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We investigate the influence the surface description when channeled protons collide grazingly with
LiF �100� surfaces in the 100–400 keV energy range. The projectile is considered to move taking into account
the �static and dynamic� potentials with all the ions of the grid. In this model the surface reveals not as an
impenetrable isotropic plane but as a complicated percolator strongly dependent on the crystallographic indi-
ces, and on the initial conditions.
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I. INTRODUCTION

When a fast heavy projectile impacts on a crystal surface
with a grazing angle, it is generally reflected. It happens
when the incident angle �i is smaller that a certain critical
angle �c. In its long interacting path �say around 1000 atomic
units of distance in our case�, the projectile excites target
electrons, thus losing energy. The magnitude �electronic�
stopping power S describes the total energy lost by the inci-
dent ion which can be measured and so it becomes the ulti-
mate validation of the theory used. Excellent reviews on this
item were published by Burgdörfer �1�, and more recently by
Winter �2�.

The stopping power is governed by two major aspects of
the collision: the projectile trajectory and the differential �lo-
cal� stopping at every segment of the path. Further, the pro-
jectile trajectory depends on the topography of the surface
and on the specific interaction potentials with the target ions.
All these items will be revisited here.

A first—and well-known—approach to describe the to-
pography of the surface is the so-called planar channeling.
In this case the surface is considered as a continuous density
of atoms or ions. Therefore, the projectile cannot distinguish
any texture and it moves rather smoothly. In a second ap-
proach, the projectile is allowed to distinguish particular
strings of atoms �3�. The so-called axial �surface� channeling
model considers the surface target formed by strings com-
posed by a continuous �linear� density of atoms along the
neighboring crystallographic Miller indices. The incident
projectiles along these particular axes can be forced into
curved trajectories and thus produce an increment of the
stopping power. In this article we go deeper and explore a
more realistic description of the surface as composed by ions
at the nodes of the crystal. This third approach, that we
called punctual �surface� channeling, considers the projectile
moves colliding with every single point �ions� of the crystal.
It can suffer violent collisions at close distances giving rise
to more detailed �sinuous� trajectories. In this approach, the
topography of the surface is totally surveyed by the incident
particle.

The second item that determines the trajectory is the in-
teraction potential. A simple approximation to describe the
interaction of the projectile with every single atoms or ions
forming the lattice is the Moliere, or Ziegler, Biersack, and
Littmark potentials �2�. These potentials are approximations

to the Thomas Fermi one expressed in terms of exponential
functions. They neglect long-range interactions such as the
polarization which is known to play an important role. In this
article we will consider not only the best possible Hartree
�static� potential but also the dynamic polarization induced
by the projectile.

Once we have established the approaches describing the
projectile trajectory, i.e., the surface topography and the in-
teracting potentials, all that is left is to tackle the differential
stopping at every instant of the path. As the projectile col-
lides with the target nuclei in the punctual channeling, it can
suffer violent changes of directions and the usual impact pa-
rameter treatment �straight line� is not adequate. We have to
resort to an appropriate method to estimate the stopping lo-
cally at the differential level. To that end, we have applied
the shell-wise local plasma approximation �SLPA� which
permits us to evaluate the stopping locally. The SLPA has
been successfully used to estimate atomic ionization, stop-
ping in solids, and stopping on surface �4,5�. This approxi-
mation requires knowledge of the local electronic density. To
describe the electronic density of the ions forming the lattice,
we postulate a simple atomic model that we call GII �grid of
independent ions�. It allows us to use well-known Hartree
Fock wave functions.

In synthesis, the basic considerations we assume are the
following:

�1� The surface is composed by an array of alkali-metal
and halide ions at the places given by the crystal parameters
�see Fig. 1�.

�2� The electronic wave functions are just the ones of the
isolated ions given by the tables of Clementi and Roetti �6�
�GII model�.

�3� The trajectory of the projectile is calculated classically
considering the interaction �static and dynamic polarization�
with all the ions of the grid �punctual channeling�.

�4� The stopping is calculated assuming successive single
atomic collisions accounting at the same time for all the
nearest neighborhoods. Quantum interferences among the
different centers are neglected �7�.

This work deals in particular with collisions of protons on
LiF surfaces at high impact energies �larger than 100 keV/u�
under punctual channeling considering the individual inter-
action with all the ions using the SLPA. Atomic units are
used unless it is indicated.
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II. THEORY

A. The differential stopping power

In the case of bare projectiles colliding with a single ion,
the stopping probability per unit time in the shellwise local
plasma approximation �SLPA� �4,5� reads

dSSLPA�r�
dt

= �
nl
�

0

�

d� ��
�/v

�

dq Im�Wnl�q,�,r�� ,

Wnl�q,�,r� =
2ZP

2

�v

1

q
� 1

��q,�,kFnl�r��
− 1� , �1�

where kFnl�r� is the space-dependent Fermi velocity, kFnl�r�
= �3�2�nl�r��1/3, �nl�r� is the electron density of the nl-state
�nl�r�= 	�nl�r�	2, �nl�r� are the bound-state wave functions
given in the tables of Ref. �6�, and ��q ,� ,kFnl� is the
Lindhard dielectric function �8�. In Eq. �1�, r is the distance
between the projectile and the one ion; the differential stop-
ping involves the sum over all the neighboring ions. The
stopping power is then calculated by adding the contribu-
tions of the segments of time determined by a Runge Kutta
code. The total stopping along a trajectory is

SSLPA = �
traj.

dt �
s=±ijk

d

dt
SSLPA„	R�t� − Rijk

s 	… , �2�

R�t� is the projectile coordinate, and Ri,jk
+ �Ri,jk

− � is the posi-
tion of the alkalide-metal �halide� ion �Fig. 1�. Our SLPA
should not be confused with the traditional local plasma �or
density� approximation �see, for example, the review of Zie-
gler �9��; in our case we add shell to shell independently.

B. The ion interaction potentials

We consider two different contributions to describe the
interactions of the projectile with the target ions: the static
�Vst� and the polarization �Vpol� ones.

The static potential is simply the potential created by the
ion target considering that the electronic cloud remains fro-
zen. The static potentials, Vst

+ �r� and Vst
− �r� for alkali-metal

�Li+� and halide �F−�, respectively, can be written as follows:

Vst
± �r� = ±

1

r
+

Z±�r�
r

, �3�

Z+ → 
ZT
+ − 1, r → 0

0, r → �
, Z− → 
ZT

− + 1, r → 0

0, r → � ,

�4�

where ZT
+ �ZT

−� is the target nuclear charge of the alkali-metal
�halide�. From basic definitions, the Hartree-Fock approxi-
mation produces

Z±�r� = �
nl

r� dx
	�nl

± �x�	2

	r − x	
, �5�

where �nl
± are, in our case, the Li+ �1s2� and F− �1s22s22p6�

wave functions �6�. To make the calculation tractable, we
have fit Z±�r� as a combination of simple exponential func-
tions

Z±�r� = �
j=1

3

Zj
± exp�− 	 j

±r� . �6�

A list of the parameters Zj
± and 	 j

± for Li+ and F− are shown
in Sec. III below. For the fitting procedure we have started
with seed values for Zj and 	 j given by the ones of the
Moliere potential. Figure 2 displays the static potentials for
F− and Li+ ions. As it is expected, substantial differences are
found at large distances when compared with the Moliere
potential.

1. The polarization potential

First, let us start with the static polarization potential. It is
due to the distortion of the cloud induced by a charge at rest.
In its usual form �10,11�, it reads

Vsp
± �r� = −


0
±

2�r0
±2 + r2�2 , �7�

FIG. 1. Schematic diagram. FIG. 2. Absolute values of Vsp �dotted-dashed lines�, Vst

�dashed�, VSLPA �full circles�, and its fitting Vfit �solid lines� as a
function of the distance to the ions F− and Li+. The curves display-
ing VSLPA for v=4 and Vsp cannot distinguish each other.
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where 
0
± is the well-known static or electric dipole

polarizability and r0
± is a cutoff. It is generally related to

the radius of the shell; r0
2= �r2�. In general, we define

�r2�=0.75�r2�2p+0.25�r2�2s. The value of 
0
± has been calcu-

lated with a high degree of precision for most of the neutral
atoms and ions. Values for the ions of interest can be found
in Refs. �12–14�.

For large velocities, we can no longer consider the static
term 
0

± but the dynamic polarizability, which depends on the
impact velocity v. In accordance with our working model for
the stopping �see Eq. �1��, we resort to the self-energy in-
duced by a moving charge in a free electron gas. We intro-
duce the dynamic self-induced potential as

VSLPA�r� = −
1

2�v�
nl
�

0

�

d��
w/v

�

dq Re�Wnl�q,�,r�� . �8�

In Fig. 2, we plot with full circles VSLPA�r� for Li+ �2s2� and
F− �2s22p6� for different proton impact velocities. Also in
this figure, we show a fitting to VSLPA with a similar expres-
sion to Eq. �7� but with 
�

± /v instead of 
0
±, i.e.,

Vfit
± �r� = −


�
±/v

2�r0
±2 + r2 + �r/r6

±�6�2 . �9�

The dependence of the strength with the inverse of the ve-
locity seems to be very good. At small distances, VSLPA�r�
cannot be well fit, but in this case the static potential is
dominant and this failure can be overlooked. In fact,
the polarization potential drives the collision only for F− in
the range r� �1,2� where the fitting is quite accurate �see
Fig. 2�.

The term �r /r6
±�6 in the denominator of Eq. �9� is included

to fit VSLPA�r� at very large distances. In general, we found
that r6 is around 3.6 �2.6� for the halides �alkali-metals�. The
term �r /r6

±�6 has been found not to be very relevant in the
present calculations and it could be omitted.

At any velocity, we interpolate both extremes �Vfit valid
for large velocities and Vsp valid for v=0� by using the fol-
lowing interpolation:

Vpol
± �r� = −


±�v�
2�r0

±2 + r2 + �±�v��r/r6
±�6�2 , �10�


±�v� =

0

±

1 + �
0
±v/
�

±�2
→ 
 
0

± for v → 0


�
±/v for v → � ,

�11�

�±�v� =
�
0

±v�6

�
0
±v�6 + �
�

±�6 → 
 0 for v → 0

1 for v → � ,
�12�

which presents the two limits properly.
One observation with respect to the Vsp corresponding to

Li+ should be made. Its static polarizability 
0
Li+�8.10 seems

to be unexpectedly large �see Fig. 2�; it is as large as the

one of F− �
0
F−

=10.2�. This anomaly already has been
observed in a previous work �12�. In our case, the dynamic
strength of the polarization potential that we use 
±�v� di-

minishes its strength substantially. For example, at v=3, 
Li+

�v=3�=0.87 and it makes Vpol to be one order of magnitude
smaller than Vsp.

C. The projectile motion

We can consider the projectile path governed by three
different levels of approaches of the surface, namely, planar
channeling, surface axial channeling, and the here-called
punctual channeling, as explained next.

�i� In the planar channeling, the surface is considered as a
continuous density of atoms. In this case the potential de-
pends only on the distance to the surface Z and with our
potentials, it reads �for each ion�

Vpla
± �Z� =� d��Vst

± �2 + Z2� + Vpol
± �2 + Z2��

= �
j

2�Zj
±

	 j
± exp�− 	 j

±Z� + Wpol
± �Z� , �13�

Wpol
± �Z� → −

�
±�v�
2�r0

±2 + Z2�
as r6 → � . �14�

The total potential is simply

Vspla�Z� = �
s=±,j=0

�sup
s Vpla

s �Z + j
a

2
� , �15�

where �sup
s is the density of positive �s= + � and negative ions

�s=−� in the plane. Several planes, j=1,2 ,3 , . . . one below
the other, can be considered separated with a distance a /2, a
being the lattice parameter. The surface potential depends on
the distance to the surface and on the velocity via 
±�v�. The
critical angle �c is determined in this approach by setting
Vspla�Z=0�=MPv2 sin2 �c /2, MP being the projectile mass.
We found that smaller values of �c are obtained when the
polarization potential is included.

�ii� In the surface axial channeling, the projectile moves
in the presence of strings of ions along the projectile direc-
tion �3�. The potential depends on the distance to the string �.
For a given string, the potential reads

Vax
± ��� = 2�� dl�Vst

± �l2 + �2� + Vpol
± �l2 + �2��

= �
j

2Zj
±

�
K1�	 j

±�� + Wpol
± ��� , �16�

Wpol
± ��� → −

�
±�v�
4�r0

±2 + �2�3/2 as r6 − → � . �17�

The total potential is simply

Vsax��� = �
s=±,l

�l
sVax

s �� + �l� , �18�

where �l
s is the �linear� density of positive �s= + � and nega-

tive �s=−� ions in the string characterized by the indices l.
The strings to consider depend on the azimuth angle of inci-
dence. We will not consider this case in this article.
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�iii� By punctual channeling we mean that the projectile
moves under the influence of all the ions of the crystal grid.
In practice, the projectile follows a classical trajectory gov-
erned by the Newton equation F=MPd2R /dt2=−�Vpun,
where

Vpun�R� = �
s=±i,j,k

Vs�R − Ri,jk
s � , �19�

R is the time-dependent projectile position, Ri,jk
+ and Ri,jk

− are
again the positions of the ions, alkali-metals, and halides,
and V±�R�=Vst

± �R�+Vpol
± �R�. The indices i, j, and k describes

the position of the ions along the axis x, y, and z, respec-
tively. The Newton equations are solved with the initial con-
ditions:

R�0� = �xi,yi,zi�, �xi,yi� � �0,a�, zi = a , �20�

dR

dt
�0� = v�sin �i cos �i, sin �i sin �i, cos �i� . �21�

�i is the incident polar angle and �i is the azimuth angle. The
starting position xi and yi must be randomized, and zi should
be as large as possible.

III. RESULTS

A. Numerical considerations

The following parameters were obtained: for F−,


0 = 10.93, 
� = 44.0, �r2� = 1.98, r6 = 3.6,

�Z1,Z2,Z3� = �2.063,7.023,0.914� ,

�	1,	2,	3� = �1.824,1.834,16.05� , �22�

and for Li+,


0 = 8.10, 
� = 2.64, �r2� = 0.445, r6 = 2.6,

�Z1,Z2,Z3� = �− 0.114,2.492,− 0.378� ,

�	1,	2,	3� = �1.753,3.711,9.961� . �23�

As we have mentioned before we use the theoretical value
for 
0 for Li+ given by Refs. �12,14� which is known to be
too high. However the values 
�v� used are much lower than
the static value.

The integration of Eq. �19� has been solved by using a
Runge Kutta code with a variable step �t. At every �t, we
add the stopping produced in this interval, and in this way
we solve the integration given by Eq. �2�. Thirty-two nearest
neighbors were considered, i.e., 4�4�2. This grid is quite
convenient because it contains Coulomb-neutral planes as
well as any of the axis. The initial distance to the surface
was considered to be equal to the crystal parameter, i.e.,
zi=a=7.6 atomic units. In addition between 10 and 40 val-
ues for the couple �xi ,yi� were considered to average the
incident projectile initial starting point with respect to the
grid. For a given velocity, we have considered 18 incident

polar angles �i. Per each polar angle we considered 800
equally spaced azimuth angles �i� �0,45° � with respect to
the index �1,0,0�. The spectrum is symmetric around 45°.

The projectile is reflected from the surface in the direction
characterized by � f and � f which are the outgoing polar and
azimuth angles, respectively. As the stopping presents some
saw-type oscillations with � f, we have smoothed the curves
by modulating the results with a Gaussian distribution �as if
it were a convolution with an experimental detector� of a
width �=0.1°, i.e.,

S�� f,� f� = �
−�

+�

d� f�g��,� f − � f��S�� f,� f�� , �24�

g��,
� =
1

2��2
exp�−

1

2
�
/��2� . �25�

The trajectory is finished when Z�a or Z�−a /2. The pro-
jectile rebounds �� f �0� when the final position of the pro-
jectile reaches values of Z�a, and it penetrates the solid
�� f �0� when Z�−a /2. For v=3, for example, in a noncriti-
cal situation, the collision times are about 700, while in a
critical situation it takes up to 3000 or even more. For larger
times the proton moves in a very oscillating trajectory, its
calculation is very tedious and accumulates numerical errors.
We neglect those trajectories where the energy is not con-
served within an error of 1%, which means roughly one tra-
jectory in a thousand.

The surface was considered perfectly flat with no terraces
or other imperfections. We found interesting cases. For ex-
ample, a skipping motion, where the projectile ends up
trapped in a oscillatory movement due to the attraction of the
polarization potential and the subsequent repulsion due to the
static potential �15–17�. We also found cases where the pro-
ton penetrates the first layers, oscillates inside the solid, and
afterwards returns to the vacuum �trajectory b in Fig. 1�.
These trajectories were found experimentally by Kimura
et al. �18�, and as we shall see they are very relevant in the
stopping determination.

B. Results

We have calculated the stopping power and studied the
following situations: dependence of the stopping on the polar
and azimuth angles, on the rate of penetration, and on the
trajectory model.

In Fig. 3 we present the total energy loss calculated with
the punctual channeling as a function of the incident angle �i
for three different impact energies v=2, 3, and 4 of H+ on
LiF surface. Our model is expected to be valid at large im-
pact velocities, so v=2 is not large enough for a reliable
validity. We have also plotted the results taking into account
solely the topmost atomic plane of ions considering planar
�thick solid line� and punctual channeling �open symbols�. In
the latter case, the number of nearest neighbors considered
were 4�4�1. To see the relevance of the second layer, we
plot in Fig. 4 the energy spectrum corresponding to the out-
going protons without penetration into the crystal. The spec-
tra shown in the upper figures �one layer� are sharp, while the
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ones in lower figures �two layers� are broader due to the
subsurface stopping. This effect becomes relevant as we ap-
proach the critical angle.

At small values of �i �i.e., �i��c�, the projectile usually
samples the smooth tail of the potentials which is rather well
represented by the planar potential �trajectory a in Fig. 1�.
Around �i��c, the one-plane model falls short and the sec-
ond plane introduces a relevant contribution. The punctual
channeling model yields larger stopping than the planar one.
Moreover, the two-plane punctual channeling yields larger
stopping when compared with the one plane, as is expected.
The explanation is simple. At large values of the incident
angle �i �i.e., �i��c�, the projectile collides violently with
the different ions of the lattice, more oscillating trajectories
are observed �larger interaction times� and consequently it
produces more stopping. In this range of angles the influence
of the second layer below the top is determinant, just as it
happens with the penetration phenomena found by Kimura et
al., as mentioned before �18�.

For a deeper view of this scenario, we plot in Fig. 5 the
azimuth dependence for v=3 at three angles of incidence.
We have integrated on the azimuth angles � f as explained
before. For this case the critical penetration angle can be
calculated in the planar model to give �c�v=3�=0.58°. In the
planar model the projectile rebounds for �i��c or penetrates
for �i��c. For punctual channeling the situation is much
richer. The interesting point here is that even at small �i,
penetration may occur. It takes place along the more relevant
crystallographic axis determined by the indices �100�, �110�,
�210�, �310�, �510�, corresponding to the azimuth angles 0°,
45°, 26°, 18°, and 11°, respectively. Besides these particular
axes, the planar channeling gives a very good account of the
stopping.

As �i increases new crystallographic axes are showed.
The surface turns then into a sort of filter. Around the critical
angle, �i��c, the situation is extremely complicated and the
result is strongly dependent on the azimuth �i. The planar
channeling cannot account for the oscillating trajectories of
the projectile and yields smaller stopping. At higher incident
angles, �i��c, where the planar channeling forbids the re-
bound of the projectile, the punctual channeling still allows a
reasonable percentage of projectiles to return to the vacuum,
as observed in Fig. 6. This figure plots the polar dependence

FIG. 3. Stopping power of proton colliding with a LiF�100�
surface as a function of the incident polar angle for three incident
velocities as it is indicated. Open and solid circles joined with thin
solid lines denote the results using the two and one layer punctual
channeling, respectively. Thick solid lines denote the results using
the planar channeling.

FIG. 4. Energy spectrum of outgoing protons
from LiF�100� surface for v=4 at three different
incident angles, as it is indicated. The spectra
shown in the upper figures correspond to one
layer and the ones in lower figures to two layers.

INFLUENCE OF SURFACE CHANNELING IN THE¼ PHYSICAL REVIEW A 74, 012902 �2006�

012902-5



of the penetration �rebound� fraction for impact velocity
v=3. The punctual channeling predicts about 50% of pen-
etration around �i��c, as one would expect.

We have also studied the influence of the polarization
potential, which has been generally discarded in most of the
previous work. We found that no matter the model, planar or
punctual, the polarization potential plays an important role,
and it tends in all cases to decrease the stopping substan-
tially. This is simply because the polarization potential at-
tracts the projectile, it accelerates towards the surface dimin-
ishing the interaction time. The polarization potential can be
seen as provoked by an image charge. This image is con-
structed by the addition of the induced polarization of all the
ions of the target �19�. A relation between the polarization
potentials and the self-induced potential is established by the
Clausius-Mossotti equation.

IV. SUMMARY

We have calculated the stopping power of ions colliding
with insulator surfaces considering that the projectile follows
a classical trajectory governed by the interactions with the
individual ions of the lattice. To describe the electronic den-

sity of the ions forming the lattice, we have postulated a
simple atomic model that we call GII �grid of independent
ions�. Static as well as dynamic polarization potentials were
considered. We call this model punctual channeling in con-
trast with the commonly used planar channeling. Let us sum-
marize our findings:

�1� By using the more realistic punctual channeling, we
have found the projectiles follow oscillating trajectories, not
found in the planar channeling. The surface should not be
seen as a impenetrable isotropic plane but as a complicated
filter, strongly dependent on the crystallographic indices, and
on the initial conditions.

�2� The polarization potential cannot be neglected; it plays
an important role. It generally introduces shorter trajectories
and significantly reduces the stopping. At this point it is in-
teresting to observe that the advances that we have intro-
duced, punctual channeling and polarization, to some extent
compensate �qualitatively� each other. For example, the av-
erage stopping calculated with surface channeling discarding
the polarization potential yields rather similar values to the
punctual channeling calculated with polarization potential.

�3� Around the critical angle of incidence, the influence of
the subsurface layers plays a very important role in the stop-
ping. It traps the projectile due to the polarization tail and
forces it to oscillate before escaping.

Finally we would like to call attention to the role of the
azimuth angle of incidence �i when compared with the ex-
perimental data. If the experiment is performed at random,
the statistics should be done with care: the punctual model
predicts very strong oscillations. In our calculations, we
needed 800 azimuth angles in the range �0,45° � and the
experiments should satisfy at least this same requirement.
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FIG. 5. Stopping power of proton colliding with a LiF�100�
surface as a function of the incident azimuth angle for three incident
polar angles as it is indicated. The incident proton velocity is 3
�225 keV�. Open circles joined with solid lines and thick solid lines
denote the results using the punctual and planar channeling models,
respectively.

FIG. 6. Reflecting percentage of protons colliding with a
LiF �100� surface as function of the incident polar angle for impact
velocity 3 �225 keV�. The critical angle �c is the value calculated
with the planar model.
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