

2
, �8a�

U2 = −
�

2
�
 + 
hfs� + sgn

���
 + 
hfs�2 + �2
2

2
, �8b�

U3 = �
 +
�
hfs

2
�

��
2 + �1
2

2
− sgn

���
 + 
hfs�2 + �2
2

2
.

�8c�

Under the approximation of a small saturation parameter
�that is, 
�����, we have �1�=��1

2+
2�
 and obtain

�
 from Eq. �7d�. Then substituting 
�
 into Eq. �8�, we
can derive the approximation expressions of optical poten-
tials �U1� ,U2� ,U3�� corresponding to three dressed states �1,n�,
�2,n�, and �3,n�, and we find that they are the same as the
expressions in Refs. �9,15,16�, and can be further reduced to
the results in Refs. �6–8,10�. The approximation expression
of optical potential U1� can be given by U1�=−�
 /2
+��
2+�1

2 /2. We compare U1� with our U1, and find that
when 
 /2�=1.0 GHz, U1� can only be used as I�9.0
�103 W/m2 within the same ±3% error, which is far lower
than our result �I�2.5�106 W/m2�. In our GOT, if taking
r0=0.5 mm, P1=1000 mW, �=0.28, the maximum intensity
can be reached 1.1�106 W/m2, so we cannot use expres-
sions U1�, U2�, and U3� to calculate optical potentials, but can
use our Eq. �8� to calculate them. From Eq. �8�, we calculate
the distribution of the optical potential U1 for a 87Rb atom in
our trap for r0=0.5 mm, P1=1000 mW, �=0.28, and 
 /2�
=1 GHz, the result is shown in Fig. 5�a�. We know from Fig.
5�a� that the maximum optical potentials along the z direc-
tion appear at z=n� /2 �i.e., at each antinode�, and the mini-
mum optical potentials appear at z= �2n+1�� /4 �i.e., at each
node�, here n is the integer. The optical potential U2 is
smaller than that of U1 for the same parameters and the dis-
tribution of U2 is similar to one of U1.

To trap all atoms from a standard MOT, the minimum
optical potential U2 at r=r0 should be larger than the rms
kinetic energy of cold atomic sample. From Eq. �8�, we cal-
culate the dependence of optical potentials at z= �2n+1�� /4
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for a 87Rb atom in our trap on the beam parameter � as r
=r0=0.5 mm, P1=1000 mW, and 
 /2�=1 GHz, and the re-
sults are shown in Fig. 5�b�. We find from Fig. 5�b� that the
optical potential U2 will be larger than 240 �K as ��0.28,
which is high enough to effectively capture almost all cold
87Rb atoms from the MOT with a temperature of �120 �K.
At z= �2n+1�� /4, the dependence of the optical potentials
on the detuning 
 /2� is also calculated from Eq. �8� as r
=r0=0.5 mm, P1=1000 mW, and �=0.28, and the results

are shown in Fig. 5�c�. We know from Fig. 5�c� that the
optical potential U2 will be larger than 120 �K, which is
high enough to effectively capture most of cold atoms from
the MOT as 
 /2��8 GHz.

B. The instantaneous dipole force

An atom in an inhomogeneous light field will experience
a dipole gradient force resulting from the spatial gradient of
the optical potentials. From the optical potentials as shown in
Eq. �8�, we obtain the expressions of the instantaneous dipole
forces in three dressed levels, respectively

F1 = − �U1 =
�

4�±
�1

16�1�
�

1

16

�1


±�1�
+ �1

�
2 + �1
2 � · ��1, �9a�

F2 = − �U2 =
�

4�±
�2

16�1�
− sgn

1

16

�2�
 + 
hfs�
±�1�

+ �2

��
 + 
hfs�2 + �2
2 � · ��2,

�9b�

F3 = − F1 − F2. �9c�

For the alkali-metal atom, ��1=��2
=�1/3�I · Isat�� ·�I /2. From Eq. �9�, we calculate the depen-
dence of the instantaneous dipole forces F1 and F2 on a 87Rb
atom on the detuning 
 /2� as I=104 W/m2 and �I=
−108 mW/cm3, and the results are shown in Fig. 6. We can
find from Fig. 6 that there is a pair of the maximum absolute
values of the instantaneous dipole force at the detuning

 /2�=0 GHz for F1 and 
 /2�=−6.835 GHz for F2, which
comes from two nonresonant effects at 
 /2�=0 GHz and at

 /2�=−
hfs /2�, respectively. We also find from Fig. 6 that
F1 is far larger than F2 when 
 /2��0 GHz, which is a
necessary condition for the effective IGC. From Eqs.�9� and
�5a�, we calculate the dependence of the radial instantaneous
dipole forces F1r and F2r on a 87Rb atom on the radius r for

FIG. 5. The distribution of the optical potentials of an 87Rb atom
in the weak standing-wave hollow-beam light field. �a�: The contour
of the optical potential U1 for r0=0.5 mm, P1=1000 mW, �
=0.28, and 
 /2�=1 GHz; �b� Optical potentials at z= �2n+1�� /4
versus � for r=r0=0.5 mm, P1=1000 mW, and 
 /2�=1 GHz; �c�
Optical potentials at z= �2n+1�� /4 versus 
 /2� for r=r0

=0.5 mm, P1=1000 mW, and �=0.28.

FIG. 6. Dependences of the instantaneous dipole force on the
laser detuning 
 /2� for I=104 W/m2 and �I=−108 mW/cm3.
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r0=0.5 mm, P1=1000 mW, �=0.28, and 
 /2�=1 GHz, and
find that the minimum radial instantaneous dipole forces F1r

and F2r appeared at z= �2n+1�� /4 as r=0.25 mm and can be
reached 4.0�10−23 N and 5.2�10−24 N, which is about 28.6
and 3.7 times of the gravity force �1.4�10−24 N� on the 87Rb
atom. When the detuning is 
 /2�=8 GHz, the minimum ra-
dial instantaneous dipole forces F1r and F2r as r=0.25 mm
are 5.1�10−24 N and 2.8�10−24 N. From Eqs. �9� and �5b�,
we also calculate the dependence of the axial instantaneous
dipole forces F1z and F2z on a 87Rb atom on the propagation
distance z for r0=0.5 mm, P1=1000 mW, �=0.28, r
=0.25 mm, and 
 /2�=1 GHz, and find that the axial instan-
taneous dipole forces F1z and F2z can be changed from
0 to 4.7�10−19 N and 6.7�10−20 N within the axial length
of � /8. When the detuning is 
 /2�=8 GHz, the axial maxi-
mum instantaneous dipole forces F1z and F2z can be reached
6.6�10−20 N and 3.6�10−20 N, which is �104 times of the
gravity force on the 87Rb atom. So when 
 /2��8 GHz, our
weak standing-wave hollow beam trap have effective axial
and radial instantaneous dipole forces and make cold atoms
oscillate rapidly in the trap. Typically, when r0=0.5 mm,
P1=1000 mW, �=0.28, and 
 /2�=3 GHz, the axial mean
oscillation frequency is 1.1�105 Hz, while the radial mean
oscillation frequency is 266.4 Hz, which is a another neces-

sary condition for the effective IGC of trapped atoms in our
GOT.

C. The spontaneous emission rates

When a three-level atom moves in the weak standing-
wave hollow-beam field, it will experience the spontaneous
emission and its recoil heating. To obtain the spontaneous
emission rates of the three-level atom in the intense laser
field and perform Monte Carlo study for IGC, we substitute
three dressed eigenenergies �see Eq. �7�� into Eq. �6� respec-
tively and solve them, and then three eigenstates �1,n�, �2,n�,
and �3,n� in the dressed-atomic picture can be given by

�i,n� = Ai�g2,n + 1� + Bi�g1,n + 1� + Ci�e,n� , �10�

where i=1,2 ,3, and the probability amplitudes Ai, Bi, and Ci
are given by

Ai =
�ai2�

�1 + ai1
2 + ai2

2
, Bi =

�ai1�
�1 + ai1

2 + ai2
2

,

Ci =
1

�1 + ai1
2 + ai2

2
, �11�

where

a11 =
− �1


 � �
2 + �1
2

,

a12 =
− �2


 � �
2 + �1
2 + 2
hfs

,

a21 =
− �1


 − 
hfs − sgn ��
 + 
hfs�2 + �2
2

,

a22 =
− �2


 + 
hfs − sgn ��
 + 
hfs�2 + �2
2

,

a31 =
− �1

− 2�
 − 
� + 
/16 − 
hfs ± �
2 + �1
2 + sgn ��
 + 
hfs�2 + �2

2
,

a32 =
− �2

− 2�
 − 
� + 
/16 + 
hfs ± �
2 + �1
2 + sgn ��
 + 
hfs�2 + �2

2
. �12�

In consideration of the coupling of the dressed atom with
the vacuum modes, the trapped atoms will spontaneously
emit fluorescent photons, and the corresponding spontaneous
emission rates �ij from �j ,n� to �i ,n−1� can be given by
�18,19�

�ij = Bi
2Cj

2�1 + Ai
2Cj

2�2, �13�

where �1 and �2 are the partial spontaneous emission rates
given by �1=q1� and �2=q2�, q1 �q2� is the relative
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branching ratio of the spontaneous emission from �e� to �g1�
�or to �g2��.

Since the dressed state �1,n� contains a small mixture of
the excited state �see Eq. �10��, it may spontaneously decay
to a lower dressed state �1,n−1�, �2,n−1�, or �3,n−1� with
the corresponding rate �i1 �i=1,2 ,3�, that is

�i1 = Bi
2C1

2�1 + Ai
2C1

2�2. �14�

Substituting Eqs. �11� and �12� into Eq. �14�, we can ob-
tain the expressions of the spontaneous-emission rates �11,
�21, and �31, similarly we can also derive the expressions of
�12, �22, �32, �13, �23, and �33. Moreover, under the approxi-
mation of small saturation parameters �20�, i.e., when 
 j
�� j ��, Eq. �14� can be further simplified as

�11� =
�1

2

4
2 �1 =
1

2
s1�1, �15a�

�21� =
�1

2

4
2 �2 =
1

2
s1�2, �15b�

�31� =
�1

4

16
4 +
�1

2�2
2

16
2�
 + 
hfs�2�2 =
s1

2

4
�1 +

s1s2

4
�2,

�15c�

which are the same as the results in Refs. �9,10,12,16,18,20�.
Similar, the approximate expressions of the spontaneous-
emission rates of the atom between other dressed states are
given by

�12� =
1

2
s2�1, �22� =

1

2
s2�2, �32� =

s1s2

4
�1 +

s2
2

4
�2,

�16�

�13� = �1, �23� = �2, �33� =
s1

2
�1 +

s2

2
�2. �17�

In Eqs. �15�–�17�, s1 and s2 are two saturation parameters
of the three level atom and given by

s1 �
�1

2

2
2 , s2 �
�2

2

2�
 + 
hfs�2 . �18�

From Eqs. �15�–�18�, we can find that the spontaneous-
emission rates between dressed states satisfy the following
relation: �31� ��11� ��21� �, �32� ��12� ��22� �, so we can neglect
�31� and �32� in our simulations. The transition probability of
�1,n�→ �3,n−1� per reflection can be expressed as p1→3

=�−�
� �31� dt�

2E�

3�
 psp �6�, where E�= 1
2kBT is the atomic ki-

netic energy in the normal direction of the light field surface,
and psp is the total transition probability of atom per reflec-
tion in the light field. When T=120 �K, 
 /2�=3 GHz, we
have p1→3�2.8�10−4 psp, meanwhile the transition prob-
ability �2,n�→ �3,n−1� per reflection is p2→3=�−�

� �32� dt
�2.6�10−5 psp. Therefore, we can safely neglect the transi-
tion to the state �3,n−1�, and then �13� , �23� , and �33� in Eq.
�17� can also be neglected in our simulations.

IV. THE IGC AND ITS MONTE CARLO SIMULATIONS

A. The IGC of atoms in our trap

When cold atoms are released from a standard MOT
placed at the center of our weak standing-wave hollow beam
GOT with an initial height of HMOT, they will move and
bounce in our trap. In the dressed-atom picture, if an 87Rb
atom in the dressed state �1,n� spontaneously decays into the
dressed state �2,n−1� during a reflection from the standing-
wave hollow-beam light field, the reflected atom will lose
part of its kinetic energy because the dressed state �2,n−1� is
less repulsive than the dressed state �1,n�, as shown in Eq.
�8�. When the atom is reflected to the nodes from antinodes
of the standing-wave hollow-beam light field, the atom is
pumped back to the dressed state �1,n−1� by the red-detuned
weak repumping beam �see WRB in Fig. 2�. In the repump-
ing process, the atom reflected upwards absorbs a
downward-direction photon from the RPB and reduces the
kinetic energy of the atom, and results in a spontaneous geo-
metric cooling. It is clear that two energy-loss processes
mentioned above will form a closed, repeatable Sisyphus and
geometric cooling cycle. In addition, the random recoils of
the emitted photons during the spontaneous emission will
contribute a small heating to the reflected atom.

In consideration of the IGC and the geometric cooling,
and the spontaneous-emission heating as well as the recoil-
induced heating from the absorption of photons, and assum-
ing that the mean spontaneous-emission times of atom per
reflection in the standing-wave hollow-beam field is �, simi-
lar to the derivation in Refs. �6,14�, we can derive an equa-
tion to estimate the final equilibrium rms momentum prms of
atoms in our trap

−
1

3


hfs


 + 
hfs
	 prms

�k

2

−
1

qr

prms

�k
+

1

qr
2 +

�

1 − qd
= 0, �19�

where qr �qd� is the mean branching ratio during a transition
from �1,n� to �1,n−1� after absorbing a repumping photon �a
standing-wave hollow-beam photon�, and � in Eq. �19� can
also be obtained from Monte Carlo simulations. In particular,
when �=1, the mean spontaneous-emission times of atom
per reflection is one, Eq. �19� will be reduced as Eq. �5� in
Ref. �14�. For an 87Rb atom, qd=0.75, and qr=0.58. From
Eq. �19�, and when �=0.5, we estimate the final equilibrium
rms momentum to be prms�2.40�k corresponding to a tem-
perature of T�0.70 �K as 
 /2�=3.0 GHz, �=0.28, and
P1=1000 mW, which is in good agreement with our simu-
lated result �see Fig. 8�a��. The corresponding Sisyphus cool-
ing time �Sisy, or the cooling rate �Sisy, is given by �9�

�Sisy =
1

�Sisy
� 4.5


 + 
hfs

�sp�1 − qd�
hfs
, �20�

where �sp is the spontaneous emission rate and given by
��1

2 /6
2 �6�. When 
 /2�=3.0 GHz, �=0.28, and P1
=1000 mW, we obtain the cooling time �Sisy�1.0 s for Si-
syphus cooling of 87Rb atoms in our trap, which is also con-
sistent with our simulated result �see Fig. 8�a��.
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B. Monte Carlo study of the IGC

We study the dynamic process of the IGC of 200 87Rb
atoms in our trap by Monte Carlo simulations, and the results
are shown in Fig. 7. In our semiclassical simulations, we
assume that atomic motion is described as classical, and
atomic internal dynamics is treated as quantum transitions
between the dressed states. So the classical approximation of
atomic motion in our trap should be satisfied. It is clear that
when atomic temperature is closed to or below the recoil
temperature of one photon, the approximation on classical
motion of cold atoms in our trap cannot be valid since the
wave function of atomic motion is comparable in size with
the laser wavelength, and we should use quantum Monte
Carlo simulations to study the dynamic process of the IGC
for ultracold atoms in our trap. However, when 
 /2�
=3.0 GHz, �=0.28, and P1=1000 mW, the simulated lowest
temperature is �0.73 �K, corresponding to �2.5�k, that is,
about 2.5 photon recoil momentums, which is greater than
1�k and slightly smaller than the result �3.2�k� of Monte
Carlo simulations in Ref. �6�. So our semiclassical simula-
tions can be approximately valid as T�0.7 �K.

On the other hand, the adiabatic approximation of atomic
motion in our trap should be met. In our trap, although the
potential gradient is steep, the velocity of cold atoms from
the MOT is small, and then the atomic motion in our trap can
fulfill the adiabatic approximation condition �21�: �kv
� �U1−U2�, where k is the wave vector, v is atomic velocity,
U1 and U2 are two optical potentials of the hyperfine ground
states of �1,n� and �2,n�. For the cold 87Rb atom from the
MOT �T=120 �K�, we have �kv�0.0066 mK, when r=r0
=0.5 mm, P1=1000 mW, �=0.28, and 
 /2�=3 GHz, �U1
−U2� is increased from 0.43 mK at the node to 4.3 mK at the
antinode, which are far larger than �kv�0.0066 mK. So the
motion of cold atoms in our weak standing-wave trap is adia-
batic, similar to the case of Sisyphus cooling of a three-level
atom in a bichromatic standing-wave field �4�, and also simi-
lar to the case of blue detuned, dark optical lattice with a
similar intensity gradient where the adiabatic cooling can
even be realized �22�.

In our simulations, the initial positions and velocities of
cold atoms in the 87Rb MOT are described by the Gaussian
distribution, and the rms momentum of cold atoms in the
MOT is 30�k �T�120 �K�, and the diameter of the MOT is
DMOT=0.5 mm. The power of the input hollow beam is P1
=1000 mW and its beam radius is r0=0.5 mm. The detuning
of the blue-detuned plug beam is 3.0 GHz, and its power and
beam radius are 1000 mW and 0.5 mm, respectively. When
r=0.5 mm, the corresponding optical potential for cold 87Rb
atoms at the upper hyperfine ground state is U2�4.28 mK,
which is far higher than the initial temperature of cold 87Rb
atoms ��120 �K�. The corresponding optical dipole force
on an 87Rb atom at the position r=0.5 mm is 1.17�1022 N,
which corresponds to about 100 times of the gravity force on
the atom. This shows that the blue-detuned Gaussian plug
beam can be used to efficiently trap and reflect cold atoms
from the MOT with a height smaller than 20 mm.

Figure 7�a� shows the time evolution of the average
height of cold atoms for two MOT height of HMOT=3 mm
and 5 mm, �=0.28 and 
 /2�=3.0 GHz. It is clear from Fig.

7�a� that with the increasing of the laser cooling time, the
average height of cold atoms in our trap is decreased with an
oscillation and finally reaches an equilibrium height of about
0.8 mm above z=0 due to the effective IGC. Figure 7�b�

FIG. 7. �a� The evolution of atomic average height with the laser
cooling time for the different heights of the MOT, P1=1000 mW,
�=0.28, and 
 /2�=3.0 GHz; �b� Atomic average trajectory in the
x-y plane for P1=1000 mW, �=0.28, 
 /2�=3.0 GHz, and HMOT

=5 mm; �c� The evolution of the final rms momentum prms of atoms
with the laser cooling time for the different heights of the MOT,
P1=1000 mW, �=0.28, and 
 /2�=3.0 GHz.
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shows the average position and its trajectory of cold atoms in
our trap in the x-y plane. From Fig. 7�b�, we find that cold
atoms from the MOT is confined in a radius of 0.08 mm in
the x-y plane, and the radius of the mean atomic trajectory is
reduced with increasing of the cooling time due to the IGC.

The time evolution of the final rms momentum of atoms
in our trap for different heights of the MOT �HMOT=3 mm,
5 mm, and 7 mm� is plotted in Fig. 7�c� for �=0.28 and

 /2�=3.0 GHz. We can see from Fig. 7�c� that the final rms
momentum of atoms �2.45�k� is not related to the height of
the MOT and the corresponding final equilibrium tempera-
ture is about 0.73 �K, which is in good agreement with theo-
retically predicted result �T�0.70 �K�, but the cooling time
will be increased with the increase of the MOT’s height, and
the cooling time are about 1.4 s, 1.7 s, and 2.1 s, respec-
tively for HMOT=3 mm, 5 mm, and 7 mm.

C. Dependence of the IGC on the laser detuning � /2�

We study the dependence of the IGC of 200 87Rb atoms in
our trap on the laser detuning 
 /2� for HMOT=3 mm, �
=0.28, and P1=1000 mW by Monte Carlo simulations, and
the results are shown in Fig. 8. In which, Fig. 8�a� shows the
time evolution of the final rms momentum of an atomic en-
semble in our trap for the different laser detuning �
 /2�
=1.0 GHz, 2.0 GHz, and 3.0 GHz�. From Fig. 8�a�, we find
that the final rms momentum of cold atoms in our GOT will
be reached 4.79�k �T�2.77 �K�, 3.26�k �T�1.28 �K� and
2.45�k �T�0.73 �K�, respectively for 
 /2�=1.0 GHz,
2.0 GHz, and 3.0 GHz, and the corresponding cooling times
are not nearly dependent on the laser detuning 
 /2�. This
shows that the final rms momentum of cold atoms in our
GOT will strongly depend on the detuning 
 /2�.

Figure 8�b� presents the dependence of the final equilib-
rium temperature of cold atoms on the laser detuning as
HMOT=3 mm and �=0.28. We can see from Fig. 8�b� that:
�1� the final equilibrium temperature of the trapped atoms
will be increased drastically from �2.5 �K to �25 �K
�even to higher temperature� with the reduction of the laser
detuning 
 /2� from 1 GHz to 0.5 GHz when the detuning is
very small �such as 
 /2��1.0 GHz�. This is because when
the detuning is very small, the spontaneous-emission heating
of atoms in our GOT will be greater than the IGC, and the
heating rate will be fast increased with the reduction of the
detuning, which will result in a drastic increasing of the final
equilibrium temperature of cold atoms in our trap. �2� When
the laser detuning is larger �such as 
 /2��5.0 GHz�, the
final equilibrium temperature of the cold atoms in our GOT
will be increased slowly from �2.5 �K to �12.5 �K with
the increasing of the detuning from 5.0 GHz to 9.0 GHz.
This is because with increasing of the laser detuning, the
energy loss per cooling cycle �which is determined by
U1-U2� will be reduced, that is, the IGC will be decreased. At
the same time, the corresponding spontaneous-emission heat-
ing will be also reduced, but the reduction of the cooling rate
is faster than decreasing of the heating one, and then the final
equilibrium temperature will be also increased with the in-
creasing of the detuning. �3� There is an efficient laser cool-
ing range �1.0 GHz�
 /2��5.0 GHz� and a minimum final

equilibrium temperature of �0.73 �K at 
 /2�=3.0 GHz,
which is consistent with the theoretically predicted result
�0.70 �K� estimated by Eq. �19� as the same detuning and
parameters are used. It is clear from the above results and
analysis that the final equilibrium temperature of an en-
semble of atoms will be determined by a difference between
the IGC and the spontaneous-emission heating and their rate
difference, which will strongly depend on the laser detuning

 /2�.

D. Dependence of the IGC on the standing-wave parameter �

We also study the dependence of the IGC of 87Rb atoms
in our GOT on the standing-wave parameter �, and the re-
sults are shown in Fig. 9. In which, Fig. 9�a� shows the time
evolution of the final rms momentum of cold atoms for
HMOT=3 mm, 
 /2�=3.0 GHz, and �=0.28, 0.2, 0.1, and
0.01. We can find from Fig. 9�a� that the final rms momen-
tum of atoms in our trap can be reached 2.45�k, 4.16�k,
5.77�k, and 10.85�k when �=0.28, 0.2, 0.1, and 0.01 re-
spectively, and the final rms momentum of atoms as well as

FIG. 8. �a� The evolution of the final rms momentum prms of
atoms with the laser cooling time from Monte Carlo simulations for
the different detuning, P1=1000 mW, �=0.28, and HMOT=3 mm;
�b� The final equilibrium temperature of an ensemble of atoms ver-
sus the detuning for P1=1000 mW, �=0.28, and HMOT=3 mm.
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the cooling time will be reduced with the increasing of the
standing-wave parameter �. This is because the intensity gra-
dient of our weak standing-wave hollow beam field will be
increased with the increasing of the parameter �. The corre-
sponding final equilibrium temperature versus the standing-
wave parameter � is shown in Fig. 9�b�. Although the final
equilibrium temperature will be decreased with the increas-
ing of the parameter �, and the minimum optical potential U2
at the nodes will be decreased, as shown in Fig. 5�b�, which
will reduce the trapping ability and result in more cold atoms
to be lost from our trap, and the dependence of relative
atomic loss on the parameter � is also shown in Fig. 9�b�.
Furthermore, we find from Fig. 9�b� that when the parameter
� is larger than 0.25, the final equilibrium temperature will
be decreased much slowly, but the relative atomic loss in our
GOT will be increased fast. So there is an optimal choosing
for the standing-wave parameter �, and our study shows that
the choosing range of the parameter � should be smaller than
0.28, and the corresponding atomic loss is smaller than 10%

Moreover, we also study the IGC of 87Rb atoms in a
single traveling-wave hollow-beam trap as �=0, and the
simulated result is shown in Fig. 9�a�. We find from Fig. 9�a�

that the rms momentum of cold atoms will be decreased
from 30�k to 21.01�k �53.3 �K� with the increasing of the
time from 0 s to 0.9 s at 
 /2�=3 GHz, and then increased
to 28.34�k at 3 s, and this result shows that the IGC effect of
atoms in a single traveling-wave hollow beam trap is far
lower than that in a weak standing-wave hollow beam one,
and the final rms momentum of cold atoms will be equal to
even larger than the initial rms momentum of cold atoms
from the MOT. This is because the axial intensity gradient of
the single traveling-wave hollow beam is zero, and the IGC
of atoms will only result in its radial intensity gradient.

V. CONCLUSIONS

We have proposed a unique GOT scheme to trap and cool
atoms simultaneously by using a weak standing-wave hollow
beam field and derived more exact and general quasianalytic
expressions on the optical potentials, instantaneous dipole
forces and spontaneous emission rates for a three-level
dressed-atom system. We have also studied the dynamic pro-
cesses of the IGC of atoms in our GOT by Monte Carlo
simulations, and investigated the dependence of the IGC on
both the laser detuning 
 /2� and the standing-wave param-
eter �. Our study found that �1� that the derived general
expressions on the optical potentials, instantaneous dipole
forces and spontaneous emission rates are valid for any laser
detuning �including a resonant frequency position of 
 /2�
=0� and the resulting maximum relative error is only �3%
as I�2.5�106 W/m2, which has been the most exact solu-
tions for a three-level atomic system so far, so they could be
safely used to study the interaction between a three-level
atom and a strong laser field with an arbitrary detuning so
long as I�2.5�106 W/m2.

�2� The IGC of atoms in our GOT is not only related to
the laser detuning 
 /2�, but also strongly depends on the
standing-wave parameter �, and there is an efficient and
wide laser cooling range �such as 1.0 GHz�
 /2�
�5.0 GHz� and an optimal detuning �such as 
 /2�
=3.0 GHz� and standing-wave parameter � �e.g., �=0.28�,
where an optimized final equilibrium temperature can be ob-
tained, which can provide some reliable theoretical basis for
further experimental study of the IGC of atoms in the weak
standing-wave hollow-beam GOT.

�3� The IGC of atoms in our GOT is very efficient, and
can be used to directly cool alkali-metal atoms from a
MOT’s temperature to one with a few photon recoils.
For example, an 87Rb atomic sample in our trap can
be directly cooled to an equilibrium temperature of
�0.73 �K ��2.45�k� from �120 �K by our IGC. To
our knowledge, this to date is the best cooling result
��0.73 �K� in two kinds of sub-Doppler cooling mecha-
nisms �i.e., the PGC and IGC�.

In addition, there is also the IGC of atoms in a traveling-
wave hollow beam trap since there is a weak radial intensity
gradient inside a single hollow beam, but its Sisyphus cool-
ing effect is far lower than one in our weak standing-wave
hollow beam trap.

Compared with other optical dipole traps or GOTs, our
proposed GOT has some unusual and unique advantages as

FIG. 9. �a� The evolution of the final rms momentum prms of
atoms with the laser cooling time for the different �, P1

=1000 mW, 
 /2�=3.0 GHz, and HMOT=3 mm; �b� The final equi-
librium temperature of an ensemble of atoms and the relative
atomic loss versus � for P1=1000 mW, 
 /2�=3.0 GHz, and
HMOT=3 mm.

ZHENGLING WANG AND JIANPING YIN PHYSICAL REVIEW A 74, 013408 �2006�

013408-10



follows: �1� It cannot only be used to trap cold atoms �or
cold molecules�, but also to efficiently cool neutral atoms to
about 0.73 �K from �120 �K �the MOT temperature� by
using the intensity-gradient induced Sisyphus cooling of our
GOT oneself; �2� It is more convenient and flexible to ma-

nipulate and control the motion of cold atoms in our trap,
even to control the cooling temperature and lose rate of at-
oms in the trap by changing the standing-wave parameter �;
�3� It is desirable and promising to realize the optical-
potential evaporative cooling of atoms in our GOT by reduc-
ing the intensities at the nodes of our standing-wave hollow
beam, and so on. Therefore, our GOT scheme cannot only be
used to study cold collisions between two atomic �molecular�
samples or between atomic and molecular samples, but also
to realize optical-potential evaporative cooling of an atomic
�molecular� gas �23� and sympathetic cooling between ultra-
cold atoms and cold molecules, even to prepare all-optical
two-dimensional �2D� BEC �24,25� or all-optical 2D quan-
tum Fermionic gases �26� by lowering the trapping laser
power �25� or by increasing the standing-wave parameter �
so as to let hotter atoms escape from a series of nodes, and to
generate all-optical quantum molecular gases �27–29� or re-
alize a toroidal optical dipole trap in 2D BEC �30� as well as
to study quantum atom statistics �31�, and so on.
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APPENDIX A: DERIVATION OF EXACT SOLUTIONS
OF EQ. (6)

To obtain the eigenenergies in the dressed-atom picture,
from Eq. �6�, we should solve the following equation:

�
�n + 1��L + 
hfs − EDr 0

�2

2

0 �n + 1��L − EDr
�1

2

�2

2

�1

2
n�L + �0 − EDr

�
= 0. �A1�

It is clear that the Eq. �A1� can be simplified as a standard
cubic equation with one unknown variable, and its general
solutions are given by

EDr1
0 = �n + 1���L −


 − 
hfs

3
+ �3 − q + i�− �q2 + p3�

+ �3 − q − i�− �q2 + p3� , �A2a�

EDr2
0 = �n + 1���L −


 − 
hfs

3
+ �3 − q + i�− �q2 + p3�

− 1 + i�3

2

+ �3 − q − i�− �q2 + p3�
− 1 − i�3

2
, �A2b�

FIG. 10. �a� Dependences of EDr1
0 − �n+1���L and EDr1− �n

+1���L on the laser intensity I for 
 /2�=0 GHz, 0.1 GHz, and
0.5 GHz; �b� Dependence of EDr2

0 − �n+1���L and EDr2− �n
+1���L on the intensity I for 
 /2�=0 GHz and 0.5 GHz; �c� De-
pendence of EDr3

0 − �n+1���L and EDr3− �n+1���L on the intensity
I for 
 /2�=0 GHz, 0.1 GHz, and 0.5 GHz.
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EDr3
0 = �n + 1���L −


 − 
hfs

3
+ �3 − q + i�− �q2 + p3�

− 1 − i�3

2

+ �3 − q − i�− �q2 + p3�
− 1 + i�3

2
, �A2c�

where

p = − 	
 − 
hfs

3

2

−
�1

2 + �2
2 + 4

hfs

3 � 4
, �A3a�

q = 	
 − 
hfs

3

3

+ �
 − 
hfs�
�1

2 + �2
2 + 4

hfs

3 � 8
+

�1
2
hfs

8
.

�A3b�

APPENDIX B: COMPARISON BETWEEN OUR ANALYTIC
SOLUTIONS AND EXACT ONES

Taking 87Rb atoms as an example, we compared our ana-
lytic solutions EDri in Eq. �7� with the exact solutions EDri

0 in
Eq. �A2�, here i=1,2 ,3. For a 87Rb atom, 
hfs /2�
=6.835 GHz, Isat=16 W/m2 m and � /2�=6.0 MHz. From
Eqs. �7� and �A2�, we obtain the dependence of EDri

0 − �n
+1���L and EDri− �n+1���L on the laser intensity I for dif-
ferent detuning, and the results are shown in Fig. 10. We can
find from Fig. 10 that the maximum relative errors between
EDr1− �n+1���L and EDr1

0 − �n+1���L are less than 2.4%,
2.6%, 3.0% as I�2.5�106 W/m2 and 
 /2�=0 GHz
0.1 GHz, 0.5 GHz, respectively �see Fig. 10�a��, while the
maximum relative errors between EDr2− �n+1���L and
EDr2

0 − �n+1���L are about 0.016% and 0.012% as I�2.5
�106 W/m2, 
 /2�=0 GHz and 0.5 GHz, respectively �see
Fig. 10�b��. Similarly, the maximum relative errors between
EDr3− �n+1���L and EDr3

0 − �n+1���L are less than 2.0%,
1.9%, and 1.3% as I�2.5�106 W/m2, 
 /2�=0 GHz

0.1 GHz, and 0.5 GHz, respectively �see Fig. 10�c��. We also
obtain the dependence of EDr1

0 − �n+1���L and EDr2
0 − �n

+1���L on the detuning 
 /2� as I=2.5�106 W/m2, and the
results are shown in Fig. 11. We analyze the dependence of
the relative errors between EDri− �n+1���L and EDri

0 − �n
+1���L on the detuning, and find that the maximum relative
error is about 3.0% as I=2.5�106 W/m2 for arbitrary de-
tuning 
 /2�. This shows that Eq. �7� can be used to more
exactly calculate the eigenenergies EDri of dressed eigen-
states �i ,n�, and the resulting maximum relative error is only
�3% for arbitrary detuning 
 /2� as I�2.5�106 W/m2. It
can be seen from the above analysis that some coefficients in
Eq. �7� are somewhat surprising, but Eq. �7� can be indeed
regarded as a general and more exact solution of Eq. �6� and
safely used to calculate the eigenenergies EDri and their op-
tical potentials �in fact, EDr1− �n+1���L is the optical poten-
tial of the dressed-eigenstates �1,n�� and eigenstates and so
on for arbitrary detuning and I�2.5�106 W/m2.
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