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Generalization of the Rabi population inversion dynamics in the sub-one-cycle pulse limit
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We consider the population inversion in a two-level system generated by a sub-one-cycle pulse excitation.
Specifically, we explore the effect that the time derivative of the pulse envelope has on the Rabi dynamics. Our
analysis is based on a combination of analytical, perturbative, and nonperturbative treatments and is comple-
mented by numerical simulations. We find a shortening of the Rabi inversion period and show that complete
inversion is unobtainable under resonant, ultrashort pulse conditions. The impact of nonresonant and carrier-
envelope phase-dependent effects on the dynamics of two-level and multilevel systems is studied numerically,
and conditions for complete population inversion are derived.

DOLI: 10.1103/PhysRevA.74.013402

I. INTRODUCTION

In the last decade ultrashort laser pulses consisting of only
few oscillation cycles of the electromagnetic field [1,2], have
been the topic of rapidly growing experimental and theoret-
ical [3—6] interest. This intense activity is the result of both
the exciting science and the vast range of possible applica-
tions [7-12].

Compared to traditional many-cycle laser pulses, few-
cycle pulses are characterized by a very rapid onset and a
fast variation of the laser electric field. As the duration of a
few-cycle pulse, 1, is comparable to the oscillation period of
the carrier light, t,<T=2m/w they are also referred as ul-
trashort, irrespectively of their absolute duration in time [1].
In addition to the amplitude and carrier frequency, to fully
characterize the electric field of an ultrashort laser pulse one
needs to know the carrier-envelope (CE) phase, i.e., a shift
that the carrier wave has with respect to the pulse envelope
maximum [4]. In an interaction with a material system the
strong dependence of the electric field on the CE phase gives
rise to CE phase sensitive dynamics which has been ob-
served across the electromagnetic spectrum. In the context of
high order harmonic generation, for example, it has been
shown that the temporal evolution of the emitted attosecond
pulses directly depends on the CE phase of the femtosecond
driving pulse [7,13,14]. Similarly, a strong CE phase depen-
dence has been observed in the ionization of rubidium Ryd-
berg atoms by few-cycle nanosecond radio-frequency pulses
[15], while an extreme case of phase sensitivity has been
demonstrated in the laser control study of the HCN — HNC
isomerization reaction [16,17]. Uiberacker and Jakubetz
have shown that only infrared (IR) pulses having a positive
lobe followed by a negative lobe can induce a pump-dump
motion of the wave packet that steers the system in the de-
sired direction. In a driven two-level system, however, the
phase dependence of the population inversion emerges only
in the nonlinear field regime [18], suggesting that the CE
phase-dependent dynamics arises in the interaction of a few-
cycle pulse with a multilevel system.

While most of the theoretical research on ultrashort pulse
dynamics has focused on CE phase effects, the sudden onset
of the electric field in such pulses gives rise to a variety of
interesting phenomena. Our goal in the present work is to
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investigate these phenomena and, in particular, the effects
that the time derivative of the pulse envelope has on the
population inversion dynamics of a two-level and a multi-
level quantum system. In doing so we refine previous nu-
merical studies [16,17,19,20] and extend the formalism of
the Rabi dynamics [21-24] into the ultrashort pulse domain
where simple assumption of an electric field consisting of a
time-dependent envelope and a carrier wave are not any
more valid [1].

The outline of the work is as follows. First the theory of a
multilevel system interacting with a laser field is presented in
a form suitable for describing the interaction with a sub-one-
cycle laser pulses and the pulse form is subsequently speci-
fied. The main results are presented in Sec. IV, where we
focus on the changes occurring in the dynamics of a two-
level system in the sub-one-cycle pulse limit. The results are
given both in the perturbative and nonperturbative approxi-
mation. Section V complements the theoretical analysis with
numerical results that extend our conclusions beyond the
two-level system. The final section contains a summary, con-
clusions, and an outlook for future research.

II. GENERAL THEORY
The time-dependent Schrodinger equation describing the

dynamics of a system with dipole moment wu(r) interacting
with the electromagnetic field reads

) ()
ot

iﬁgqf(f, = [HO(F) N ]qf(f, D, (1)

where H(r) is the unperturbed Hamiltonian of the system
and A(z) is the vector potential

F
A1) = = ~Eomsin(wr + H) )
w
having a bell-shaped envelope m(r). Accordingly, the electric

field E(¢) is given by
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E(t)=- édf;—y) = Foym(t)cos(wt + ¢) + %dm(t)

sin(wt + ¢@).

3)

In the above equation the first term corresponds to a pulse
with a cosine-oscillating carrier field, while the second term
arises because of the finite pulse duration. In the sub-one-
cycle pulse regime the impact of the time derivative of the
pulse envelope, the so-called switching term, cannot be ne-
glected. Also, the above formulation assures that the electric
field E(r) is a solution of the Maxwell equations in the propa-
gation region [25]. In such case the field has a vanishing dc
component [1,8]

f i E(t)dt=0. (4)

Note that Eq. (1) is not generally valid, but it describes cor-
rectly the interaction with atomic or molecular systems for
which the coordinate dependence of the vector potential can
be neglected.

Equation (1) is solved by expansion of the time-dependent
wave function W(7,1) in the set of stationary solutions of the
isolated system ;(r); i=1,2,...,N with corresponding
eigenenergies E;

V(R0 = 2 a0 g(Pe ™. (5)

The expansion coefficients satisfy the set of coupled equa-
tions

d
—a(t)==i2 (V+V})a,1), (6)
dt A J
where the matrix elements of V?j and V}j are given by
V?j — O_ZMLm(t)[ezwijt(ez(quS) + e—z(wt+¢))] (7)

and

Fou;;dm(t) 1 _ . . .
1 _ Dopkijamil) 1 iw;it( yi(or+d) _ —i(wt+p)
vi= e L e e IR
In Egs. (7) and (8) w;;=(E;—E;)/h, and w; are the dipole
matrix elements gu;;=(i|u|j). The form of the envelope m(r)
is application dependent and needs to be specified.

III. FEW-CYCLE PULSE CONSTRUCTION

Before analyzing the dynamics, we describe a procedure
for constructing ultrashort laser pulses. The vector potential
is assumed to have an envelope of the type

m(t) = sech(é), )

with @, ,=a In(2+3) being the half-width of the pulse at
half maximum. In the present work preference has been
given to the sech-type envelope over the more widely used
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FIG. 1. 1.0-cycle (left) and 0.25-cycle (right) sech pulses with
CE phases ¢=0 (upper) and ¢=1/2 (lower). The total electric field
of the pulse (solid line) is compared to the pulse envelope with a
cosine carrier field (dashed line) and to the time derivative of the
pulse envelope with a sine carrier field (dotted line).

Gaussian type for analytical convenience. In other aspects
the presented few-cycle pulse construction follows that of
Uiberacker and Jakubetz [16]. In Eq. (6) the integration in-
terval is [—7,4ctnee] and by imposing the condition 7,
=5y, o= 6.5 one ensures that on the ends of the interval the
electric field is effectively zero. It is now convenient to ex-
press the width of the pulse in terms of the number of optical
cycles of the carrier (n,) that it contains

2w
2a=nT=n,—. (10)
1)

Clearly, ultrashort pulse conditions are achieved for n,.<1.
The above relation, also, provides a link between the carrier
frequency and the pulse duration.

Figure 1 shows the total electric field, as well as the
two field components specified in Eq. (3) for a one-cycle
and a quarter-of-cycle pulse with carrier frequency of
0=3.48 THz and amplitude F,=0.36X10° Vm~'. The
phases are ¢=0 and ¢=m/2 on the left and right panel,
respectively. Hence, these pulses represent extreme examples
of cosine and sine pulses. It is apparent that the time deriva-
tion of the envelope m(r) (dotted line) has a negligible con-
tribution to the total field strength of the one-cycle pulse,
while it strongly modifies the shape of the 0.25-cycle one.
Actually, in the later case the two field components have
approximately the same magnitude. Moreover, sine pulses
have a larger peak strength than the corresponding cosine
pulse. The same is valid for the electric field component of
the fluence Fy=" E(f)*dt which for sech-shaped pulses is
given by

1
Fp=F> <1+ )
E 0o 3ncﬂ1'2

~ F%a(l + n,m)cos(2 ¢p)cosech(n, )

3n,

(1

Fr has a sinusoidal behavior with maximum at ¢=1/2
which in the ultrafast limit ny— 0 reduces to
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2 sin’
lim FEzFan(l +%M’)) (12)
n.—0 3nC7T

Note, however, that the total fluence of the laser pulse is not
phase dependent for it comprises the electric as well as the
magnetic contribution which are shifted in phase by /2.

IV. TIME-DEPENDENT SOLUTIONS FOR THE
TWO-LEVEL PROBLEM

After specifying the form of an ultrashort pulse we con-
sider its interaction with a two-level system. This simple case
study allows us to understand the main changes in the dy-
namics occurring in the ultrashort pulse limit [21,22].

In the rotating wave approximation (RWA) Eq. (6) reads

da(t)  Foup <l> 0 1
—— =—i{—_——sech| —
dt 2 a/|l1 0
F t t
e sech(—)tanh(—)
20w o o
and can be most conveniently solved by introducing a new
time variable, defined as

"F, t
T:j %m(t)dt:Foa,u]zarctan[tanh(z—ﬂ.

0 o

a(t)

a(t), (13)

-1 0

(14)

Strictly speaking, the RWA approximation should not be
used in the ultrafast pulse regime, but, as it will be shown
shortly by comparison with numerical solutions of Eq. (6), it
is a valid approximation for a two-level system interacting
with an IR pulse.

In terms of 7 the set of equations for the coefficients a(r)
is

da(7) 0 1 4ot 0 1
=—i a(n+———— a(7)
dr 10 3Foupnom -1 0
1% Ha e © Haeo (15)
——110a7+K7'_10aT,

where in the derivation of the second term in the equation,
the so-called switching term, k7 we made a linear approxi-
mation to the coefficient of the second term in Eq. (13) in
terms of 7. In the multicycle regime of light-matter interac-
tion Eq. (15) reduces to a standard two-level system equa-
tion, while in the ultrashort regime the importance of the
switching term rises quadratically with 1/n.. Note also that
the term Fyu, in the denominator is contained in the defi-
nition of 7. Since Eq. (15) cannot be directly solved, approxi-
mate solutions are sought, either by using the perturbation
theory or by transforming the system into an approximate
second order differential equation.

A. Perturbative dynamics

We proceed by investigating a two-level system dynamics
within the framework of the perturbation theory. Following
the approach of Genkin [23,26] the quantity u(7)=a,(7)/
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a,(7) is introduced in Eq. (15) and the system is converted
into a single equation of the form

dut)

7 = (i — kDu(7) = (i + k7). (16)

In the few-cycle regime « is regarded as a small parameter,
k<1, and presumably the solution u(7)=uy(7)+u,(7)
changes only slightly from the zeroth-order solution u(7)
given by

d”dL(TT) = iud(7) —i. (17)

The first-order correction is obtained by inserting Eq. (17)
into Eq. (16) and retaining the linear terms in u;(7). In such
a case the equation for u;(7) reads

du,(7)

Iy = [2iug(7) — 2kuo( D) 7uy (1) = k{1 + ug(1)?].

(18)

In the smooth switching regime the « dependence in the
homogeneous term can be neglected, and by introducing the
solution of the zero-order problem the first-order correction
is obtained as

u (1) = k7cot(7) + ;—c cos(27)csc(7)?. (19)

In Eq. (19) the magnitude of u;(7) increases linearly in time
indicating an efficient energy transfer. Obviously, such an
increase cannot go on indefinitely because the perturbation
theory fails, i.e., the above equation is restricted to short
times and small switching parameters ensuring that the per-
turbation condition |u;/uy| <1 is fulfilled. Accordingly, the
level population dynamics is modified to

2
lay (D = % ~ COSZ(T){I + %Ksz[l - cos(ZT)]}.

(20)

Apart from the linear increase in time, the first-order correc-
tion to the population dynamics superimposes a function os-
cillating at twice the optical frequency to the cos(7) dynam-
ics. In order to get a better physical insight into the changes
of the frequency of Rabi oscillation due to the perturbation
we rescale the time variable as 7— 7/+/(1-«?). Equation
(20) then reads

R 1 [
la;(D? = cos(\1 - KZT)2{1 + EKZTZ[I —cos(2V1 - KZT)]}’

21

where the term proportional to x* has been neglected. Direct
comparison with the numerical solution reveals that the
shortening of the population inversion period is indeed a key
feature of the dynamics in the ultrafast pulse limit.

B. Nonperturbative dynamics

In the nonperturbative approach the two-level system of
Eq. (15) is transformed into an equivalent second-order dif-
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ferential equation for the initial state coefficient a,(7),
K ! n
- (1+k*P)ay (1) + —a] (1) - d{(7) =0. (22)
i+ KT

For short pulses one can expand the factor in front of a{(7) in
a Taylor series around 7=0 and by retaining only the first-
order terms in 7 obtain a more tractable equation of the form

-1+ &*Pay(7) - (ik- KZT)ai(T) -d{(1)=0. (23)

Clearly, the range of validity of the expansion depends on the
magnitude of . The most critical parameter is n,, the num-
ber of field oscillation in the width of the pulse that, for other
parameters in the standard range for molecular isomerization
(Fy=5%x10"-5%10® Vm™! and w=~3-90 THz), should be
approximately n,=0.5. Equation (23) can be solved exactly
by making the substitution a;(7)=u(7)v(7) and requiring that
the terms in front of u’ vanish, i.e.,

(ik— K>7ou’ + 20" )u' =0.

This yields a simple differential equation for v(7) with the
solution

V= e_iK(T"”'z;lax)/z‘*‘i"z(fz_q-lzwax) (24)

and a corresponding hypergeometric equation for u(7) given
by

o+ fim+ foar)u() +u'(7) =0, (25)
where fy=4+3«>, f;=2ik’, and f,=«>*(4—-«?*). The solution
of the above equation reads

u(r) = e TN™HPINRIe [ ()

) = v 1
+ e—[l(f17'+f272)/4\f2]021F1(_ _;_;ZZ>. (26)
2°2
Here H,(z) is the Hermite function of order v and argument
b4

(1+1>(f +217)
ifi-afao 83 _\aTa)/ VT

, L= s
16]3/2 3/2

and |F ](—v/ 2;%;Z2) is the Kummer confluent hypergeomet-
ric function. The normalization constants ¢, and ¢, can be
readily calculated from the initial conditions a;(—7,,,)=1,
ay(=Tpe)=0 or, equivalently, from u(-7,,)=1 and
' (= Tpa) == (Tpqy)- They also ensure that in the multicycle
pulse limit Eq. (26) correctly approaches the cosinusoidal
two-level-system dynamics. In contrast to the perturbative
solution, the above solution does not lend itself readily to
physical interpretations in terms of changes of the Rabi dy-
namics. However, the existence of a time independent com-
ponent in the argument zToz(Al-l+i/4)f1/ fg’z indicates that
complete population inversion is not possible. In the few-
cycle regime, n.=0.5, the maximum depopulation of the
ground state has been numerically estimated as PE”in% k>4,
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FIG. 2. Two-level system: Population evolution curves of the
lower state interacting with (a) n.=1.5, (b) n.=1.0, (¢) n.=0.5, and
(d) n,=0.25. The numerical solution of Eq. (13) (solid, bold line) is
compared to the analytical results: nonperturbative (long dashed),
perturbative (short dashed), and multicycle (solid, thin line).

V. NUMERICAL RESULTS AND DISCUSSION

A. Resonant two-level system

The main goal of this section is to estimate the range of
parameters for which the analytical results of previous sec-
tions are good approximations to the exact solution. It is also
interesting to investigate the two-level system dynamics in
extreme nonperturbative conditions, i.e., in the case of a very
fast field switching regime. The numerical simulations are
based on the solution of Eq. (13). The parameters of the
two-level system correspond to the splitted ground state of
acetylacetone (ACAC), a prototype intramolecular hydrogen
bonded system. Specifically, the ground state doublet has a
resonance frequency of w;,=3.48 THz and dipole matrix el-
ement of u;,=-2.2D.

Figure 2 displays the population dynamics of the ground
state interacting with laser pulses of decreasing durations,
corresponding to the 1.5-, 1-, 0.5-, and 0.25-cycle pulses.
The field amplitude is Fy=0.36X10° V m~!. The relatively
strong field ensures that significant population transfer can
be achieved even with the shortest pulse. The corresponding
time-dependent electric fields for the 1.0- and 0.25-cycle
pulses with ¢=0 are illustrated in the Fig. 1. Both analytical
results, the perturbative (dotted line) and nonperturbative
(dashed line) are contrasted to the numerical solution (solid,
bold line) of Eq. (13) and to the population dynamics in the
multicycle regime (thin line). In the upper panel of Fig. 2
(top) the population dynamics triggered by an interaction
with longer pulses has been explored. For the 1.5- and
1-cycle pulses the four curves are virtually indistinguishable
during the initial and middle part of the interaction, but dif-
ferences among them emerge in the switchoff period at
around 2a=500 fs. From the accuracy point of view both
analytical results describe correctly the dynamics and are
very close to the numerical solution. As expected, larger dis-
crepancies in the dynamics occur upon interaction with the
0.50 and 0.25 pulses, as illustrated in the lower panel of
Fig. 2. The switching parameters are x=-0.47 and «
=—1.9 a.ut.™! for the 0.5- and 0.25-cycle pulses, respec-
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FIG. 3. Two-level system. Upper: Total electric field and pulse
envelope of a resonant, n,=0.75, Fy=0.36X10° Vm™, «*/4
=0.01 pulse. Lower: The population inversion dynamics of the
lower state. Numerical solution of Eq. (13) (solid, bold line) and
analytical solutions: nonperturbative (long dashed), perturbative
(short dashed), and multicycle (solid, thin line) are shown.

tively. In this regime perturbation theory fails, while the non-
perturbative analytical results hold well even in extreme non-
perturbative conditions (n,=0.25). Analyzing more closely
the dynamics one sees that the switching term provides an
additional drive to the system that manifests itself as a
speedup of the population dynamics. The effect can be
clearly seen form Fig. 3 where we have compared the popu-
lation dynamics induced by a very strong 0.75-cycle pulse
(Fp=1.5x10° Vm™). After a series of population inver-
sions a time delay of =80 fs is observed between the exact
and the cosinusoidal dynamics.

Next, it was natural to presume that a faster energy trans-
fer encountered in the ultrafast pulse regime reduces the ef-
ficiency of a single population inversion event. In order to
investigate such a possibility a series of numerical simula-
tions with resonant 0.75-, 0.5-, and 0.25-cycle pulses have
been performed. For each of the three cases the field ampli-
tude F,, in Eq. (13) has been optimized in such a way as to
maximize the population transfer of the numerical solution.
For that amplitude, the analytical, perturbative, and cosine
curve have been computed and illustrated in Fig. 4. For com-
pleteness, the non-RWA solution, given in Eq. (6), is also
shown. Evidently, as the number of oscillations of the carrier
wave in the pulse width decreases, the onset of the electric
field is faster and the efficiency of the population inversion
decreases. The effect of the time derivative of the pulse en-
velope on the population dynamics is so large that it reduces
the inversion efficiency of the 0.25-cycle pulse to 50%. Note
that for the 0.75 and 0.5 pulses the estimate for the maximum
depopulation of the ground state P{"'=0.09 and P{"'=0.22
finds good agreement with the numerical results. It goes
without saying that for pure Rabi-type dynamics one can
always construct a m-pulse which induces a complete popu-
lation inversion. For sub-one-cycle pulses, however, a com-
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FIG. 4. Two-level system: Numerical optimization of the popu-
lation inversion dynamics for (top) n,=0.75, Fy=1.28
X 108 Vm™!, (center) n,=0.5, Fy=0.18 X 10° V m~!, and (bottom)
n,=0.25, Fy=0.28 X 10° V m~! pulses. Numerical RWA (solid, bold
line) and non-RWA (dotted) solutions are shown together with ana-
lytical: nonperturbative (long dashed), perturbative (short dashed),
and multicycle (solid, thin line) solutions.

plete inversion is not possible under resonant conditions. In
other words, the short duration of the pulse leads to the
breakdown of the generalized m-pulse condition. To comple-
ment the above picture we shall consider nonresonant exci-
tations, carrier phase effects, and multilevel dynamics.

B. Nonresonant two-level system

Let us first discuss the variation of the population inver-
sion efficiency of the two-level system with respect to the
carrier frequency and CE phase. The results have been ob-
tained by numerical integrations of Eq. (6). The full form of
the laser pulse is given in Egs. (2) and (3) and the field
amplitude is fixed to Fy=0.27X10° V m~!, which is the
value at the onset of saturation for the pulse with CE phase
and n,.=0.25 ¢=0. Figure 5 illustrates the variation in the
final population of the upper state |a,(t,q)|>. Two features
are immediately noticeable: (i) the efficiency of the popula-
tion inversion is almost independent on the CE phase, and
(ii) a complete population transfer can be achieved by using
nonresonant ultrashort laser pulses.

The phase sensitivity of the population inversion is related
to the power spectrum E(w)=["_E(f)e!*" of the laser field
[18]. For the range of field parameters considered in this
calculation the laser power spectra are not CE phase depen-
dent. The weak oscillatory behavior of the upper state popu-
lation probability landscape reflects the oscillations of the
laser fluence as shown in Eq. (11). Indeed, in the range 5
X 108<Fy;<5%10° Vm~' numerical simulations carried
out at constant fluence show complete insensitivity to the CE
phase.
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FIG. 5. Two-level system dynamics: Variation in the final popu-
lation of the upper state with respect to the laser frequency and CE
phase for n,=0.25. The results are obtained by the numerical solu-
tion of the non-RWA Eq. (6). The resonst frequency is w
=3.48 THz.

Secondly, a complete population inversion occurs at w
=2.40 THz, thus at a value that is 1.08 THz redshifted
from resonance. As the applied electric field of Fy=0.27
X 10° V m~! is not sufficiently strong to induce such a large
ac Stark shift of the energy levels, the computed frequency
shift must, therefore, be due to the changes in the laser pulse
caused by the sudden onset of the field. Along this line, in
Fig. 6 we have compared the amplitude of three laser fields.
The first pulse is the maximum efficiency pulse with w
=2.40 THz, while the second one is the resonant pulse with
®=3.48 THz. The third pulse is resonant at w=3.48 THz,
but the electric field of the pulse has been computed without
taking into account the time derivative of the pulse envelope,
i.e., the pulse form is simply given by F sech(z/ a)cos(wt).
Note that by adjusting F the third pulse can actually become
a  pulse that would induce a complete population transfer

0.3 i T ]

0.1

Electric field (10° V™)

-150 150
t (fs)

FIG. 6. Electric field of three sub-one-cycle pulses (n,=0.25):
nonresonant w=2.40 THz (solid line), resonant w=3.48 THz
(dashed line), and resonant w=3.48 THz without the switching term
(thin solid line).
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in a many-cycle pulse regime. At the field maximum there is
a streaking similarity between the off-resonant pulse and the
simplified pulse, whereas the width of the “true” resonant
pulse is much smaller. Obviously, the sudden onset of the
field reduces the effective area of the pulse and the shift
toward lower frequency is a mere compensation for that ef-
fect.

On this ground it is possible to compute the effective
frequency of the laser pulse by equating the electric field of
the pulse at shifted frequency w+ &' to that of a resonant pulse
with sech(z/ «) envelope and cosine carrier wave.

, t
sm(wt)tanh( m) ]

=F, sech(i)cos(wt). (27)

ol ) oo 5
o sec 5 cos(wt)—(a+5)w

Expanding the equation around =0 and solving for & one
obtains

V3 + 4]’1?772 + n?ﬂél
o=w|1- . (28)

3+ nta?

For the system under consideration the above equation pre-
dicted a shift in the carrier frequency of 6=1.17 THz which
is in very good agreement with the numerical result of
1.08 THz. It is also interesting to note that in the limit n,
— 0 sech-envelope pulses acquire a constant frequency shift
of 5’%—’0: w—-o/\3.

C. Multilevel system dynamics

By extending the analysis beyond the two-level system,
additional mechanisms governing population transfer came
into play. These are, for example, resonance leaking, vibra-
tional ladder climbing phenomena, or wave packets forma-
tion.

The multilevel system wunder consideration is the
O---H---O moiety of acetylacetone. Therefore, the focus is
on the laser driven H-atom transfer reaction. The molecular
system is characterized by a double well potential energy
surface (PES) with an effective transition state barrier of
AE=28.33 THz (0.12 eV). Details on the computation of the
potential energy and dipole moment surfaces as well as of
the eigenspectrum are given in Ref. [27]. The ground state
doublet has an energy splitting of 3.48 THz, the second dou-
blet, located 6.71 THz higher in energy, has a splitting of
5.49 THz, and the third one, 5.82 THz on top of the second,
has a splitting of 5.97 THz. Both the eigenvalue spectrum
and the selection rules suggest that because of the vibrational
ladder climbing mechanism excited vibrational states may
influence the ground state population dynamics.

Figure 7 is the multilevel analog of the two-level isomer-
ization landscape shown in Fig. 5. Altogether 50 eigenstates
have been included in the computation to span an energy
range of more than 90 THz. An overall decrease of the
isomerization efficiency from P3(fy,) =1 t0 P3(t,,0,)=0.77
is observed with the isomerization maximum occurring at
®w=2.23 THz. As in the two-level system most of the shift
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FIG. 7. CE phase sensitive dynamics in a multilevel system.
Isomerization probability landscape for the H-transfer reaction in
ACAC. The results are obtained by the numerical solution of Eq.
(6) using the lowest 50 eigenstates of the 3D double well PES.

can be attributed to the change in the effective pulse fre-
quency. However, to avoid a building up of the population in
the strongly coupled third level the laser frequency is further
shifted from resonance. The most interesting feature, how-
ever, is an increased sensitivity to the CE phase. The prob-
ability transfer landscape shows three distinct maxima lo-
cated at ¢p=km for k=0,1,2. In the previous section we have
shown that in a two-level system the population transfer
yield, i.e., the population remaining in the upper state of the
system after the interaction with a pulse is almost insensitive
to the CE phase. The origin of the multilevel phase sensitiv-
ity stems from the fact that in a two-level system the popu-
lation transfer yield is not phase sensitive, but the population
dynamics during the interaction with the laser field is CE
phase sensitive. Figure 8 confronts the population evolution
curves of the initial and final state, as well as the cumulative
population of higher vibrational levels. The faster rate of
population transfer occurs at peak fields strengths. The laser
pulse with ¢=0, which is a variant of a single lobe pulse,
induces maximum population transfer around the pulse cen-

$=0 ¢=n/2 0.15

4
[

Electric field (109 Vm‘])
o

-200 0 200 -200 0 200
t{fs) t{fs}

FIG. 8. CE phase sensitivity in a multilevel system: comparison
of the laser fields (17,=0.25, ®=2.2 THz) and population dynamics
in the 3D ACAC system. Ground state, v=1 (solid thin), target, v
=2 (solid bold), and v=3 (dashed).
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ter. The two shallow lobes on the wings have a minor influ-
ence on the dynamics. By contrast, the ¢=/2 laser pulse
has a double maxima structure which triggers a two step
population transfer process. In the first step the population is
transferred from the initial to the target state with maximum
efficiency at the field maximum. At the center of the pulse
the electric field is zero and therefore no population transfer
occurs. Then the second lobe transfers the population from
the already populated target state to the coupled third state
with maximum efficiency at the second peak of the pulse.
Consequently, at ¢p=7/2 a minimum appears in the popula-
tion of the target state, while the isomerization landscape
acquires the three maxima structure.

It is now straightforward to imagine a 0.25 pulse with ¢
=/2 capable of inducing a direct v —v+2 transition,
and indeed, a pulse with w=146 THz and Fy=0.51
% 10° V.m™! triggers population transfer to v=3 with more
than 60% efficiency. The analysis and optimization of such
pulses are of interest, but are beyond the scope of the present
contribution and shall be addressed separately.

VI. CONCLUSIONS

In the ultrashort pulse limit the definition of the electric
field via the vector potential provides an accurate framework
for studying laser driven dynamics in multilevel quantum
systems. The goal of the presented work has been to refine
previous researches on sub-one-cycle pulse dynamics, and to
analyze different effects arising form the explicit inclusion of
the finite pulse duration into the time-dependent Schrodinger
equation. To that end we employed direct perturbation theory
to analyze the dynamics of a simple two-level system under
resonant excitation. The analysis is complemented by a more
general analytical theory and numerical non-RWA simula-
tions. In particular, the numerical approach allowed us to test
the range of validity of the analytical results and to explore
nonresonance and phase effects. Throughout the paper we
employed sech-shaped laser pulses with n.=1.5 down to 0.25
optical cycles within the width of the pulse.

Apart from an overall deviation from the Rabi-type dy-
namics we found specifically a shortening of the population
inversion time scale inversely proportional to nf Moreover,
we have shown that complete population transfer is unob-
tainable under resonant ultrashort pulse condition. Numeri-
cally the maximum population transfer yield at resonance
has been estimated as «2/4, with & being the electric field
switching parameter.

Nonresonance effects have been studied numerically and
it has been show that complete population inversion occurs
at a frequency that is significantly redshifted from resonance.
The frequency shift stems from the fact that the electric field
switching term narrows the pulse width, i.e., effectively in-
creases the pulse frequency. The observed redshift of the
carrier frequency is hence a compensation for this effect. In
the weak field regime the two-level system population inver-
sion has proven to be almost insensitive to the variation of
the CE phase. By contrast, the investigated multilevel system
exhibits an increased CE phase sensitivity. That is due to the
fact that a change in the CE phase from 0 to 7/2 corresponds
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to a shift from a single lobe pulse to a double lobe pulse, and
each pulse lobe acts as an independent pump pulse. Hence a
double peak pulse exchanges two vibrational quanta, while a
virtually single lobe pulse with ¢=0 induces a v —v =1 tran-
sition.

An extension of the present approach to the laser control
in the ultrashort domain is possible and would be desirable.
This would include both methodological developments in the
optimal control theory, for example, and system develop-
ments aimed at controlling more complicated phenomena.
The presented analytical results on the population inversion
dynamics are not restricted to the IR and can be extended to
the uv region as long as k=< 1. In the recent strong field CE
phase sensitive experiment of Niikura e al. [28] at 800 nm
this situation corresponds to n,=0.75. As a matter of fact,

PHYSICAL REVIEW A 74, 013402 (2006)

few-cycle and sub-one-cycle laser pulses in the uv spectral
region have been employed in quantum simulations of peri-
odic electron circulation in a model Mg porphyrin [11,12].
The effects of the sub-cycle pulse duration on the effective
shape of the laser pulse, however, have not been taken into
account. These possibilities are topics of a forthcoming
work.
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