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Emission of x-rays by large clusters with 108 to 1010 constituents irradiated by an intense laser pulse �1016

to 1018 Wcm−2� is analyzed. A self-consistent model for the cluster evolution during and after the irradiation is
developed. The model takes into account absorption of radiation, formation of multicharged ions, and cluster
expansion. The model is applied to relate the parameters of the cluster beam and the laser pulse to those of the
forming plasma. It predicts that the plasma stays quasineutral and Maxwellian. We find that the expansion of
large clusters goes through different stages after the end of the laser pulse and is not appropriately described by
the Coulomb expansion model, which underestimates the cluster lifetime. For a more realistic description, the
nonuniformity of the plasma must be considered. X-rays are generated in the interaction of the trapped
electrons with the cluster ions. Two such radiative processes are considered in detail: dielectronic recombina-
tion and excitation of ions by electron impact followed by photon emission. Under the above conditions, the
contributions of both processes to x-ray emission are comparable. To evaluate the x-ray spectrum a statistical
description of the spectral lines is justified and applied. Knowing the rates that characterize the processes in the
plasma, the main processes proceeding in the system can be identified. A simple calculation including several
types of transitions is carried out.
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I. INTRODUCTION

Recent experiments have explored many aspects of in-
tense femtosecond laser interactions with gases of atomic
and molecular clusters. These studies have partly been moti-
vated by the possibility of using a cluster gas jet target to
produce a strong x-ray or neutron source. One of the reasons
that clusters are so interesting is the near-solid density within
the cluster, which gives rise to a strong transfer of laser en-
ergy to the particles, much stronger than is seen with isolated
atoms or molecules �1,2�. One of the consequences is the
very efficient generation of hard x-rays �3–7�. The conver-
sion efficiency from laser energy to hard x-rays can be as
high as ten percent �8,9�. A number of groups are examining
the possibility of exploiting this strong absorption to make an
efficient, debris-free source of soft x-rays for lithography
�10�. This strong absorption has also been employed to per-
form deuterium-deuterium fusion experiments in gases con-
taining deuterium clusters �11–13�. The hot plasmas pro-
duced by this absorption may also represent an interesting
testing ground for other high-temperature plasma experi-
ments and for modeling astrophysical phenomena.

All of these studies have used the fact that clusters will
form when a pulsed gas jet is sent into vacuum under appro-
priate pressure and temperature conditions. An ultrafast laser
whose duration is comparable with or faster than the 100 fs
to 1 ps disassembly time of the clusters �14,15� will exhibit
greatly enhanced absorption in this jet compared with a non-
clustering gas. This is a consequence of the local high den-
sity in the cluster, which aids collisional and other absorption
mechanisms �16,17�. These heated clusters release the ab-

sorbed laser energy in an explosion �18–20� or in x-rays
�5,6�. The general sequence of processes in the plasma con-
sidered is as follows. Absorption of laser radiation causes
ionization of atoms with heating of the liberated electrons.
Because of the high rate of elastic electron-electron colli-
sions, thermal equilibrium is established in the electron sub-
system, and the electron temperature increases in time
�17,21�. An increase of the electron temperature causes fur-
ther ionization of cluster ions by internal electrons, so that
multicharged ions are created. In the case of large clusters,
radiation cannot penetrate inside the cluster. Hence, ioniza-
tion of interior cluster ions is effected by electron transport.
Because of the high electron density in the cluster
�ne�1023 cm−3� and prompt heating of the electrons, the
ions reach high charge states during the laser pulse, which
are not changed very much after the end of the pulse. Some
part of the electrons leaves the cluster. In this case, cluster
ionization is much like thermoemission from a hot surface
�22�. While small clusters permit a complete escape of elec-
trons, which then leads to a Coulomb explosion, large clus-
ters confine practically all of the electrons by the self-
consistent potential. They expand only slowly owing to the
hydrodynamic pressure and the electric field of the charged
cluster �23,24�.

Simultaneously with cluster expansion, x-rays are emit-
ted. This results mainly from the processes of spontaneous
emission and dielectronic recombination of ions in the
plasma. In the course of the expansion, the ion-number den-
sity decreases by several orders of magnitude and the above
processes are damped. Therefore, the intensity of x-ray emis-
sion after the cluster expansion decreases in comparison with
the initial stage of the plasma evolution. The x-ray produc-
tion by the cluster plasma is characterized by its extraordi-
narily high transformation efficiency �8,9�.

In order to simulate the emission spectra of the plasma,
kinetic calculations were performed �25,26�. In these calcu-
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lations, multicharged ions with up to 10 bound electrons
were considered, i.e., ions with valence shells 1s, 2s, or 2p.
This corresponds to moderate laser intensities. All atomic
configurations with principal quantum numbers n below 6,
including autoionization states, were taken into account. The
kinetic matrix included several thousand levels and took into
consideration all possible radiative, collisional, and autoion-
ization processes. The rates of collisional processes were cal-
culated using a model that includes the hot electrons. The
plasma was described by a simplified dynamic model �26�.
In subsequent investigations, the Boltzmann equation and a
collisional-radiative model were solved simultaneously as a
function of time �25�. With some fitting, the plasma spectra
obtained reproduced the experimental results. However, be-
cause of its complexity, the proposed scheme is very cum-
bersome and unsuitable to predict the parameters for optimal
x-ray generation.

Here, we propose a different approach to analyze x-ray
generation in an excited cluster. We describe the ion energies
in terms of a density of states �DOS� �i.e., we replace the
discrete ion energies by a continuous distribution�. This re-
duces the large set of rate equations for the various radiative
transitions to a few integrodifferential equations. This proce-
dure is absolutely accurate, i.e., we can go from one descrip-
tion to the other by choosing an appropriate DOS.

In the next step, we simplify the obtained equations by
substituting an energy band for the real DOS �which is close
to a sum of delta functions�. In some sense, this is similar to
replacing the mechanical description of a large system by a
statistical one. On the one hand, this brings about increased
calculational efficiency, on the other hand, we lose the details
of the spectra. In this paper, we will be concerned with a
beam of large Xe clusters with an average number of atoms
N�107–1010, and titanium-sapphire laser pulses with inten-
sities in the range I�1014–1019 W/cm2 �or field strengths
F=0.6–20 a .u.�, pulse durations between 30 and 300 fs
�corresponding to about 10–100 periods of the carrier fre-
quency�. These parameters correspond to typical experimen-
tal conditions.

In Sec. II, we investigate the evolution of a single cluster
during the laser pulse. We pay special attention to ionization
of the cluster atoms. Finally, we present simple relationships
that connect the cluster-beam and the laser parameters to the
ion charge states and the electron temperature. Section III is
devoted to the evolution after the end of the laser pulse. In
Sec. IV, we evaluate the rates and probabilities of x-ray emis-
sion as a result of direct photorecombination, dielectronic
recombination, and excitation of cluster ions by electron im-
pact, which subsequently leads to spontaneous emission by
the excited ions. In Sec. IV, we suggest a simple model for
the emission spectrum of the plasma under consideration.
Finally, in Sec. V we present our conclusions.

II. EVOLUTION DURING THE LASER PULSE

The properties of the laser-cluster plasma that has evolved
as a result of elementary processes involving electrons are
determined by the hierarchy of the characteristic times of the
various processes, and this hierarchy is different at different

stages of the evolution. One can identify three stages of evo-
lution of a cluster plasma—irradiation, expansion, and disin-
tegration. During the first stage, the plasma is formed by
irradiation of the cluster beam. As a result, atoms inside clus-
ters are converted into multicharged ions and the clusters as
a whole become positively charged. Initially, electrons be-
come free by direct ionization of atoms under the action of
the laser field �i.e., by optical field ionization�. When the
electron density reaches the critical density, the electromag-
netic wave can no longer propagate inside the cluster, and the
main ionization mechanism is the collision of electrons with
cluster ions �27�. Because of the high electron density, the
laser radiation is absorbed, and the electron temperature
rises. The evolution of the plasma produced during the laser
pulse is determined by the electrons only. In contrast to small
clusters and molecules, where Coulomb explosion sets in
quickly so that the ion motion plays an essential role
�28,29,31,32�, ions in large clusters only slightly move from
their initial positions during the duration of the laser pulse.
This leaves the electron density and processes within the
electron subsystem largely unaffected. The characteristic
times of most inelastic processes are longer than the laser
pulse duration.

Inside the cluster, only impact ionization takes place dur-
ing the laser pulse and the other inelastic processes have no
effect on the cluster evolution while the laser pulse is on.
Below we give an analysis of the cluster evolution during the
laser pulse and develop a model that allows us to relate the
parameters of the laser pulse and the cluster beam to the
plasma parameters after the end of the pulse.

The properties of the electron phase-space distribution
�which includes position and velocity� have a profound effect
on the inelastic as well on the elastic processes that take
place. For instance, the impact-ionization cross section has a
maximum at a certain energy. This means that an electron
bunch having a spike at this energy ionizes much more effi-
ciently than a bunch having a Maxwell distribution. The ve-
locity distribution function of electrons in a cluster is estab-
lished due to electron-electron collisions. The electron-
electron collision time at temperature T is given by �33�

�ee �
3T3/2

4�2�neln �
, �1�

where ln � is the Coulomb logarithm. The electron number
density ne follows from the assumption that all cluster elec-
trons remain captured by the self-consistent cluster field. Be-
low, we use as typical values for the electron temperature
T�102 a .u. and for the ion charge Z�30 �30�. This implies
that the electron temperature is comparable with the ioniza-
tion potential of ions with charge Z, i.e., T�JZ. Under such
conditions, the relaxation time of the electron energy distri-
bution function to the Boltzmann distribution is comparable
with the laser period �about 3 fs�. For example, relaxation
will typically be accomplished within a few laser periods for
a Xe cluster and ion charges Z�45. Hence, the electron
subsystem of such a cluster is close to thermal equilibrium
during most of the action of the pulse.
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As in small clusters, inside large clusters the electrons are
not distributed uniformly. Deviations from a uniform distri-
bution may reduce or increase absorption. For an electron
energy distribution at equilibrium, one can find the electron
density distribution by solving the self-consistent problem.
For a cluster with N atoms, radius R, charge Q and the ion-
number density nion with average ion charge Z, the corre-
sponding electron-number density is �16�

ne�r� = Znion�1 −
2Qe−k

kTr
sinh� kr

R
	
, r � R �2�

where k=�3N / �TR�. Hence the ion-number density inside
the cluster is practically constant and it rapidly drops near its
surface.

The ionization of atoms and ions along with the ensuing
laser pulse absorption play a key role in the formed plasma.
Below, we consider ionization of multicharged ions under
the conditions of fast heating of the plasma. Because the
details of the initial electron production do not strongly af-
fect the further plasma evolution, we assume the plasma to
be characterized by a certain electron temperature T and by
the electron-number density ne, both of which can vary in
time. Ionization results from inelastic collisions of electrons
with multicharged ions inside the cluster, i.e.,

e + A+Z−1 → 2e + A+Z. �3�

The peculiarities of ionization are determined by the step-
wise dependence of the ionization potential JZ on the ion
charge Z �see Fig. 1�. Each jump of the ionization potential
corresponds to the release of a particular electron shell, and
the jump is particularly pronounced at the transition to an
electron shell with a higher principal quantum number. In the
course of the release of a given electron shell, the ionization
potential changes weakly with increasing Z. This behavior of
the ionization potential of multicharged ions influences the
charge distribution function of the multicharged ions. As-
suming a Maxwell electron distribution function with elec-
tron temperature T, the charge distribution function of the
multicharged ions is determined by ions created by a given
electron shell or electron shells with the same principal quan-
tum number, and the probability of ion charges related to
electron shells with different principal quantum numbers is
small. This behavior is independent of the electron tempera-
ture T in a wide temperature range, at whose end the transi-
tion to a new electron shell proceeds in a jump. Therefore,

one may assume that the charge distribution function of the
multicharged ions at a certain temperature T is related to a
certain electron shell.

To analyze the relation between the electron temperature
T, which is caused by laser irradiation, and the ion-charge
distribution, we notice that the probability PZ of a given ion
charge Z changes with time according to

dPZ

dt
= ne�kZ−1PZ−1 − kZPZ − �ZPZ + �Z+1PZ+1� . �4�

Here kZ is the ionization rate of an ion of charge Z by elec-
tron impact and �Z is the recombination coefficient for elec-
trons and multicharged ions of charge Z. For estimates we
use the Lotz formula for the ionization rate �36,37�

kZ−1 =
3.5��Z�

JZ
3/2 �1/2exp�− ��f��� ,

f��� = e��Ei�− ���, � =
JZ

T , �5�

where ��Z� is the number of valence electrons of a multi-
charged ion with charge Z−1 and Ei��� denotes the
exponential-integral function.

We consider fast heating of the plasma. Then the charge
distribution of the multicharged ions has a spikelike charac-
ter, and the position of this spike shifts with time. Evidently,
in this case one can neglect recombination processes, and Eq.
�4� reduces to

dPZ

dt
= ne�kZ−1PZ−1 − kZPZ� . �6�

Multiplying these equations with the ion charge Z and sum-
ming over Z, we obtain

d

dt
�
Z

ZPZ = ne�
Z

kZPZ  kZ̄ne�
Z

PZ = kZ̄ne, �7�

where we made use of the spikelike character of the distri-

bution PZ. With the notation Z̄=�Z ZPZ for the average
charge, we have

dZ̄

dt
= nekZ̄. �8�

Below, all expressions will depend on the average charge Z̄.

Hence, we will write Z in place of Z̄ and treat this redefined
Z as a continuous variable.

In the course of irradiation, the electron temperature and
the mean ion charge increase substantially, while their ratio
�=JZ /T remains practically constant �16�. This ratio, whose
value depends on the pulse duration, is a key parameter for
x-ray generation. To find the value of this ratio, let us assume
it is constant during the duration of the pulse. This yields the
approximate equation

dJZ

dZ

dZ

dt
 �

dT

dt
. �9�

Because for any given electron shell the ionization potential
can be fitted by

FIG. 1. The ionization potential JZ �in a.u.� of Xe ions.
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JZ = − CZ2, �10�

with a constant C that depends on the respective shell �35�,
we have that dJZ /dZ2JZ /Z. Replacing dZ /dt by Eq. �8�
and the Lotz formula �5� and estimating dT /dt by T /�pulse
�where �pulse is the duration of the laser pulse�, we obtain a
relation between the temperature and the mean ion charge at
the end of the pulse,

7.0��Z�nion�pulse

T3/2  �
e�

f���
=

�

�Ei�− ���
. �11�

Since Ei���→	+ln�−�� for �→0− ���0�, where 	 is Eu-
ler’s constant, and Ei�−���exp�−�� / �−�� for �
1, � in-
creases with increasing pulse length, if we assume that the
temperature is independent on the pulse length. Hence,
higher ion charge states are realized for increasing pulse
length. For example, for a xenon cluster with T=100 a .u.
�2.7 keV�, �pulse=100 fs �4·103 a .u . � and ��Z�=9, we
have �0.4 and JZ40 a .u., which corresponds to Z27.

Along with ionization of atoms and ions, ionization of the
cluster as a whole takes place. During the laser pulse there
are two possible mechanisms of cluster ionization. The first
is similar to over-the-barrier ionization of atoms, when an
electron is pulled out of the cluster by the laser field. The
other is thermoemission when a captured electron inside the
cluster gains enough energy from the laser pulse to leave the
cluster. These two mechanisms are realized only in limiting
cases. In reality, there is mixture of these two, i.e., thermoe-
mission is facilitated by a reduced depth of the cluster po-
tential wells. Depending on the laser pulse parameters and
the cluster size one of the two mechanisms dominates. After
the laser pulse is over, only thermoemission takes place.

We will determine the charge of an excited cluster when
the charge equilibrium is determined by the competition be-
tween the thermoemission of electrons from the cluster sur-
face and attachment to the cluster of free electrons of a sur-
rounding plasma. Within the framework of the liquid-drop
model we suppose that the cluster be similar to a bulk spheri-
cal particle and thermoemission of electrons from the surface
of a charged cluster and a neutral cluster be identical. Then
the electron current density from the cluster surface as a
result of thermoemission is given by the Richardson-
Dushman formula

i =
T2

2�2 exp�−
IQ

T
	 , �12�

where IQ is the ionization potential of a cluster with charge
Q. For a large cluster, the ionization potential is IQ=Q /R,
where R=rWN1/3 is the cluster radius, rW is the Wigner-Seitz
radius, and N the number of cluster atoms. Thus, the charge
of a large cluster varies as follows:

dQ

dt
=

2R2T2

�
exp�−

Q

RT
	 . �13�

Let us estimate the cluster charge after the laser pulse has
passed through. Assuming that the cluster size remains con-
stant during the laser pulse and that the electron temperature
varies weakly, one can estimate the cluster charge from Eq.

�13�. Integrating at constant temperature and radius, we
obtain

Q = TR ln�1 +
2TR�

�
	 �14�

with � the laser-pulse duration. Hence, for typical parameters
�see the beginning of the section� of the laser pulse
Q /TR10–40. Knowing the cluster charge, we can
compare the energy spent for ionization of the cluster,
Wion=Q2 / �2R�, with the thermal energy of the electron sub-
system, WH=3NZT /2. Their ratio is

Wion

WH
=

Q2

3ZRNT
. �15�

For a xenon cluster with extremal parameters Q /RT=40,
N=109, T=102, and Z=30 we get from Eq. �15� the value of
0.09. So, for large clusters only a small part of the absorbed
energy is consumed for ionization of the cluster as a whole,
while the main part is spent for ionization of the ions. The
ratio of the number of electrons that leave the cluster to those
captured is Q /ZN��Q /RT�TrW / �ZN2/3�, which is 10−3 un-
der these conditions.

In parallel with cluster ionization, the inverse process is
also possible, i.e., electrons emitted by a cluster may be re-
captured by the same or by another cluster. If the probability
of this process is high, there is an equilibrium between ion-
ization and recombination processes. The energy of an emit-
ted electron exceeds the ionization potential of the cluster
�here we measure the electron energy from the bottom of the
potential well of the ionized cluster�. When an emitted elec-
tron leaves the cluster, it may collide with electrons captured
by the cluster. In the collision, the electron spends some part
of its energy. If the collisions are rather efficient, the final
electron energy is below the ionization potential and it is
recaptured by the cluster. So a free electron is captured as a
result of electron-cluster collisions, if the cluster size exceeds
the mean free path le of the electron inside the cluster, i.e., if

le

R
� 1. �16�

The mean free path is le��2 / �ne ln ��, where ln � is the
Coulomb logarithm, � the electron energy, and ne the elec-
tron density. Assuming that the energy of a free electron in
the cluster is of the order of the cluster’s ionization energy,
we find:

le

R
�

�2

neR ln �
�

�2R2

N ln �
�

IQ
2 R2

N ln �
�

Q2

N ln �
� � Q

RT
	2rW

2 T2

N1/3


 1. �17�

Hence, electrons that have left the cluster are not likely to be
recaptured by other clusters.

In addition to ionization of atoms and ions as well as
ionization of the whole cluster, the laser also deposits energy
into the electrons that are captured by the cluster, and this
energy deposition is through collisional inverse bremsstrah-
lung. Since there are no temperature gradients and the elec-
tron density is nearly uniform inside the cluster, the heating
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rate can be found by considering the rate of laser-energy
deposition in a metallic sphere. The absorption depth is less
than the skin depth, which, in turn, is less than the cluster
size �N107�. Hence, the absorption cross section of a large
cluster is equal to its geometrical cross section. This state-
ment holds true, if the external laser field does not penetrate
deeply inside cluster, i.e., the intensity is moderate, and the
electron free path is less than the cluster size �27�. The clus-
ter then absorbs laser energy at the rate

Wabs = �abs
cF2

8�
. �18�

This energy goes into heating the electron subsystem �recall
that the number of captured electrons is NZ−Q�, ionization
of cluster ions, and ionization of the cluster as a whole. The
corresponding energy balance is

�R2cF2

8�
=

3

2

d��NZ − Q�T�
dt

+ NJZ
dZ

dt
+

Q�t�
R

dQ

dt
. �19�

Because the cluster size remains constant during the laser
pulse, we can integrate Eq. �19� with respect to time:

cR2

8N
�

−�

t

F2�t��dt� =
Q2

2RN
+

3

2
�Z −

Q

N
	T + ��Z� . �20�

Here we introduced the function ��Z� via ���Z�=JZ.
Supplementing Eq. �20� with �8� and �13�, we get a set of
nonlinear equations for the electron temperature, the mean
ion charge and the cluster charge. With the help of these
equations, one can find the plasma parameters after the end
of the laser pulse. Results of such calculations are presented
in Table I.

Analyzing the data obtained one can see that the produced
plasma is always overheated. From the table we see that
the efficiency of the production of highly charged ions

reduces with decreasing laser pulse length. This comes from
the fact a typical ionization time is longer than the pulse
duration. If the pulse is not very short �longer than 100 fs�,
the plasma parameters are determined by the energy of the
laser pulse and do not depend on the intensity and the pulse
duration separately. This statement is supported by the cal-
culation for a non-Gaussian pulse shape as well. One can see
that in the previous section we overestimated the equilibrium
temperature.

However, the plasma considered is still overheated, and
the ratio T /JZ of the temperature over the ionization potential
is in the range of 2–40. The parameter T /JZ is determined by
the pulse duration and the cluster size. According to the cal-
culation, high values of T /JZ correspond to short laser pulses
and small clusters. Hence, with increasing cluster size and
pulse duration the properties of the plasma produced become
closer to the properties of an equilibrium plasma. The highest
ion charges are achieved if the laser pulse length is not short,
and the final parameters are determined mainly by the pulse
energy of the pulse rather than its intensity. This implies that
there is an optimal laser pulse duration for x-ray generation
such that, on the one hand, the cluster has not enough time to
disintegrate and, on the other, the ions can be ionized as the
result of inelastic electron impact.

III. EVOLUTION AFTER THE LASER PULSE

So far we have considered the evolution of the plasma
during the laser pulse. However, the characteristic times of
most of the inelastic processes that result in photon emission
are longer than the laser pulse duration. Thus radiative pro-
cesses mostly take place after the laser pulse, when the elec-
tron temperature and the electron density are significantly
changing during the cluster expansion. To proceed with the
analysis of x-ray generation in the cluster beam, the plasma

TABLE I. Laser parameters at the end of the pulse for given laser intensity and pulse length, calculated
from Eqs. �20�, �8�, and �13�.

I,1016 W/cm2 �pulse,fs N Z
JZ

T

Q

RT

5 2·103 108 46 0.15 16.2

5 2·103 109 45 0.31 16.8

5 2·103 1010 43 0.26 16.9

102 102 108 29 0.01 18.5

102 102 109 30 0.05 18.6

102 102 1010 30 0.1 18.8

15 2·102 108 33 0.09 15.6

15 2·102 109 32 0.18 16.1

15 2·102 1010 31 0.38 17.2

60 50 108 23 0.02 15.8

60 50 109 23 0.05 15.9

60 50 1010 23 0.1 16.1

102 3 ·102 108 35 0.01 18.1

102 3 ·102 109 36 0.02 18.3

102 3 ·102 1010 37 0.05 18.5
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evolution during the cluster expansion has to be examined.
After its interaction with the laser pulse, the cluster begins

to disintegrate. A highly charged ion in the cluster is subject
to three forces: the electrostatic force FE caused by the clus-
ter charge distribution, the force Fh from variations of the
electron-gas pressure, and the friction force Fr due to
electron-ion scattering. The hydrodynamic force is given by
�38�

Fh = −
�Pe

nion
, �21�

where Pe is the electron pressure. Since the electron density
is nearly uniform inside the cluster and rapidly varies only
at its boundary, the hydrodynamic pressure is important
only at the cluster surface. Assuming that the electron
temperature is constant throughout the cluster and that the
electron density is defined by the Boltzmann distribution
ne�r�=n0exp���r� /T� in the self-consistent cluster potential
��r�, we have the hydrodynamic force

Fh = −
�Pe

nion
= −

ne

nion
���r� =

ne

Znion
FE. �22�

This relation between the hydrodynamic and the electrostatic
force comes from the fact, that ions are accelerated by the
same field that has captured the electrons. Because the ratio
ne / �Znion� inside the cluster is close to unity for large clus-
ters, the hydrodynamic and the electrostatic force are practi-
cally equal. The friction force has virtually no influence on
the cluster expansion. It depends on electron temperature and
electron density as �33�

Fr  −
ne

3T
��tr�v�v2v� , �23�

where the brackets indicate the average over the electron
velocity distribution, �tr is the electron-ion transport cross
section, and v is the ion velocity. Initially, the friction force
is small as a consequence of the temperature being rather
high. Then, during the expansion, the temperature falls, but
so does the electron density. Comparing the friction force
with the electrostatic force, we get

Fr

FE
� � Z

Tne
1/3	3/2

·�N

Q
·

1
�M

� 1. �24�

Thus, expansion of the cluster owing to the cluster’s elec-
trostatic field and the hydrodynamic pressure of the electrons
is a self-consistent process. The equation of motion for ions
of mass M is

M
dv

dt
= −

�P

nion
−

Q�r�Zr

r3 = − �Z +
ne

Znion
	Q�r�

r2 er. �25�

Ignoring the frictional force, we have found that the cluster
expansion depends on the charge distribution inside the clus-
ter, which in turn, is determined by the electron distribution.
The parameters that specify the distribution are the electron
temperature, the cluster charge, and the ion density, and these
parameters vary in the course of the cluster expansion.

To investigate the cluster expansion, we first consider the
limiting case, where the electron temperature tends to zero
for given cluster charge Q and initial radius R0. Then, the
surface layer is free of electrons, while in the internal layers
the electron and the ion densities are equal. The electron
pressure is practically zero. The surface ions will then ex-
pand with a radial velocity of about �2Q / �R0M�, whereas
the internal ions remain motionless. The center of the cluster
does not expand, while the cluster radius is increasing. It
differs from the Coulomb explosion of a cluster, when the
electron energy is comparable with the ionization potential of
the cluster. The electrons are distributed uniformly inside the
cluster. The electron cloud leaks out of the cluster, so that the
gradient of the electron density is near zero. To the uniform
cluster expansion speed �2Q / �R0M� corresponds the
breakup time

�exp ��MR0
3

2QZ
. �26�

As a result, an appreciable number of ions is accelerated to
speeds on the order of 5 a .u. �109 cm/s�. Accordingly, a sub-
stantial Doppler broadening of emission lines is expected,
but not observed in actual experiments �34�. The explanation
of this disagreement has to do with the different situation in
large and small clusters. Both the electron-density gradient
and the uncompensated cluster charge, which are responsible
for the breakup, have large values only on the surface of a
large cluster, and they decrease exponentially toward the
center according to Eq. �2�. In particular, the electrostatic
field that accelerates the ions can be approximated as
follows:

E�r0� 
Q

r0
2 exp�− k�R − r0�� , �27�

where r0 is the radial position of the ion. Therefore, the
forces acting on ions in the cluster are strong only on the
surface, and a small number of ions located in a surface layer
with approximate thickness R /k leaves the droplet fast �re-
call that k=�3n /RTe
1�, whereas the majority of ions is
only accelerated at later stages. This leads to higher stability
of the cluster.

Equation �25� can be solved numerically taking into ac-
count the redistribution of the electrons in the self-consistent
potential. This is outside the scope of this paper. Here, our
aim is to evaluate the efficiency of x-ray generation by the
excited cluster beam. In earlier work, we have shown �39�
that x-ray generation takes place immediately after the laser
pulse, i.e., during the initial stage of the expansion, when the
cluster size has increased by a factor of two or three. So, we
have to describe accurately the initial stage of the expansion.
In contrast to a small cluster where the ion density stays
uniform, for a large cluster it changes dramatically, approxi-
mately according to
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nion�r� = �1 −
r2

R�t�2	��t�

, �28�

where the functions R�t� and ��t� characterize the distribu-
tion. In the course of the expansion, ��t� increases from zero
to some value below unity. The ion-density variation results
from the changing electron density, and the electron density
changes significantly only near the cluster surface. In the
other cluster regions, the electron density is described by Eq.
�2�, i.e., both the ion and the electron density are close to
uniform during the initial stage of the expansion.

Therefore, instead of dividing the cluster into spherical
layers and solving Newton’s equations for all of them or
using other hydrodynamic methods, we formulate an equa-
tion that specifies the average size of the cluster as a function
of time. To this end, we average Eq. �25� over the ion posi-
tions and approximate the hydrodynamic pressure by the
Coulomb force. Thereby, we obtain the equation

d2Rb

dt2 =
2ZQ

kRb
2 �29�

for the average radius Rb�t�. This equation holds true for the
initial stage of the cluster disintegration when the parameter
k=R /rD=�3N / �RbT� is much larger than unity.

At the end of the laser pulse, most of the energy absorbed
by the cluster with N atoms from the laser pulse is in the
electron subsystem. This energy is spent for ionization of the
cluster as a whole ��Q /R��dQ /dt��, further ionization of ions
inside the cluster �NJZdZ /dt�, x-ray production
�d�inelastic /dt�, and kinetic energy of the ions �d�ion /dt�. The
balance is

3

2

�d�NZ − Q�T�
dt

=
dQ

dt

Q

Rb
− NJZ

dZ

dt
−

d�ion

dt
−

d�inelastic

dt
.

�30�

Equation �29� for the cluster radius �i.e., the electron and ion
number densities�, Eq. �13� for the cluster charge, and the
energy balance equation �30� govern the evolution of the
cluster with NZ−Q electrons after the end of the laser pulse.
On the basis of these equations, we can arrive at some pre-
liminary conclusions about the evolution of the plasma.

Let us assume that the electron energy is exclusively con-
verted into kinetic energy of the ions. Then, we can consider
the electron energy loss as work done by the electrons on the
ions. If the expansion proceeds adiabatically, then the energy
passed from the electrons to the ions can be found by stan-
dard thermodynamics �i.e., we consider the electron gas of
the cluster as an ideal gas that performs work�. The cluster
expansion is an adiabatic process with respect to the electron
subsystem �i.e., the plasma remains in thermal equilibrium
up to the disintegration of the cluster�, if the electron relax-
ation time, estimated as the electron-electron collision time
�ee, is shorter than the expansion time. For simplicity, we
take the expression �26� for the cluster expansion time. Then
the ratio of the electron-electron collision time over the
expansion time is

�ee

�exp
� � Z

rWT
	3/2�M

Z
	�NZ

Q
	 ln �

Z
� 1. �31�

Even if the expansion time is underestimated, the electron
gas cools down adiabatically according to the criterion �31�.
By the second law of thermodynamics, electron temperature
and density are related by

Tne
−2/3 = const. �32�

Expressing the electron concentration in terms of the effec-
tive cluster radius Rb, we find

T�t� = T�0�Rb�0�2Rb�t�−2. �33�

Equation �33� overestimates the temperature because it does
not take into account the other channels of energy consump-
tion, which are displayed in Eq. �30�. Let us estimate these
losses. From Eq. �33� we see that the ratio

Q�t�
Rb�t�T�t�

=
Q�t�Rb�t�

T�0�Rb�0�2 �34�

increases with time. Equation �13� then shows that the ion-
ization rate of the cluster as a whole �the first term on the
right-hand side �r.h.s� of Eq. �30�� is quenched with increas-
ing time. Thus, the cluster charge tends exponentially to a
limit. Numerical investigations have demonstrated that for a
wide range of cluster sizes and temperatures the cluster
charge increases by a few percent after the end of the laser
pulse. Hence ionization of the cluster as a whole is sup-
pressed and does not significantly affect the evolution of the
cluster. Further we have shown, that ionization of the cluster
ions after the end of the laser pulse is not significant �the
third term on the r.h.s. of Eq. �30��. In addition, experimental
investigations �6,8� have demonstrated that only a small
amount of energy is converted into x-rays �last term on the
r.h.s. of Eq. �30��. Hence, the relation �33� between the ef-
fective cluster radius and the temperature actually holds true
with high accuracy.

Inserting the relation �33� into Eq. �29� we get the final
equation for the cluster radius,

d2Rb

dt2 =
2ZQ

�3N/�Rb
2�0�T�0��Rb

5/2
. �35�

Rewritten for the dimensionless reduced effective cluster
size x�t�=Rb�t� /Rb�0�, it has the form

d2x

d�2 =
1

x5/2 �36�

with the initial conditions x�0�=1 and ẋ�0�=0. Here we in-
troduced the reduced time �= t /�0 where

�0 =�MRb�0�3

ZQ�0� � 3N

Rb�0�T�0�	
1/2

. �37�

Hence, the key parameter of the cluster plasma, which gov-
erns its temporal evolution, is the cluster size. Solving Eq.
�36� we find the dependence of the effective cluster size on
time. Knowing x�t�, one can evaluate the entire set of cluster-
plasma parameters, viz. the ion densities, the electron den-
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sity, and the electron temperature, as functions of time during
the expansion.

IV. X-RAY EMISSION

In a cluster excited by a laser pulse, radiative processes
occur through inelastic collisions of electrons with multiply
charged ions. We now consider three such basic radiative
processes, namely x-ray emission via �i� photorecombination
of a free electron with an ion, �ii� dielectronic recombination,
and �iii� electron-impact excitation of a multiply charged ion.
The rates of such inelastic processes are smaller than those
for elastic collisions and drop rapidly with decreasing
electron density �36,37,40�. So, the processes take place
mainly after the end of the laser pulse, when the cluster
disintegrates. Below, we will overview these three processes
separately.

A. X-ray emission due to photorecombination process

We first consider the photorecombination process

e + A+Z → A+�Z−1� + � � �38�

for electrons moving inside the cluster. The photorecombina-
tion cross section of an electron with a bare ion of charge Z
for low electron energies is �36,37,40�

�  �4

e
	4�2

3
�3Z2

v2 =
�0

v2 , �v2 � Z2� , �39�

where v is the electron velocity, � the fine-structure constant,
and e the base of the natural logarithm. Because of the v−2

dependence for the photorecombination cross section, x-ray
emission mostly occurs near those points of the electron tra-
jectories, where the kinetic energy tends to zero. Thus the
rate P of electron photorecombination is

P�t� = �v��v�ne�t�� � Znion�t�
�0

T�t�1/2 �40�

and the averaged total number W of photons emitted per ion
via the photorecombination mechanism before cluster disin-
tegration can be estimated as follows:

W  P�0��0, �41�

where �0 is the cluster expansion time �37� and P�0� the
photorecombination rate after cluster ionization, when the
electron temperature as well as the electron number density
are maximal. The total number of emitted photons per ion as
the result of photorecombination is relatively small because
the cross section of the processes depends on the third power
of the fine structure constant �. We have that W is of the
order of 10−5.

B. X-ray emission via dielectronic recombination

Another mechanism of x-ray generation is dielectronic re-
combination. In the dielectronic recombination process, a
free electron is captured in an autoionization level, where
two electrons are excited such that their total excitation en-
ergy exceeds the ion ionization potential. This autoionization

state can decay via two channels, either by release of one
electron with transition of the other one into the ground state,
or as a result of radiation. Hence, the general scheme of
dielectronic recombination is

e + A+Z → �A+�Z−1��**, �42�

to be followed by

�A+�Z−1��** → e + A+Z, �43�

or �A+�Z−1��** → �A+�Z−1��* + � � . �44�

Here Z is the ion charge and �A+�Z−1��** is an autoionization
state of the multicharged ion, i.e., a discrete state in the con-
tinuum whose energy lies above the continuum threshold.

The contribution of dielectronic recombination to x-ray
emission for moderate cluster sizes �39� was estimated ear-
lier. We now evaluate this process more accurately using the
rate constants of dielectronic recombination for Ne-like ions
obtained in numerical calculations �41� and generalizing
these results to other shells. To make preliminary estimates
for dielectronic recombination, we assume the cluster expan-
sion to be uniform with a constant rate, i.e., the radius R�t� of
the cluster is determined by

R�t� = R0�1 +
t

�0
	 . �45�

Here �0 is the characteristic expansion time �37� and the
initial cluster size is R0. Actually, according to Eq. �36�, the
cluster size, after it has increased several times, depends on
time practically linearly. Then, the electron density decreases
as

ne�t� = ne�0��1 +
t

�0
	−3

. �46�

Following Refs. �36,37,42� we write the dielectronic recom-
bination rate in the form

Wdiel 
a

E0
3/2x3/2e−x, �47�

with x=E0 /T. The constants a and E0 can be retrieved, e.g.,
from Ref. �41�. The rate �47� assumes its maximal value
wmax=0.41a /E0

3/2 for x̄=E0 /T=1.5. Using this value we can
rewrite Eq. �47� as

Wdiel  2.5wmaxx
3/2e−x. �48�

The average total number P of photons emitted per ion in the
course of the cluster expansion is

P = �
0

�

dt Wdiel�T�t��ne�t� . �49�

Here we take into account that the electron temperature
inside the cluster drops as a result of adiabatic expansion
according to the power law �33�. Combining Eq. �49� with
�33� and �46�, we obtain for the average number of emitted
photons
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P = 2.5ne�0�wmax� E0

T�0�	
3/2�

0

�

dte�−�E0/T�0���1 + �t/��0���2�

= 2.5ne�0�wmax
E0

T�0�
�0�

�E0/T�0�

�

dz exp�− z2� . �50�

Here ne�0� and T�0� denote the electron number density and
electron temperature at the end of the laser pulse. The total
average number of photons emitted per ion via dielectronic
recombination in the course of the cluster disintegration then
is

P = 4.3wmaxne�0��0
E0

T�0�
. �51�

The quantity E0 is approximately equal to the energy of
the lowest autoionizing state �41�. This energy is much
less than the ionization potential and their ratio is of the
order of 0.005. . .0.04. According to Eq. �11�, the ionization
potential is less than the electron temperature T�0� at the
end of the laser pulse. Therefore, for the typical values
wmax=3.3·10−3 a .u. �2·10−11 cm3/s�, ne�0�=7.5·10−2 a .u.
�5·1023 cm−3�, and E0 /T�0�=1/40 we obtain P�1.

C. Spontaneous emission by cluster ions excited by electron
impact

The last mechanism of x-ray generation in the cluster
plasma that we will consider is spontaneous emission by
excited multicharged ions. The excitation occurs by electron
impact. Along with electron impact excitation, inverse pro-
cesses take place, which proceed according to

e + A+Z → e + �A+Z�*, �52�

e + �A+Z�* → e + A+Z, �53�

or e + �A+Z�* → e + A+Z + � � . �54�

In a low-charge dense plasma the rates of excitation and
deexcitation of ions by electron impact exceed the rate of
spontaneous emission. Most likely, an excited ionic state will
decay by electron impact without photon emission according
to the process �53�. However, the character of the inelastic
process completely changes if the plasma consists of multi-
charged ions. For this plasma, the coronal approximation
�37� is valid, i.e., transitions from states of high energy to
low energy proceed by the radiative decay �54�. Comparing
the rates of the decay by impact �53� and by spontaneous
emission �54�, we take for the latter the inverse of the
spontaneous-emission time, i.e., Wrad=Z4 /�rad.

We take the excitation rate for the transition with energy
�E and oscillator strength faa� in the form �36�

Wex = 1.48 · 102faa�
1

�E3/2e−��1/2p���, � =
�E

T
. �55�

The function p��� is tabulated and can be found in Ref. �37�.
For further estimates it is assumed to be equal to 0.2. The
rate of deexcitation can be found from Eq. �55� by means of

the principle of detailed balance. The result is

Wde−ex = 1.48 · 102 · faa�
ne�0�

T�0�3/2

1

�
p��� , �56�

and the ratio of the deexcitation rate over the spontaneous-
emission rate is

	 �
Wde−ex

Wrad
= 1.48 · 102 · faa�

ne�0�
T�0�3/2

1

�
p��� ·

�rad

Z4 . �57�

For typical values of the temperature and the electron den-
sity, which we have used in the previous subsection, and for
the transition 3d→2p, we have 	=2000/ ��Z4�. As a result,
the ion charge is �20, and the criterion for the coronal
model is satisfied.

The character of x-ray generation is determined by the
ratio of the expansion time and the time of ion excitation. If
the cluster expansion is fast in comparison with the excita-
tion of ions, then the number of initially excited ions does
not change very much during the expansion. After the expan-
sion, the excited ions decay spontaneously with the emission
of radiation. This is the same scenario that is realized for
moderate cluster sizes. On the opposite side, if the cluster
expansion is slow, the number of excited states is in thermal
equilibrium in the course of expansion and varies with the
temperature practically up to the end of the expansion. That
corresponds to the present case of large clusters. Assuming
like in the previous subsection a uniform and adiabatic ex-
pansion, we will determine the temperature up to which ther-
mal equilibrium is maintained. To this end, we compare the
expansion time �0 �cf. Eq. �37�� with the excitation time
�ex=1/ �newex�. From Eqs. �33� and �46� we have

ne

ne�0�
= � T

T�0�	
3/2

, �58�

which gives

�0

�ex
= 1.48 · 102 · faa�

ne�0�
T�0�3/2�

e−�

�
p��� . �59�

For typical values of the plasma parameters we get �=2–8.
This means that during most of the expansion the number of
excited ions is in thermodynamic equilibrium and deter-
mined by the instantaneous electron temperature and by the
electron and ion densities. Throughout the expansion, radia-
tion of x-rays through spontaneous decay of electron-impact-
excited ions takes place. We evaluate its efficiency on the
basis of the following model. The number of excited ions is
determined by electron impact excitation, and hardly affected
by subsequent electron impact. All the excited states decay
spontaneously with the generation of x-ray photons. During
the expansion the number of excited ions is no longer replen-
ished because the electron density and temperature drop
quickly and the impact excitation is suppressed. Hence, the
probability for an ion to produce a photon is
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P = �
0

�

ne�t�Wex�T�t��dt . �60�

Proceeding as above in the derivation of Eq. �50� and with
the same assumptions we obtain

P = 74�expfaa�
ne�0�

T�0�3/2�
�E/T�0�

� e−y

y2 dy . �61�

For typical plasma parameters, we get an average total num-
ber of photons emitted per ion of the order of 1–5, i.e., dur-
ing the cluster expansion an ion may produce several pho-
tons, carrying out several sequences of excitation and
emission.

Thus, we have found that the emission of x-ray photons
proceeds via dielectronic recombination as well as radiative
decay of excited ionic states. For large clusters, the effi-
ciency of both processes is comparable, in contrast to
medium-sized and small clusters. The contribution from di-
electronic recombination grows with increasing mean
ion charge, while the efficiency of radiative decay as the
result of impact excitation drops. Such a behavior is deter-
mined by the preexponential factors of the corresponding
rates, which are proportional to Z2 and Z−3 for dielectronic
recombination and impact excitation, respectively. The inten-
sity of the x-ray pulse produced in the initial stage of the
cluster expansion drops exponentially with decreasing tem-
perature. This gives a chance to control the duration of the
x-ray bursts.

V. A CONTINUOUS MODEL FOR X-RAY EMISSION BY A
LASER-CLUSTER PLASMA

A. Justification of a continuous model

Below we consider a simple model for the radiation of a
hot plasma due to resonant transitions in multicharged ions.
This model is based on the existence of a large number of
states taking part in the transitions. Radiative transitions in
ions in the plasma are determined by their energy-level dis-
tribution, i.e., their density of states �DOS�, which can be
written as follows:

��E� = �
n

gn��E − En� , �62�

where gn and En are the statistic weight and the energy of a
state n. The summation is carried out over all states including
the continuum. In general, the energy-level distribution for
the ions is complicated, but it is confined to limited energy
regions. The structure can be described in terms of statistical
physics by a few parameters �43–45�. Within the continuous
model, we approximate the real spectrum by the model spec-
trum �46,47� �see also Fig. 2�

��E� = �
k

Ckexp� �E − Ēk�2

��k
2 
 . �63�

The center of the kth group of levels is specified by Ēk, its
width by ��k, and its weight by Ck. These parameters are

adjusted to the real spectrum. Because the main contribution
to radiative kinetics is given by transitions among the “first
excited states” and the ground state, further on we will only
consider the first few terms in the sum �63�.

Such an approach is reasonable in the present case be-
cause, due to their strong broadening, neighboring energy
levels overlap. This allows us to consider the radiation spec-
trum as a continuous spectrum, which is concentrated within
some band. For the distribution function of the emitted ra-
diation we assume a Gaussian dependence on the frequency,
which is characterized by two parameters—the center fre-
quency �0 and the width �� so that

I��� � exp�−
�� − �0�2

2��2 	 . �64�

Applying the continuous model, we have in mind a hot
plasma containing multicharged xenon ions. To be specific,
we take the ion charge to be in the range Z=26–36, so that
the valence electron shell of this ion is 3dk, where k=36−Z.
Justifying a continuous model for the emitted radiation, we
refer to three peculiarities of the radiative transitions. First,
the number of electronic states within the ground-state shell
3dk is large and the excitation energies inside this shell are
lower than the thermal electron energy; therefore, the popu-
lation of many electron states in the shell 3dk is significant.
Second, there is a large number of resonant radiative transi-
tions according to

3dk−1np → 3dk + � �, 3dk−1nf → 3dk + � � , �65�

and some of them are strong. Third, due to the interaction of
a radiating multicharged ion with the surrounding ions the
spectral lines are broadened �Holtsmark broadening�, and
neighboring spectral lines overlap. As a result, the frequency
spectrum of the radiation of a multicharged ion with a given
charge forms a continuous band. Since the spectral bands due
to multicharged ions with different charges also overlap, the
result is that the radiation of a hot plasma forms one broad
band. Of course, the real emission spectrum of a hot plasma
with multicharged ions is very complicated. Within the
framework of this model, we use the simplified description
of Eq. �64�.

As an example, we present in Table II the classification of
the electron configurations for an atom or ion with the par-
tially filled electron shell 3dk. For LS coupling, the electron
configurations are characterized by the quantum numbers L,
S, and J, where L and S are the orbital momentum and spin
of the respective shell, and J is the total angular momentum
of the atom or ion, which results from the vector sum of the

FIG. 2. Density of states �DOS� of Xe+30 vs energy �in atomic
units�. �a� Real structure of the low-energy levels, �b� band-
approximated DOS.
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orbital momentum of magnitude J and the spin with magni-
tude S. The LS-coupling scheme is based on the assumption
that the spin-orbit level splitting is small compared with
characteristic energy-level distances between levels of differ-
ent L and S, which are due to the exchange interaction. How-
ever, with increasing Z the spin-orbit splitting grows propor-
tionally to Z4, whereas the exchange interaction of electrons
of a given shell is independent of Z, so that for large Z the
scheme of angular-momentum coupling may change. Never-
theless, the total angular momentum J of all electrons is a
conserved quantum number, as is the number of electron
configurations. Therefore, this change is not essential for our
analysis, and there are states with energies close to the
ground state.

Thus the model under consideration is based on the as-
sumption that for multicharged ions of given Z there are
many radiative transitions with closely similar transition en-
ergies and rates. We have in mind multicharged xenon ions
with charges in the range Z=26–36, whose ionization poten-
tials vary between 800 and 2000 eV. The exchange splitting
for this electron shell is between 10 and 20 eV, i.e., several
electron configurations are found in this range. Because the
plasma is dense, the levels are broadened. We suppose the
level broadening to be caused by the quadratic Stark effect.
Estimating the field by that of the surrounding ions, we apply
the approximate formula for the polarizability �, which is
given by �42�

� =
a

Z4 �Z − b�3, �66�

where for d electrons the parameters are a150–300 a .u.
and b18–22 a .u. Then for a state with charge Z the en-
ergy broadening can be estimated as follows:

�EZ �
a

2Z4 �Z − b�3�4�nion

3
	2/3

. �67�

For xenon ions with charges Z=26–36 inside the cluster,
where the ion number density in the cluster coincides
with the initial number density of the atoms, we have
�EZ1–2 a .u. �30–50 eV�. This implies that neighboring
spectral lines overlap, as do the energy-level profiles of ions
with different charges within the same shell. This justifies the
assumptions underlying the continuous model.

B. Implications of a continuous model for the radiation of
multicharged ions in a hot plasma

The central goal of this paper is to evaluate the emission
spectrum of the generated cluster plasma. Hence, we have to
calculate the spectral-line intensities of all radiative transi-
tions in the plasma. The intensity of a spectral line is usually
defined by the energy emitted per second and unit volume of
a plasma as the result of radiative transitions. For discrete ion
levels i and k and transition frequency �ik, this is �37�

Iik = �ikW
rad�i → k�nion

�i� . �68�

Here Wrad�i→k� is the radiative transition rate from level i to
k, and nion

�i� is the population density of the ionic �atomic�
level i. The sum over all levels gives the ion number density,
i.e.,

�
j

nion
�j� = nion. �69�

The level population densities depend on the balance of
all processes of excitation, radiation, and all other processes.
They are governed by the set of equations �i=1, . . . ,N�

dnion
�i�

dt
= �

j

nion
�j� W�j → i� − nion

�i� �
j

W�i → j� , �70�

where the total transition rate from state i to j is denoted
by W�i→ j�. The index i comprises all quantum numbers
of the ion, in particular, its charge Z and energy �. We com-
bine all remaining quantum numbers, such as the total mo-
mentum and the total spin, into the index �H�. A general
solution of the level-population problem is impossible be-
cause of the tremendous number of energy levels and con-
tributing processes. In the continuous description, the set of
Eqs. �70� becomes the set of integrodifferential equations
�Z=1,2 , . . . �

TABLE II. Electron configurations for the shell dk.

k Electron configurations Total number of states Number of configurations

0,10 1S 1 1

1,9 2D 10 2

2,8 1S , 3P , 1D , 3F , 1G 45 9

3,7 2P , 4P , 2D�2� , 2F , 4F , 2G , 2H 120 19

4,6 1S�2� , 3P�4� , 1D�2� , 3D , 5D,
1F , 3F�2� , 1G�2� , 3G , 3H , 1J 210 40

5 2S , 6S , 2P , 4P , 2D�3� , 2F�2�,
4F , 2G�2� , 4G , 2H , 2J 252 37
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�p��,Z,�H�,t�
�t

= �
Z�,�H��

� d��p���,Z�,�H��,t�

�W̄����,Z�,�H��� → ��,Z,�H������,Z�

− p��,Z,�H�,t� �
Z�,�H��

� d������,Z��

�W̄���,Z,�H�� → ���,Z�,�H���� �71�

with the normalization

�
Z�,�H��

� d��p���,Z�,�H��,t� = 1. �72�

Here, we have replaced the ion-number densities nion
�i� �Z� of

Eq. �70� for the level i by the probability p�� ,Z , �H� , t� for
the ion to be in a state with charge Z, energy �, and quantum
numbers �H�. The quantity ��� ,Z� stands for the DOS of an
ion with charge Z. We used the fact that the total number of
ions is constant.

The spectral intensities Iik of the discrete description are
replaced by the spectral radiation density �i.e., the intensity
radiated into the range of frequencies between � to �+d��.
Then Eq. �68� turns into

�dI���
d�

�
�=�−��

= �
Z�,�H��,Z,�H�

Wrad���,Z�,�H�� → �,Z,�H��

�p���,Z�,�H������,Z�nion, �73�

where nion is the ion number density. This description has
several advantages. First, the new set of equations is more
transparent. Knowing the rates that characterize the pro-
cesses in the plasma, one can more accurately distinguish the
main processes proceeding in the system. Moreover, the ion
levels in the plasma have widths, which depend on the
plasma properties. If the levels are rather broad and close to
each other, we are not able to identify them individually nor
to attribute individual rates to transitions from one to the
other. The continuous description does not have this prob-
lem. One of its best features is it is able to avoid problems
caused by uncertainties about some of these individual rates.
In some cases, expressions for the rates can be obtained on
the basis of statistical methods �44,45�.

C. A simplified model

The level structure of real ions becomes more and more
complex with increasing number of electrons. For the sake of
transparency, we consider a simplified model. We assume,
that the ion levels are characterized by their energy and de-
generacy only and disregard all other quantum numbers,
such as the total momentum. For instance, in the transition
3dk+e→3dk−14l+e, we treat the final states as a single state,
regardless of the momentum. This omission is justified for a
dense plasma, because the high charge density around the ion
leads to a fast redistribution of the population so that states
with different momenta have about equal probability.

Another assumption is that the energy levels of the mul-
ticharged ions have a band structure with the DOS �63�. The

centers of these bands coincide with hydrogenlike levels
Z2 /2n2. Because the band structure results from the mixing
of levels with closely related energies, Stark splitting, and
shifts, we take for the half-width the expression

�En = 0.025
Z2

2n2 , �74�

where the factor of 0.025 has been adopted from the case of
xenon. In further investigations, one can substitute more re-
alistic data for the DOS of the ions, which are based on
experimental data and statistical properties of the ions inves-
tigated. To reproduce the low-energy part of the radiation
spectrum of the ions, it is sufficient to take into account only
the ground state and the lowest excited states. The highly
excited states do not contribute very much because their
populations are very low. Moreover, the highly excited states
decay primarily into the very lowest states so that the pho-
tons generated belong to a different part of the spectrum. The
principal quantum number of the ground state is n=3, while
the principal numbers of the excited states are between
n=4 and n=6. So, we take the excitation energy �Z2, i.e.,
the relative difference between the excitation energies of ions
of adjacent charges is 20–30 eV. Thus, the spectral lines of
resonant radiative transitions of multicharged ions fill some
band of transition energies more or less uniformly. The cor-
responding photon energies are comparable with the ioniza-
tion potential. For example, the excitation energy �E for
transitions from n=3 to n=4 is approximately one half of the
ionization potential.

For the analysis of the radiation kinetics we take into
account the evolution of the ion charge in the course of the
cluster expansion due to the processes of ionization and re-
combination in electron-ion collisions. The main recombina-
tion process is dielectronic recombination. Three-body re-
combination and photorecombination give a small
contribution to the charge evolution, and we ignore these
processes. Ionization of ions results from electron impact,
which takes place during the laser pulse as well. Thus, we
analyze the radiation kinetics of the ions based on the pro-
cesses of dielectronic recombination, ionization, excitation,
and quenching by electron impact, and spontaneous emission
of excited ions.

In order to develop the model further we introduce an
explicit expression for the rate coefficients in Eq. �71�. For
electron impact excitation, we use the expression �37�

Wex�Eg → Eex� = 18.5
1

�E3/2 f��0
�1/2e−�, �75�

where �=�E /T, �E= �Eex−Eg� with Eex and Eg the energies
of the excited state and the ground state, and f��0

is the
oscillator strength. This expression has worked well in pre-
vious cases �40,48�.

To determine the radiative life time �* of an excited state,
we use the one-electron approximation and assume hydro-
genlike oscillator strengths, i.e., we assume the typical ion
charge to be large, Z
1. In the case of one electron in a
hydrogenlike ion the time �* of the spontaneous radiative
transition is given by
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�* = f��0

2�2

c3 g0, �76�

where g0 is the number of unoccupied electron states in the
electron shell of the ground state. For the electron shell 3dk,
the number of vacancies in the final state is g0=11−k. Since
the sum of the oscillator strengths for an excited electron is
unity, we obtain

�* = �11 − k�
2�Eex − Eg�2

c3 . �77�

Its inverse is the radiative decay rate

Wrad�Z��Eex → Eg� =
1

�*
��E − Eex� , �78�

where the function ��E−Eex� is defined by

��E − Eex� = �1,E � �Eex − �,Eex + �� ,

0,E � �Eex − �,Eex + ��
�79�

with � the width of the excited state.
Finally, we turn to dielectronic recombination, which re-

sults in the ion emitting two photons. The first photon is
generated in the transition from the doubly excited state to a
singly excited state, while the second is produced in the
spontaneous decay of the singly excited state. Thus, in cal-
culating the radiation spectrum it is important, in which dou-
bly excited state the ion was before the first photon had been
radiated. On the other hand, for the population kinetics the
intermediate state is not important. We use the Burgess ap-
proximated formula �37� for transitions between the initial
state with energy Ei and charge Z+1 and the final state with
Ef and Z

WDR�Z + 1,Ei → Z,Ef� = C�
k

f ik
4Z4

�Z + 30�2

�Ek − Ei�1/2

T3/2

�exp�− g�Z�
Ek − Ei

T
	 �80�

with

g�Z� = �1 + 0.015
�Z + 1�3

�Z + 2�2	−1

. �81�

The subscripts i, k, and f denote the initial state, the inter-
mediate doubly excited state, and the final state, respectively,
and f ik is the oscillator strength of the transition from the
initial to the intermediate state. The constant C in Eq. �80� is
chosen so that it qualitatively reproduces the results, e.g., of
calculations for Ne-like ions �41�. The total rate of recombi-
nation WtotalDR�Z ,T� is determined by

WtotalDR�Z,T� = �
f ,i

WDR�Z,Ei → Z − 1,Ef� . �82�

For the 3d electron shell of a multicharged ion the lowest
autoionization state is A+�Z−1��3dk−14l5l��. We assume that
doubly excited states �3dk−1nln�l�� with principal quantum
numbers n�, n=4–6 make the dominant contributions. For
simplicity, we do not take into account dielectronic recombi-

nation from excited states. Usually, the contributions of such
transitions are not essential �see Refs. �36,37� and references
therein�.

To simplify the solution of the rate equations �71� with the
rate coefficients �75�, �78�, and �80�, we introduce the aver-
age charge

Z̄�t� =� d� �
Z,�H�

Zp��,Z,�H�,t� . �83�

If the probability p�� ,Z , �H� , t� is sharply peaked about the
average charge �83� and if all processes that involve more
than one electron, such as double ionization, are disregarded,
its time derivative approximately satisfies

dZ̄

dt
= Wion�Z̄,T� − WtotalDR�Z̄,T� , �84�

where Wion�Z ,T� and WtotalDR�Z ,T� are the total ionization
rate and dielectronic recombination rate, respectively; see the
Appendix where we will sketch a derivation of Eq. �84�.
Note that the right-hand side of Eq. �84� depends on time not

only via Z̄ but also via the temperature T.
Below, we calculate the population only for those ion

states whose charge is close to the average charge Z̄ whose
time evolution follows Eq. �84�. Calculating the population
of the energy bands we take into account that the cluster
expansion leads to decreasing electron temperature as well as
number density in accordance with expression �58�.

D. Results of calculations

In Sec. II, we derived a connection between the cluster
size and the laser parameters, on the one hand, and the elec-
tron temperature and the final ion and cluster charge, on the
other. This connection is not simple. For example, the final
electron temperature as a function of the laser intensity has
several maxima for fixed values of the laser pulse duration
and cluster size. Therefore, in order to have a simpler prob-
lem, we consider the dependence of x-ray emission on the
ion charge and the electron temperature at the end of the
laser pulse.

After the end of the laser pulse, the ions can change their
charge by dielectronic recombination or ionization by elec-
tron impact. Figure 3 gives the ion charge in the course of
the cluster expansion for the initial charge Z0=32 and T /JZ

FIG. 3. Variation of the ion charge in the course of the cluster
expansion for T /JZ=5, Z0=32, and N=109.
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=5. Initially, recombination and ionization proceed fast;
later, the electron number density and temperature decrease,
which leads to an exponential decrease of the rates of recom-
bination and ionization, while the ion charge tends to a con-
stant. Figure 4 presents the charge variation �Z as a function
of the parameters T /JZ0

and Z0 as a result of the cluster
expansion. It can be seen that the charge does not change
very much with increasing electron temperature, regardless
of the initial charge. This dependence is not as smooth as one
might have expected. The reason is found in the strong tem-
perature dependence of the recombination coefficient.

The number of photons produced per ion decreases with
increasing electron temperature �Fig. 5� because of the de-
pendence of the ionic cross sections for both excitation by
electron impact and for dielectronic recombination on the
electron energy. For multicharged ions, the excitation cross
section is finite at the threshold and, for dipole transitions,
has its maximum near the threshold. For higher energies E, it
decreases as 1/E. Thus, according to the above model, the
conversion efficiency from laser energy to x-rays has a maxi-
mum at T /JZ�1–2. Therefore, the conversion efficiency
grows with increasing pulse duration since for large clusters
small values of T /JZ correspond to long pulses. But, obvi-
ously, the pulse duration cannot exceed the cluster lifetime,
which increases with the cluster size according to Eq. �26�.
Indeed, the interaction of a laser pulse with an expanding
cluster decreases as the cluster density drops. Hence, the op-
timal duration of the laser pulse is of the order of the cluster
expansion time.

The conversion efficiency increases with larger cluster
size �see Fig. 6� because the cluster lifetime increases with
increasing size. From Eq. �26�, the cluster lifetime is propor-
tional to N1/2, where N is the number of cluster atoms. Ana-
lyzing the conversion efficiency as a function of the cluster
size at fixed electron temperature, we find that the efficiency
increases with increasing cluster size as N1/2. The conversion
efficiency grows with increasing cluster size because of an
increase of its lifetime. According to Eq. �26� the cluster
lifetime is proportional to N, the number of cluster atoms.
For given electron temperature T, the number nph of gener-

ated x-ray photons depends on the cluster size as N1/2. For
fixed pulse energy, increasing cluster size leads to a decrease
of the electron temperature with respect to the ionization
potential J, i.e., to a decrease of T /J. Correspondingly, nph
grows strongly with the cluster size. Simultaneously, the
charge Z of the forming ions decreases under these condi-
tions �and with it the transition energies�, i.e., the wavelength
of the x-rays increases when the cluster becomes larger.

From the above evaluations it follows that the main con-
tribution to x-ray emission comes from the transition from
the first resonantly excited state to the ground state. The
contribution of other transitions does not exceed 50% of the
emitted energy, as is demonstrated by Fig. 7. This result
holds true under various conditions, and transitions from
highly excited states do not change the general character of
these results. Analyzing the mechanisms of x-ray emission,
in Sec. IV we found that dielectronic recombination and ra-
diative decay of excited ion states makes a comparable con-
tribution to x-ray generation �see Fig. 8�. According to a
more detailed analysis, the first mechanism dominates at low
electron temperatures, while at high temperatures x-rays re-
sult from impact excitation of ions with their subsequent
radiative decay. Indeed, in both cases the rates of the pro-
cesses have the dependence exp�−�E /T�, where �E is a
typical excitation energy, and this ratio is less for dielectronic
recombination than for ion excitation by electron impact.

Above, we have restricted our attention to electrons in the
valence shell, which is justified for moderate temperatures.
For high electron temperatures some contribution to x-ray
emission comes from internal electron shells. This may be of

FIG. 5. The number of x-ray photons produced per ion for
Z0=32, N=109. The solid line, the dashed line, and the dotted line
correspond to the transitions 4→3, 5→3, and 6→3, respectively.

FIG. 6. The number of x-ray photons produced per ion as a
function of the number of constituents for Z0=32 and T /JZ=4. The
solid line, the dashed line, and the dotted line correspond to the
transitions 4→3, 5→3, and 6→3, respectively.

FIG. 4. �Color online� Dependence of the variation �Z�Z−Z0

of the ion charge on the initial electron temperature and the initial
charge Z0 for N=109.
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importance for a strongly overheated plasma �49�. In this
case, x-ray emission may involve transitions between differ-
ent electron shells. Moreover, above we have ignored the
contribution from hot electrons of the overheated plasma.
Estimations justify this because typical electron energies ex-
ceed the excitation energy of the ion valence shell, and the
ion excitation cross section due to such electrons is relatively
small.

VI. CONCLUSION

X-ray generation in the interaction of a strong laser pulse
with a cluster beam can proceed by a variety of processes all
of which involve multicharged ions. Their description re-
quires as an input a lot of data about the spectra of the mul-
ticharged ions and their transitions. The statistical method
allows us significantly to reduce the number of such param-
eters, though with some loss of accuracy in the description.
In addition, it affords a transparent picture of the cluster
evolution in the course of its interaction with the laser pulse.
This approach is also justified because of the broadening and
overlapping of the real spectra of the multicharged ions.
While we incorporate certain limited data for the radiative
and collision parameters of the relevant multicharged ions,
random matrixes can be used to simulate the averaging over
the various ion levels as a first stage of the theoretical
description.

In this paper, we have applied the statistical method to the
evolution of a xenon plasma generated by irradiation of a
cluster beam in the case where the cluster size is comparable

with the laser wavelength. A simple model allowed us to
analyze the variation of the electron temperature and the ion
charge during and after the interaction with the laser pulse. It
turned out that the forming hot plasma is overheated, i.e., the
ion charge is lower than in a plasma in equilibrium, and the
electron temperature decreases in the course of cluster ex-
pansion. In studying these processes, we focused on laser
intensities such that multicharged ions are generated with
charges Z=26–36, which corresponds to transitions involv-
ing the 3d xenon electron shell. According to our estimates,
the conversion efficiency of laser radiation into x-ray emis-
sion can reach 10%. The theory developed shows that for
given absorbed energy of the laser pulse an optimal cluster
size exists, for which the conversion efficiency has a maxi-
mum. The main fraction of the absorbed laser energy goes
into heating and ionization of the cluster atoms, and only a
small part is used for ionization of the cluster as a whole.
The cluster charge does not change very much after the end
of the laser pulse.
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APPENDIX: DERIVATION OF EQ. (84)

For brevity, we will assume that the ion states are charac-
terized by their energy � and charge Z, and suppress the
other quantum numbers �H�. The average charge

Z̄�t� = �
Z

Z� d�p��,Z;t� �A.1�

has the time derivative

dZ̄

dt
= �

Z

Z� d�
�p��,Z,t�

�t
. �A.2�

Applying Eq. �71� for �p�� ,Z , t� /�t we get

dZ̄

dt
= �

Z,Z�

Z� d�d���p���,Z�,t�W���,Z� → �,Z����,Z�

− p��,Z,t�W��,Z → ��,Z������,Z��� = �
Z,Z�

�Z� − Z�

�� d�d��p��,Z,t�W��,Z → ��,Z������,Z�� . �A.3�

We take into account only one-electron processes so that
ions can lose or accept one electron, i.e., we assume that
double ionization or double recombination are insignificant
in the plasma considered. Then the final charge is given by
Z�=Z±1, and Eq. �A.3� becomes

FIG. 7. Spectrum of a Xe plasma. The solid line and the dashed
line correspond to Z0=32, T /JZ=4, N=109 and Z0=32, T /JZ=6,
N=109, respectively. The energy is in atomic units and I is in arbi-
trary units.

FIG. 8. The fraction of photons produced by dielectronic recom-
bination for Z0=32, N=109.
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dZ̄

dt
= �

Z
�d�p��,Z,t� � d�������,Z + 1�W��,Z → ��,Z + 1�

− ����,Z − 1�W��,Z → ��,Z − 1�� . �A.4�

Defining

W̃��,Z → Z ± 1� =� d������,Z ± 1�W��,Z → ��,Z ± 1� ,

�A.5�

we have

dZ̄

dt
= �

Z
� d�p��,Z,t��W̃��,Z → Z + 1� − W̃��,Z → Z − 1�� .

�A.6�

Let us assume that the probability p�� ,Z , t� factorizes ac-
cording to

p��,Z,t� = fZ��,t�C�Z,t� , �A.7�

where C�Z , t� is the probability for an ion to be in the charge
state Z and fZ�� , t� the energy distribution function for an ion
with charge Z. Both are normalized to unity, so that
�ZC�Z , t�=1 and �d�fZ�� , t�=1. The mean ion charge is

�ZZC�Z , t�= Z̄�t�. We can now read off the definitions of the

total ionization probability Wion �the first term� and the total
recombination probability WtotalDR �the second term� in Eq.
�84� from the right-hand side of Eq. �A.6�:

�
Z
� d�p��,Z,t�W̃��,Z → Z + 1� = �

Z

C�Z,t� � d�fZ��,t�

�W̃��,Z → Z + 1� =� d�f Z̄��,t�

�W̃��,Z̄ → Z̄ + 1�

� Wion�Z̄,T� �A.8�

�
Z
� d�p��,Z,t�W̃��,Z → Z − 1� = �

Z

C�Z,t� � d�fZ��,t�

�W̃��,Z → Z − 1�

=� d�f Z̄��,t�W̃��,Z̄ → Z̄ − 1�

� WtotalDR�Z̄,T� . �A.9�

The last two equality signs in the above equations hold under
the assumption that the charge distribution be sharply peaked

about the value Z̄.
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