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We present a quantum-mechanical theory of xuv generation by an elliptically polarized intense laser field.
Our approach is valid when the Keldysh parameter y is about unity or less, and the driving ellipticity is less
than \27. After the photoionization the motion of the electronic wave packet along the major axis of the
driving field polarization ellipse is described quasiclassically, whereas the motion in the transverse direction is
considered fully quantum mechanically; we also find the condition that allows the reduction of the motion
description to a quantum orbit in the polarization plane of the laser field. We use the ionization rate calculated
via numerical solution of the three-dimensional Schrodinger equation (TDSE), and take into account the
Coulomb modification of the free electronic wave packet. The predictions of our theory for xuv emission agree
well with numerical and experimental results. We study the high harmonic intensities and phases as functions
of the driving intensity and ellipticity, and also the ellipticity and the rotation angle of the harmonic field
polarization ellipse as functions of the driving ellipticity. The atomic response is decomposed into the contri-
butions of different quantum paths. This allows finding a straightforward explanation for the observed

dependencies.
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I. INTRODUCTION

High-order harmonic generation (HHG) accompanying
photoionization of a gaseous medium by an intense laser
field is finding more and more applications. The high har-
monic radiation is used as a source for a time-resolved ultra-
violet or soft x-ray spectroscopy. Nanolithography and
nanoscopy are among the perspective applications. Besides,
HHG makes possible a unique method for generation of xuv
attosecond pulses (1 as=10"'%s), as it was first demon-
strated experimentally in Ref. [1].

The HHG spectrum has typically a region of dozens or
even hundreds of harmonics having comparable intensity
(“plateau”), followed with a sudden decrease of the harmonic
intensity (“cutoff”). A simple model of the phenomenon was
suggested by Corkum [2] and by Kulander er al. [3,4]: at
some time an electron is suddenly detached from the parent
ion due to ionization and finds itself in a continuum with
zero initial velocity; then it is accelerated with the laser field
away from the parent ion; however, at the next half cycle of
the laser field the electron is decelerated, driven back and,
depending on the time of detachment, it can return to the
parent ion and scatter off it [2]. The elastic scattering leads to
the above threshold ionization (ATI), while the xuv is emit-
ted due to the inelastic scattering. If the process occurs peri-
odically (with a certain probability) every half cycle of the
driving field, this xuv corresponds to the odd harmonics of
the laser. This simple model correctly predicts the cut-off
energy as a sum of the atomic ionization energy I and the
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maximal kinetic energy which the electron can get during its
free motion before scattering. Defining the latter energy from
the classical analysis of the electron motion one finds the
cut-off energy as /+3.17U where U =E%/ 4w% is the pondero-
motive energy (atomic units are used throughout the paper)
for the laser field of an amplitude E, and frequency w.
Moreover, the model also explains the decrease of the HHG
yield with the increase of the driving field ellipticity: the
returning electron misses the ion when the laser field is (even
slightly) elliptically polarized, and the emission is possible
only due to the quantum mechanical spreading of the elec-
tronic wave packet. This model is often referred to as
“simple-man model.”

The quantum-mechanical models (more precisely, those
where atom is described quantum mechanical whereas the
field is still described classically) of the process in Refs.
[5-8] were based on the strong-field approximation [9]. The
case of elliptically polarized laser field was considered in
Refs. [7,10,11]. This quantum-mechanical approach can be
linked to the simple-man model via the application of the
saddle point approximation to the integrals describing the
atomic response to the driving field: the solutions of the
equations for the saddle points (quantum paths) approxi-
mately correspond to the classical trajectories of the electron
in the simple-man model. For every harmonic there are sev-
eral contributions associated with different quantum paths
from the initial bound state to the final state. Such paths, in
analogy with classical orbits, are also called quantum orbits.
The role of these paths for the HHG and ATT was first dis-
cussed in the early theoretical studies by Lewenstein et al.
[6,12] and Becker et al. [7], and studied in details in Refs.
[13-15] (also see Ref. [16] for a recent review). Strictly
speaking, these quantum orbits are well defined in the tun-
neling limit which implies the following:

The laser field amplitude is much less than the atomic
field E,=(21)?
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E,< E,, (1)

The laser photon energy is much less than the ionization
energy

Wy <K I, (2)
The Keldysh parameter is much less than unity:
y<1, 3)

where the Keldysh parameter is
y=wy\21/E, = \I2U. (4)

The validity of the quantum orbits approach for realistic
laser parameters [which do not necessarily meet the require-
ment (3)] was investigated in the recent studies of Bauer er
al. [17,18] via comparison with the results of the direct nu-
merical TDSE solution.

Using the quantum orbits approach, Ivanov et al. [19] and
Platonenko [20] suggested the HHG theories in which the
atomic response amplitude was presented as a product of the
terms responsible for ionization, free electronic wave-packet
propagation, and the xuv emission. This decomposition al-
lowed taking into account, at least approximately, the Cou-
lomb corrections.

Note, that experimentally measured harmonic signal is de-
termined not only by the atomic response, but also by the
phase matching of the generation in the medium, propaga-
tion, and absorption of the xuv field. In this paper we con-
centrate on the single-atom properties of the xuv emission.

The HHG theory for the case of the elliptically polarized
field has found an important application for studying single
attopulse generation via polarization gating. This technique
[21] relies on the strong HHG sensitivity to the driving el-
lipticity; using a laser pulse with time-varying ellipticity en-
sures the xuv emission only inside the “polarization gate”
where the driving ellipticity is small. The signature of an
isolated attosecond pulse generation with this method was
demonstrated recently in Ref. [22] using a short laser pulse
with a stabilized carrier-envelope phase.

In this paper (Sec. IT) we present the theory of the xuv
emission with elliptically polarized laser field. In contrast to
other theories, we assume quasiclassical motion of the elec-
tron only in the direction of the major axis of the driving
field polarization ellipse, whereas the electronic motion in
the transverse direction is considered fully quantum me-
chanically. Such approach is motivated with the fact that the
transverse motion is slow, and the range of validity of its
quasiclassical description is, generally speaking, not evident
a priori. We derive equations describing the atomic response
for a limited (however, a sufficiently wide) range of driving
ellipticities, and find conditions under which the transverse
electronic motion can be considered quasiclassically as well.
Besides, we take into account the Coulomb attraction of the
wave packet right after the ionization (with a specific fitting
parameter) and the Coulomb modification of the returning
wave packet. Furthermore, we use the ionization rate calcu-
lated using direct numerical solution of the TDSE for a
model atomic potential to determine both the ground state
depletion and the population of the free wave packet.
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Our theory is validated in Sec. III by comparison with the
TDSE solution for linearly polarized driving field and also
with published experimental data for the case of elliptically
polarized field.

An important feature of our theory is that the contribu-
tions of the different quantum paths are separated within the
frame of the single-atom response. In Sec. IV we study the
properties of these contributions depending on the driving
field parameters and find a rather straightforward explanation
for some of these dependences within the quantum-orbit ap-
proach.

Finally, the results are discussed and an outline of the
further studies is presented in Sec. V, and conclusions are
made in Sec. VL.

II. THEORY

We consider an atom in a single-electron approximation
under the influence of the driving laser field; the instanta-
neous electric field strength and the vector potential are de-
noted as E(z) and A(z), respectively, the magnetic component
of the field is neglected. The field is either linearly polarized
along the x axis or elliptically polarized in the x-y plane and
the major axis of the polarization ellipse is directed along the
X axis.

The high-harmonic signal is determined by the second
derivative of the atomic dipole moment. According to the
Ehrenfest’s theorem it is equal to the quantum-mechanical
expectation value of the force acting on the electron

L IGES GR
\If> , (5)

where W denotes the time-dependent electronic wave func-
tion.
In the dipole approximation the first term in Eq. (5)

(V|E(D)|¥) = E(t)(¥|¥) =E(1)

@w®=—<wbﬂﬂ+%

evidently does not contain high-frequency oscillations. So
below we consider the second term
r

\If>. (6)

ﬂﬂ=—<W‘—
r
We present the wave function as a sum of the bound state
o(r,1) and the free state X(r,?)

3
W(r,1) = @(r,1) + X(r,1). (7)

Considering the bound state we take into account only the
ground state (this approximation is usual for the HHG and
ATT theories; its validity is discussed for instance in Refs.
[698’ 1 1 ])

@(r.1) = a(t)y(r)exp(ilt). (8)

Here a(r) is the time-dependent bound state amplitude

calculated as
' 12
a(t) = {exp(—f w(t')dt’)} ) 9)
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The ionization rate w(¢') is obtained via a direct numeri-
cal solution of the TDSE for a model atom as described in
the next section.

In further studies we consider only free-bound transitions
and neglect free-free transitions, as it was done in several
theories of HHG [5-7,20]. Then, substituting Eq. (7) into Eq.
(6) we have

r
r3

f(r)=- <go(r,t) )’Z(r,t)> +c.c. (10)

Evidently, the operator % is well localized near the
nucleus. This allows us further (following Platonenko [20])
substituting the total continuum wave function Y with its part
that is close to the nucleus at the current time . As it was
discussed in the Introduction, this part, generally speaking,
consists of several contributions (wave packets) associated
with different quantum paths (or quantum orbits) returning to
the origin at this time

X0 =2 x"(r,0). (11)

In the equations below the index m is omitted to shorten
the notations; we will make the summation over m in the
final equations.

Every wave packet x(r,7) is expanded as

X(r,0) = f d’pC(p.1) iy (r.1) (12)
over the states
Up(r.1) = exp[— iS(p.1) + il1, ]y (x). (13)
where
t 20,0
S(p,t):f ]%dt’ (14)

is the action calculated along the electron’s trajectory starting
at the origin at time #; with some initial momentum, and
finishing at x=0 (and, generally speaking, y#0, z#0) at
time ¢ with mechanical momentum p.

The term ilt; in the phase of the wave function given by
Eq. (13) provides the same phase of the bound and the free
state at the instant of ionization ¢;.

In Eq. (13) l/lg(l') is the continuum Coulomb state having
momentum p before scattering by the Coulomb potential.
This state is written as (see Ref. [23])

1

zﬁg(r) = exp(%)f‘(l - I—))exp(z’pz’)F({%, Lip(p' - z')),
(15)
3

where z’=’;—r, p' =\r’—z'? are coordinates of point r in a
cylindrical coordinate system whose axis is directed along
vector p; F is a confluent hypergeometric function and T is
gamma function.

Note that if a plane wave
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" (r) = exp(ip - 1) (16)

is used instead of the continuum Coulomb states (15) then
Eqgs. (12)—(14) present a standard expansion over the Volkov
states. Later we will discuss the importance of using the
continuum Coulomb states instead of the plane wave in this
expansion.

Using the continuum Coulomb states (15) in Egs. (12) and
(13) can be explained as follows. The electron returns to the
vicinity of the nucleus with momentum p and then it is scat-
tered by the Coulomb potential, but the electron’s accelera-
tion by the laser field during the collision time is small. Note
that the latter is true at least for the harmonics in the upper
part of the plateau because they are generated by wave pack-
ets returning to the origin when the instantaneous driving
field is close to zero, so the field does not accelerate them.
Thus, we are using the expansion over the Coulomb-Volkov
states in the form close to those suggested in Refs. [24,25].

Substituting Egs. (8), (12), and (13) into Eq. (10) we have

f(f)=—fdspa(f)C(PJ)<<Po(V) % tﬁg(r)>
Xexp[—iS(p,t) —il7] +c.c., (17)
where
T=1—-1 (18)

is the time interval between the electron’s detachment and
return (travel time).

Consider the matrix element {,(r) ‘ r% ‘ t//g (r)) appearing
in Eq. (17). This matrix element is a vector, and because of
the spherical symmetry of the ground state wave function the
direction of the vector is determined by the direction of the
momentum p of the free-state wave function. Due to the
symmetry considerations (see Ref. [19] for more details) this
matrix element can be presented as a product of the vector p
and a scalar that depends only on the absolute value of the
momentum

<<p0<r> 5

Assuming that ¢y(r) is the 1s hydrogen state we calculate
the matrix element M“(p) numerically and then use its tabu-
lated values. The matrix element as a function of p is shown
in Fig. 1. We will discuss its behavior at the end of this
section.

The important assumption of our approach is that the free
motion of the electron along the x axis is considered quasi-
classically. Another way of putting it is that we suppose that
the motion in the x direction can be described in terms of
quantum orbits. This assumption stems from the fact that the
electron is strongly accelerated with the laser field in this
direction because it is the direction of the main axis of the
polarization ellipse; however, we do not assume that the mo-
tion in other directions is quasiclassical. As we discussed in
the Introduction, the quasiclassic approach is valid in the
tunneling limit; it is less applicable in the intermediate region
between tunneling and multiphoton ionization regimes. In
the next section we will compare the predictions of our

¢g<r>> =pM°(p). (19)
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FIG. 1. Comparison of the matrix elements M (p) and MP'@"¢(p)
given by Egs. (19) and (45), respectively. Graphs (a) and (b) show
the absolute values and phases of the matrix elements. One can see
that for the momentum values less than an atomic unit the role of
the Coulomb attraction is non-negligible.

theory with the direct numerical results and discuss the va-
lidity of our approach for this region.

Thus, assuming that the electronic motion in the x direc-
tion is quasiclassic we consider in Eq. (17) only the value of
the momentum p, corresponding to the classical motion with
zero initial momentum

_ 1 1
px(t) = _Ax(t) - _Ax(t[) 5 (20)
c c
so the momentum distribution in Eq. (17) is rewritten as

C(PJ) = b(t’px) 5(px - ﬁx)ci(py’pz) . (21)
Substituting Egs. (19), (21) in Eq. (17) we obtain

£(1)= - f dp,dp.a(1b(t.5,)C 1 (p,.p )M (p)

Xexp[—iS(p,t) —il7] +c.c. (22)

It is convenient to substitute in Eq. (22) the integration
variable p, with the following one:
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Apyzpy_ﬁy’ (23)

where

P = A0~ <A 1) ()

is the y projection of the momentum of the classical electron
with zero initial momentum. Thus, Ap, is the initial momen-
tum of the electron which returns to the origin having mo-
mentum p,.

The distribution C, (p,.p,) over the transverse momenta
for the case of

Api +p§ <2l (25)

was approximately found in Refs. [26,27]. In our notations it
is written as

h Ap? +p?
X —exp<— Py p“>, (26)

C.(py.p) =

/
p N

where Ap | is the uncertainty of the transverse momentum of
the electron after ionization. The value of this uncertainty
was found analytically in Ref. [28]

|E(1))]
\% '

Apl = (27)

Note that having in mind the approximate character of Eq.
(27), we verified these results via the numerical TDSE solu-
tion (described in the next section). Namely, we studied the
transverse spreading of the ionized wave-packet far from the
origin and found that Eq. (27) describes this spreading very
well.

The action S in Eq. (22) is given by Eq. (14). Using Egs.
(20) and (23) it is rewritten as

Ap? +p? _
S=M+Apy)7+5', (28)

where

y= f py(that’, (29)

i

t =201 =201
§:J Mdl'. (30)

,- 2
The values 7, S can be understood as follows: ¥ is the y
displacement at the instant of return to x=0 of the electron
started with zero initial momentum, and S is the action cal-
culated along its trajectory.
Finally, factor b(¢,p,) in Eq. (22) can be found as it was
done by Platonenko (see Egs. (8), (14) in Ref. [20]). In our
notations
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bt.5) =ar) |0 G1)
py Ot
where w(z;) is the ionization rate at the time of ionization,
a(t;) is the ground state amplitude [given by Eq. (9)] at this
time.

Now, using Egs. (23)—(31) we perform the integration in
Eq. (22). The only approximation used here is that the matrix
element M€(p) is taken in stationary point of the integrand’s
phase; however, the matrix element M(p) is a slow-varying
function (as can be seen from Fig. 1), so this approximation
is well founded. After this the integration is performed ex-
actly, without using the stationary phase method. Finally we
obtain

=2 {f.f,.0}. (32)
—\2
fl) = 2mpw(t)— a(t)a(t)MC[\/ §+(ﬁy—z) 1
_ iv?
AplneXp[_iS_ilT+ 2))—7]] +c.c., (33)

_ Jy W)y
K=y at{py_n}

N\ 2 .
2
Xa(t)a(t)Mc{\/px (p —X> ] l
7/ 1Ap.m
_ iy?
Xexp| —iS—ilt+— | +c.c., (34)
27y
where
2
n=T7—1I . (35)
Ap

Equations (32)—(34) are the desired equations describing
the single atom response as a function of time. Thus to cal-
culate this response at a certain time ¢ one should:

(i) Find all the ionization instants #" leading to return at
time 7; here we again [as in Eq. (11)] use the index m to
number the ionization instants and the corresponding quan-
tum paths which the electron could have followed to return
at time ¢ (note that the electron energies at the return time
can differ for the different quantum paths). These ionization
instants can be conveniently found with a graphical method
suggested by Paulus er al. [29].

(ii) Calculate S™, Py, Py, y", ot/ ot for the mth quantum
path.

(iii) Calculate f'(z), f;'(r) with Eqgs. (33), (34).

(iv) Summarize the contributions from different quantum
paths [Eq. (32)].

Using the atomic response as a function of time one can
calculate numerically the single atom spectrum as described
in the end of this section.

Now let us discuss some features of the single-atom re-
sponse given by Egs. (33) and (34).
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The factor a(t;)a(t) in Egs. (33) and (34) shows that xuv
occurs if there is some ground state population at the time of
ionization, and also at the time of return. In Ref. [30] we
discuss this requirement in detail and confirm this conclusion
by numerical results. Note that there is no such requirement
in HHG theories suggested in Refs. [6,7], because they con-
sider slow variation of the ground state population, thus the
difference in populations at the instants of ionization and
return is supposed to be negligible.

Equations (33) and (34) can be simplified when

7> 2/IAp° . (36)

Introducing the transverse size of the wave packet at the time
of return

p2=4/A172L +Ap2l7'2, (37)

we see that inequality (36) means that the travel time is long
enough, so that due to the wave packet spreading its trans-
verse size is much larger than the initial transverse size. If
the condition (36) is satisfied, then Egs. (33) and (34) can be
rewritten as
} 2i
p

£ = A 2mpan(r) 2 a(r)a(r)M{\/px (,,) . )

)72
Xexp| = iSquasict. — HT— 5 | +c.C., (38)

(t)o;| _  y
=5 7]

—\2
Xa(zi)a(z)Mcl \/Pr+ (ﬁy - X)

)
Xexp[— iS quasi-ct. = U T— y—z] +c.c., (39)
p

where

—\2
) + (ﬁy(t') - {)

S juasi-cl. = dr’ 40
quasi—cl. .ft 2 ( )

is the action calculated along the trajectory starting with the
initial y momentum Ap,=-y/ 7 and therefore returning to the
origin. Thus under the condition (36) the electronic motion
can be reduced to the quantum orbit lying in the x-y plane,
i.e., motion both in x and y directions can be considered
quasi-classically. Note also that the factors 1/p and
exp[——] in Egs. (38) and (39) describe the decrease of the
xuv emission due to the wave packet spreading and its y drift
in the elliptically polarized field, respectively.
Using Eq. (27), the inequality (36) can be rewritten as

(41)

This inequality is satisfied in the tunneling limit. Thus Egs.
(38)—(40) can be used, for instance, to describe xuv genera-
tion with several micron driving wavelength, studied re-

013405-5



V. V. STRELKOV

cently in Refs. [31-33]. However, for more typical driving
field parameters (the Ti:Sapp laser wavelength and the inten-
sity of units of 10'* W/cm?) the inequality (41) is hardly
valid for the shortest quantum path. In the latter case the
validity of the quasiclassical description for the motion in y
direction is questionable, and Egs. (33) and (34) should
rather be used.

Now we will discuss the highest driving ellipticity that
leaves our approach still applicable. The key limitation for
the ellipticity follows from using the distribution (26) over
the transverse momenta, which is valid if the inequality (25)
is satisfied. As can be seen from Egs. (1) and (27), this in-
equality is satisfied for the bulk of the wave packet; for the
high momenta [where the inequality (25) is not satisfied] the
wave function amplitude is very low (the distribution valid
for such transverse momenta can be found in Refs.
[26,27,34]). If the main contribution to the integral (22)
comes from these momenta, then xuv emission is weak.
Thus, our approach is valid up to ellipticities for which the
generation is sufficiently suppressed, i.e., up to ellipticities
essentially exceeding the threshold ellipticity &, (g, is the
driving ellipticity that causes a decrease by a factor of 2 in
harmonic intensity compared to the case of linear driving
polarization.)

The typical energy of the transverse electronic motion is
about £2U, so the requirement (25) can be rewritten as

s2U<I. (42)
Using the Keldysh parameter given by Eq. (4) we obtain the
desired validity range

e < \J'Ey. (43)

Finally, let us discuss the role of the Coulomb attraction.
Let us substitute a plane wave (16) instead of the continuum
Coulomb function (15) into Eq. (13). Then instead of the
matrix element (19) we have the matrix element

r

<¢0(r) r3

For ¢y(r) equal to 1s hydrogen state this matrix element
can be calculated analytically

lr//;lane(r)> — pMplane(p). (44)

MPie(p) = 4;;71'[]) —arctan(p)]. (45)

The matrix elements M?'“**(p) and M(p) are compared
in Fig. 1. One can see that they are close to each other for
high values of the momentum, and differ much for the mo-
menta less than unity. Thus the role of the Coulomb modifi-
cation of the returning wave packet is essential for the har-
monics with photon energy about two ionization energies
and less.

In the next sections we study intensities and phases of the
spectral components of x and yprojections of the atomic re-
sponse. The spectrum of the single-atom response is found as
follows. We divide the time interval where the atomic re-
sponse is nonzero (usually this time interval coincides with
the one where the laser pulse envelope is nonzero) into short
time steps; the step duration is chosen to be much less than
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the period of the highest-frequency xuv that can be emitted
(the latter can be estimated using the I+3U law). The atomic
response as a function of time is found at this temporal grid
using Egs. (32)—(34). Then we calculate the spectrum, mak-
ing numerically the integration

1
feylo)=—— f fry(Dexpliot)dt, (46)
a

over the time interval where the atomic response is nonzero.

Note, that in our approach it is not supposed that the laser
pulse is quasimonochromatic [we used directly the electric
field strength E(7) and the vector potential A(r) as functions
of time]. This allows, in particular, studying the xuv genera-
tion with short, even few-cycle, laser pulses. Moreover, our
approach is applicable when the x and y components of the
laser field vary with time in different ways, leading to the
field with time-varying ellipticity.

The intensity of the xuv attosecond pulse is calculated as
Q

up

Sfi(w)exp(—iowt)dw
Qlow

Q

up

fy(w)exp(-iwt)dw
‘Qlow

2
Jxup(t) =

2

+ , (47)

where (), and (), are the lower and the upper edge of the
frequency range used to obtain the attopulses.

III. NUMERICAL TDSE SOLUTION

To find the fitting parameters for our theoretical approach
and to test it we solve numerically the TDSE for a single-
electron atom with a model potential reproducing Ar atom.
Our approach for the TDSE solution is presented in Ref. [30]
and the model atomic potential is described in Ref. [35].

Using the numerical solution of the TDSE we find the
ionization rate for the atom in a (quasi-) static electric field
as a function of the field strength. This is done with a method
used by Bauer and Mulser [36]. Note that the found ioniza-
tion rates are very close to those we used in Refs. [37-40].
The latter were calculated via another approach: the TDSE
was solved numerically with a B-spline method described in
Ref. [41] for a model argon potential suggested by Muller
[42].

Then we calculate the ionization rate at time #; as the
static-field ionization rate for the field strength at a slightly
earlier time

w(t) =w{|E(t; - )|} (48)

The retardation time & describes roughly the noninstanta-
neity of the ionization and attraction of the ionized electron
to the parent ion after the ionization. The value of Jis chosen
to reach better agreement of the numerical and theoretical
results on the xuv generation with laser field. The best fit was
achieved for 6=1 atomic unit; this value is used in all the
calculations below.

Note that the static-field ionization rate was used in HHG
theories [19,20]. However, in both papers analytical equa-
tions for ionization rate were utilized. This is less accurate
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than using the tabulated ionization rate suggested in this pa-
per (the study of accuracy of different analytical equations
for ionization of hydrogen can be found in Ref. [36]). Using
the retardation in the instantaneous ionization rate calcula-
tion was suggested by Platonenko [20].

Using the numerical TDSE solution in a static electric
field we also verified the result (27) studying the transverse
spreading of the ionized wave-packet far from the origin. We
found very good agreement between predictions of Eq. (27)
and the numerical results.

Below we compare theoretical and numerical results on
the xuv generation by laser field. We use the driving field in
the following form:

r
Aosinz( ) R
2 7Tfr()m

_ Ao,
YROER

0 A sin2( W(t - [ZTfmm: + Tt{)p])

0 2 Tfmnt
\ 0,

Note that the field given by Eqgs. (51) and (52) satisfies the
condition

f E, (1)dt=0. (53)

This condition means the absence of a static component
of the field and thus should be satisfied for any laser field
(see [43] and references therein).

Using the amplitude of the vector potential A, and the
laser frequency w, we define the amplitude of the electric
field Eq=wyAo/c, the laser peak intensity J =CES/ 8, the
ponderomotive energy U =E(2)/ 4w(2) and the laser cycle dura-
tion T=2/ wy.

Much effort has been put recently into the studies of at-
topulse generation using a group of high harmonics (see, for
example [1,22,44-46]). This leads to a conclusion that the
correct prediction of the properties of xuv emission on the
attosecond scale is very important. So comparing our theory
with the numerical results we focus on attopulse generation.
The attosecond pulses are calculated by Eq. (47) utilizing
theoretical and numerical spectrum. We use the laser pulse
described by Eqs. (49)—~(52) with 7,,,,=7,,,=T linearly po-
larized in the x direction with ¢=0. Evidently, only x pro-
jection of the atomic response is nonzero. The theoretical
results are obtained taking into account only two quantum
paths corresponding to the travel time 7 less than one funda-
mental cycle (these quantum paths were numbered 1, 2 in
Refs. [14,47]). Following Refs. [37-39] we denote the con-
tributions to the harmonic from the shorter and the longer
paths as SP and LP, respectively. The contributions of quan-

)
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A1) = Ag(n)sin(wyt + @), (49)
A1) = eAy(t)cos(wyt + ), (50)
1
E,,=——-dA,,Jdi. (51)
yIT0 :

Here go(t) is the envelope of the vector potential, € is the
laser field ellipticity, ¢ is the carrier-envelope phase. We use
the “flat-top” envelope which rises during time interval 75,
then it is constant during time interval 7,,,, and finally it falls
during time interval 75,

0<r= 7-fmnt
Tfront <t= Tfront + Ttop (52)

7-frunr + Trop <t= 2Tfront + Ttop

otherwise.

tum paths with 7>T are lower because of the spreading of
the electron wave-packet in the transverse direction [6];
moreover, for such short laser pulse these contributions are
negligible. The results for different peak driving intensities
are shown in Figs. 2 and 3. Two attopulses are emitted per
the fundamental half cycle when the used harmonic group is
within the plateau. These attopulses can be attributed to the
contributions of the shorter and longer quantum path [47,48].
In Fig. 2 one can see, in particular, that our theory correctly
predicts the ratio of these contributions. The duration of the
attopulses and the time of the emission also agree with the
numerical results.

Thus, from Fig. 2 one can conclude that there is a good
quantitative agreement between the theory and numerical
calculation for the Ti:Sapphire laser driving field with inten-
sity of several units of 10'* W/cm? (y=1). This agreement
proves the applicability of the approximations used in our
theory under these (rather typical for HHG) conditions.

Unfortunately, numerical solution of the TDSE for
elliptically-polarized laser field requires much more labori-
ous computations than those for the linearly-polarized field.
So the comparison of the theory with the direct numerical
results for the nonzero ellipticity is currently unavailable for
us.

IV. RESULTS

In this section we present some results of calculations of
high harmonic properties using our theory. However, the de-
tailed study of the harmonic generation and attopulse emis-
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FIG. 2. The xuv intensities calculated with Eq. (47) using the spectra obtained theoretically (dashed line) and numerically via the TDSE
solution (solid line) for a model Argon potential. The frequency range used in Eq. (47) is from €;,,=50 eV (approximately 32% w) to

Q

up

=75 eV (approximately 487 w,), the ionization energy is I=15.75 eV (Argon), the driving pulse is linearly polarized, the wave length is

0.8 wm, the peak intensities are shown in the graphs; they correspond to the formal cut-off g, =(I+3.17U)/ f w, at approx. 53rd (a), 47th
(b), 41st (c), and 35th (d) harmonic. The theoretical and numerical xuv intensities for all the four graphs are normalized using the intensity
of the first peak in the graph (c). A good agreement of the theory with the numerical results for different driving intensities can be seen.

sion with our theory is far above the scope of this paper. So,
we restrict ourselves here with relatively low driving field
ellipticities; the case of such ellipticities is of practical im-
portance because the harmonic signal rapidly decreases with
the driving ellipticity. We discuss here only the contributions
of the quantum paths with the travel time less than one fun-
damental cycle. For the low driving ellipticities these contri-
butions are more important than those corresponding to
times of flight exceeding fundamental cycle (however, this is
not the case for higher driving ellipticities [49]). Moreover,
we consider here only the laser field whose ellipticity is con-
stant in time. Note that, as we have already mentioned in the
end of Sec. II, our approach allows studying the case of
time-varying ellipticity as well; in Refs. [22,37-40] we ap-
plied the theory to study single attopulse generation via el-
lipticity gating.

To study harmonic properties we use the fundamental
pulse with 75,,,=T and 7,,=107. Using such long flat-top
pulse makes interpretation of the theoretical results easier. In
particular, the harmonic lines are very sharp because there is
almost no broadening of the lines due to the dependence of

the harmonic phase on the fundamental intensity. Absence of
the broadening makes definition of the calculated harmonic
phase easier.

In Figs. 4 and 5 we show intensities and phases of the
17th and 21st harmonics as functions of the laser peak inten-
sity. The results for the contribution of the shorter and longer
trajectories are presented separately. One can see in the Figs.
4(a) and 5(a) (as well as in Fig. 3) that the contributions of
the two quantum paths, in general, are comparable. This con-
clusion agrees with the results of the numerical calculations
[20,50-52]. Thus our theory predicts more realistic ampli-
tudes of the quantum path contributions than the Lewen-
stein’s theory [6], which (as it was stressed by Gaarde and
Schafer [52]) often overestimates the contribution of the
longer quantum path.

One can see that the intensities of the two contributions
for the 21st harmonic are closer to each other than those for
the 17th harmonic. This is natural because the 21st harmonic
is closer to the cutoff where the both contributions merge
with each other. Also in the Figs. 4(a) and 5(a) we can see
that the harmonic signal stops growing with the intensity and
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FIG. 3. (Color online). The same as Fig. 2, but the contributions
from the two quantum paths corresponding to the travel time less
than one fundamental cycle are given separately: the dot-dot-dashed
(red online) line shows the contribution from the shorter path (SP)
and the dot-dashed (blue online) line shows the contribution from
the longer one (LP). Two attopulses per one fundamental half cycle
are predicted by the numerical simulation, which can be attributed
to the two quantum path. When the harmonic group is totally within
the plateau [graph (a)] the attopulses are well separated, whereas
they partly superimpose and interfere when the harmonic group
includes the cut-off region [graphs (b), (c)]. Finally, the two contri-
butions can not be separated if the group is totally in the cut-off
region [see Fig. 2(d)].

then decreases. This feature was studied numerically in de-
tails in our recent paper [30].

When the harmonics are within the plateau region the
phases of both contributions depend almost linearly on the
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FIG. 4. The 17th harmonic intensity (a) and phase (b) as a
function of the driving intensity. The contributions of the shorter
and the longer quantum paths are shown with solid and dashed
lines, respectively. The driving radiation is linearly polarized; its
wavelength is 0.8 um for both curves in graph (a), 0.8 um, and
1.06 um (see legend) for graph (b).

driving intensity [see Figs. 4(b) and 5(b)], in agreement with
the numerical results presented in Refs. [50,51]. The behav-
ior of the phases of the contributions is very similar for the
21st and the 17th harmonic. For the lower driving frequency
the phase dependence on the driving intensity is stronger.
Namely, the slopes of the lines in Figs. 4(b) and 5(b) are
proportional to 1/w3.

In our earlier publication [37] we have shown that our
theory reproduces quite well the decrease of the 21st har-
monic intensity with the driving ellipticity increase measured
experimentally in Refs. [53,54]. In Fig. 6 we show the cal-
culated threshold ellipticities for different harmonics and
compare them with the recent experimental results [22]. The
theoretical results are shown separately for the shorter and
the longer path component. A reasonable agreement is found
for all harmonics. However, experimentally the threshold el-
lipticity is lower. The discrepancy can be explained as fol-
lows: the theoretical results are presented for the single atom
response whereas experimentally the medium response is
measured. The phase matching of the HHG in the medium
depends, in particular, on the harmonic phase variation with
the laser intensity. The slope of this variation depends on the
laser ellipticity. The change of the slope can deteriorate
phase matching for large ellipticities [10], so the medium
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FIG. 5. The same as in Fig. 4, for the 21st harmonic.

response can decrease faster with ellipticity than the single
atom response does. The other probable reason is that in our
calculations we consider summarized intensities of x and y
component of the harmonic field, whereas experimentally the
measurement efficiency can be different for the two compo-
nents. We can see that the threshold ellipticities for the
shorter and the longer quantum paths are close to each other.
The reason is that the greater transverse size of the wave
packet having the longer travel time compensates for the
higher y displacement for the longer quantum path [37]. Usu-
ally the threshold ellipticity for the shorter path is slightly
lower.

In Fig. 7 we show harmonic x and y components intensi-
ties and phases as functions of the driving ellipticity squared.
We can see that the dependence of the x component’s inten-
sity on the driving ellipticity is almost Gaussian, and the
harmonic phases depend almost linearly on the square of the
ellipticity. Calculating these dependences for other harmon-
ics we find that this dependence is very typical. The devia-
tion from this law for the phases is found only for harmonics
whose y component passes through zero for nonzero driving
ellipticities: near these ellipticities the phase is a non-linear
function of the driving ellipticity squared.

The linear dependence of the phase of the gth harmonic
on the driving intensity in the plateau region, and on the
square of the driving ellipticity can be presented as
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FIG. 6. Threshold ellipticity (i.e., the driving ellipticity for
which the harmonic signal is twice as low as that for the linearly-
polarized driving field) measured experimentally in Ref. [22] and
calculated theoretically. The theory predicts correctly the tendency,
but the absolute values somewhat differ. The possible explanations
are discussed in the text.

SP,LP;x,y

Y .y
> ~ _ (aSP,LP + ,LLSP’LPSZ) + 5SP,LP,X,) , (54)

q q ﬁw() q

where the terms 6;10 LPxy describe the dephasing of different
harmonics. For the lower plateau harmonics a**~27 (in
agreement with the results of Ref. [14]), a’” < a'*. The co-
efficients « depend smoothly on the harmonic number, and
the driving ellipticity and frequency. In contrast, the coeffi-
cients u are pretty sensitive to these parameters. Note that a
similar equation was obtained in Ref. [37]; however, in that
paper we considered only single driving frequency and thus
did not discuss the behavior of the phase for different driving
frequencies.

Finally, in Fig. 8 we show the harmonic ellipticity and the
angle of rotation (also called offset angle) of the major axis
of the harmonic polarization ellipse, both as functions of the
driving ellipticity. These parameters are calculated using in-
tensities and phases of the x and y components of the har-
monic field utilizing the Stokes parameters as described in
[55]; the application of the method for harmonic fields is
presented in [10]. The positive harmonic ellipticity means
that the harmonic electric field vector turns in the same di-
rection as that of the driving field. The positive rotation angle
corresponds to the rotation of the axes of the harmonic po-
larization ellipse in the direction in which the driving electric
field vector turns; the rotation angle is measured with respect
to the x axis. We can see that the behavior of the harmonic
ellipticity can be nonmonotonous. However, separation of
the shorter and the longer path contributions makes this be-
havior more straightforward: the dependence of the total
(i.e., including all quantum paths) single atom response on
the driving ellipticity calculated in Refs. [10,11] is much
more complicated because it is strongly affected by the in-
terference of the contributions from different quantum paths.

The behavior of the harmonic ellipticity for the neighbor
harmonics can be qualitatively different: in Fig. 8(a) we can
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FIG. 7. Intensities (a) and phases (b), (c) of the components of
the 21st harmonic as functions of the driving ellipticity squared.
The contributions of the shorter and the longer quantum paths are
shown with solid and dashed lines, respectively; lines with symbols
show the y-component, and the lines without them show
the x-component of the harmonic. The driving intensity is
2X 10'"* W/em?. An approximately linear dependence of the phase
of each component on the square of the driving ellipticity can be
seen.

see that the ellipticity of the 21st harmonic is always posi-
tive, whereas the ellipticity of the LP component of the 19th
harmonic for high driving ellipticities is negative. In con-
trast, the rotation angle depends on the driving ellipticity
almost linearly for both harmonics. The behavior presented
in Fig. 8(b) is typical: the SP harmonic rotation angle is
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FIG. 8. Harmonic ellipticity (a) and rotation angle of the polar-
ization ellipse (b) for the 19th (lines with symbols) and 21st (lines
without symbols) harmonics as functions of the driving ellipticity.
One can see that the behaviors of the ellipticity for the neighbor
harmonics are essentially different, whereas the behaviors of the
rotation angles are close. Rotation angles depend approximately
linearly on the driving ellipticity and have different signs for the
contributions of the shorter and the longer quantum paths.

negative, the LP one is positive. This can be explained con-
sidering the geometry of the trajectories of the electron gen-
erating the harmonic (Fig. 9). For the LP component the
quasiclassical trajectory starts in the origin and comes back
to the origin; the major axis of the harmonic polarization
ellipse is approximately collinear with the velocity of the
returning electron and thus it is rotated in the positive (clock-
wise) direction. For the SP component a family of trajecto-
ries [corresponding to various y projections of the initial ve-
locity, see discussion after Egs. (38)—(40)] should be taken
into account; however, all of these trajectories provide nega-
tive y projection of the final velocity and thus the rotation
angle is negative. These considerations also explain the lin-
ear dependence of the rotation angle on the driving elliptic-
ity: the total picture scales in the y direction with the y pro-
jection of the driving field which is approximately
proportional to the ellipticity (for the small ellipticities con-
sidered here). The linear dependence of the rotation angle on
the driving ellipticity in Fig. 8(b) is especially obvious for
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harmonic field driving field

SP

LP

FIG. 9. Qualitative explanation of the behavior of the harmonic
rotation angle. The driving field is elliptically polarized and the
turning direction of the driving electric field vector is shown with
an arrow and denoted below as the positive direction. Dotted curves
show classical trajectories of the electron corresponding to the gen-
eration of the SP and the LP components of a harmonic. Orienta-
tions of the harmonic polarization ellipse are also presented. The
orientation is controlled by the direction of the velocity of the re-
turning electron: the major axis is approximately collinear with it.
Thus the ellipse is rotated in the positive direction for the LP com-
ponent and in the negative direction for the SP component. The
whole picture approximately scales in y direction with the driving
ellipticity, providing the linear dependence of the rotation angle on
it. See text for detailed discussion.

the LP component. Some deviation from the linear law for
the SP component originates from the poor applicability of
the quasiclassical consideration of the motion in the y direc-
tion for this component discussed above.

The slope of the rotation angle as a function of the driving
ellipticity in Fig. 8(b) is smaller for the higher harmonic. For
the cut-off harmonics we find rotation angles close to zero.
Thus our results are much more close to the predictions of
the effective-dipole model, than those of the zero-range
model (see Ref. [11] and references therein; in particular, the
rotation angles predicted by the two models are compared in
Fig. 6(b) in [11]).

The linear dependence of the rotation angle on the driving
ellipticity was shown experimentally by Weihe et al. [56,57].
However, a detailed comparison of the theoretically pre-
dicted properties of the harmonic polarization with an ex-
periment must include propagation calculation: as we have
shown above the polarization properties of the single atom
response for the SP and LP contributions are essentially dif-
ferent, and their impact on the experimentally measured me-
dium response depend on the propagation features. For the
theory suggested in [10] such comparison was done in [58].
The medium response calculation using our theory was done
in [22,37-40] with the method described in [59], however,
without focusing on the polarization properties. Studying the
polarization properties of the medium response will be the
subject of our future work.

V. DISCUSSION

In this section we discuss some features of the theory and
the above presented results.

PHYSICAL REVIEW A 74, 013405 (2006)

As we have already noted, the dependence of the har-
monic phase on the driving intensity is very sensitive to the
driving frequency [the slope of the dependence is inversely
proportional to the frequency cube, see Figs. 4(b) and 5(b)
and Eq. (50)]. So this dependence should be especially im-
portant for the HHG with several micron driving field
[31-33]. In particular, in such experiments this dependence
can have a dramatic effect on the HHG phase matching and
cause an essential broadening of the harmonic line.

In the previous section we stressed that the behavior of
the SP and LP contributions taken separately is more
straightforward than that of the total harmonic response.
There is another (more technical, however, practically impor-
tant) advantage of this separation. The total harmonic re-
sponse oscillates rapidly as a function of the driving field
parameters due to the interference of the SP and LP contri-
butions. Therefore calculating the medium response using
the total single-atom harmonic response implies numerical
integration of rapidly oscillating functions. This requires
more computations than the separate integration of the two
contributions does because both contributions are smooth
functions of the driving field parameters. Moreover, for the
case of the linearly polarized Gaussian driving beam separat-
ing the contributions allows approximate analytical study of
the HHG phase matching in the medium [60].

In this paper we present the results calculated for Argon
atom. Evidently, our approach is applicable for other atoms
as well. In this case one should use the ionization potential /
of the desired atom and the corresponding ionization rate
w(E) (calculated numerically using a model potential, or ana-
lytically, e.g., using results of Ref. [61]). Besides, we used
the nonperturbed ground state wave function given by Eq.
(8) as a bound state in our theory. A further development of
the theory can include the ground state modification by the
laser field, for example, taking into account the Stark shift of
the ground state energy as it was done in Ref. [19]. More-
over, an excited ground state can be considered to investigate
HHG with a preexcited atom, which was recently done with
numerical simulation in Ref. [62].

In our approach we neglect the magnetic component of
the field. However the action of this component can be taken
into account via modification of the electronic trajectory and
the wave packet phase due to the Lorentz force.

VI. CONCLUSIONS

We present the HHG theory based on strong field approxi-
mation and quasiclassical description of the free electron
motion along the major axis of the driving field polarization
ellipse.

The distinct features of the developed theory are follow-
ing. The electron motion in the transverse (to the major axis)
plane is considered quantum mechanically. We find a condi-
tion under which the latter motion can also be described
quasiclassically, thus the free electron motion can be reduced
to a quantum orbit in the polarization plane of the driving
field. The ionization rate calculated numerically via TDSE
solution for the model atomic potential is used. We take into
account the Coulomb attraction of the wave packet after the
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ionization (with the parameter & that is optimized to fit the
numerical results), and the Coulomb modification of the re-
turning wave packet.

These features allowed us to achieve a good agreement of
the theoretical results with the numerical TDSE solution for
linearly-polarized driving laser pulses of various intensities.
In particular, our theory predicts correctly the ratio of the two
quantum path contributions. For the case of elliptically-
polarized field the predictions of our theory agree with the
experimentally measured threshold ellipticities for different
harmonics.

Being based on the quasiclassical description of the elec-
tronic motion (at least in one direction), our approach is,
strictly speaking, applicable in the tunneling limit. However,
the comparison with the numerical results shows that the
theory is valid even for the Keldysh parameter y~ 1. Our
theory is applicable if the driving ellipticity is not too high,
namely, for e <2y, the upper limit of this validity range
essentially exceeds the threshold ellipticity.

Our theory allows calculating separately the contributions
of the different quantum paths to a harmonic field; in this
paper we study the quantum paths with the travel time less
than one optical cycle. We show the properties of these con-
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tributions as functions of the intensity and ellipticity of the
driving field. Presented separately, these contributions dem-
onstrate a simpler behavior than that of the total harmonic
atomic response investigated in earlier studies. In particular,
the phases depend linearly on the driving intensity and on the
square of the driving ellipticity, and the slope is inversely
proportional to the driving frequency cube. The rotation
angles of the polarization ellipses depend linearly on the
driving ellipticity, and the slope has different sign for the two
contributions. We explain this behavior linking the orienta-
tion of the harmonic polarization ellipse to the quantum orbit
geometry.
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