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An optimally controlled quantum system possesses a search landscape defined by the physical objective as
a functional of the control field. This paper particularly explores the topological structure of quantum mechani-
cal transition probability landscapes. The quantum system is assumed to be controllable and the analysis is
based on the Euler-Lagrange variational equations derived from a cost function only requiring extremizing the
transition probability. It is shown that the latter variational equations are automatically satisfied as a math-
ematical identity for control fields that either produce transition probabilities of zero or unit value. Similarly,
the variational equations are shown to be inconsistent �i.e., they have no solution� for any control field that
produces a transition probability different from either of these two extreme values. An upper bound is shown
to exist on the norm of the functional derivative of the transition probability with respect to the control field
anywhere over the landscape. The trace of the Hessian, evaluated for a control field producing a transition
probability of a unit value, is shown to be bounded from below. Furthermore, the Hessian at a transition
probability of unit value is shown to have an extensive null space and only a finite number of negative
eigenvalues. Collectively, these findings show that �a� the transition probability landscape extrema consists of
values corresponding to no control or full control, �b� approaching full control involves climbing a gentle slope
with no false traps in the control space and �c� an inherent degree of robustness exists around any full control
solution. Although full controllability may not exist in some applications, the analysis provides a basis to
understand the evident ease of finding controls that produce excellent yields in simulations and in the
laboratory.
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I. INTRODUCTION

The control of quantum phenomena �1–3�, especially with
tailored laser pulses, is an active area of theoretical �4–21�
and experimental research �22–29�. A common foundation of
much quantum control research is optimal control theory
�OCT� formulated within quantum dynamics �4–7� and the
realization of optimal control experiments �OCEs� �22–29� in
conjunction with closed-loop learning control techniques �8�.
Despite the myopic nature of the local search algorithms
commonly employed in typical quantum OCT calculations,
excellent target yields are frequently achieved in the numeri-
cal simulations. More importantly, in spite of the curse of
dimensionality arising from searching through the usually
very high dimensional space of control variables correspond-
ing to pulse shaper phases and amplitudes in typical OCE
studies, successful control results can usually be determined
quickly in the laboratory. This paper aims to explain why it
appears possible to consistently find successful controls with
evident ease. The key to this behavior lies in the topology of
the quantum control landscapes, defined as a physical objec-
tive as a functional of the control laser field.

Although many particular physical objectives have been
considered in control studies, a common goal is the maximi-
zation of the probability Pi→f of making a transition from
initial state �i� to final state �f�. These states are typically
eigenstates of the field free Hamiltonian H0 where the full

Hamiltonian often has the form H=H0−���t� with � being
the dipole moment operator and ��t� being the control elec-
tric field. A suitable temporal shape for ��t� is sought that
maximizes Pi→f at target time T, which may be finite or
asymptotic with T→�. In practice, other ancillary costs may
also be imposed, including on the form of the laser pulse or
minimization of its energy. Nevertheless, the fundamental
control problem for analysis is

Max
��t�

Pi→f , �1�

and this paper is concerned with analyzing the structure of
the control landscape

Pi→f = Pi→f���t�� , �2�

which is a functional of the control field �30�. In the labora-
tory other factors can enter, but an ultimate common goal is
the clean performance of state-to-state transfer in Eq. �1�.
Knowledge of the general topology of this landscape, includ-
ing its extrema values, slopes, and curvature, is fundamental
to understanding the ability of finding good quality robust
controls in the laboratory and in simulations.

This paper will carry out an analysis of the control land-
scape in Eq. �2�, treating ��t� as an arbitrary continuous tem-
poral function. As a result, the search to maximize Pi→f is
formally over an infinite dimensional space. However, in
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practical simulations or in the laboratory, the control field is
always discretized in some fashion in either the time or the
frequency domain. The number of discretized control vari-
ables can still remain very high �e.g., hundreds of phase and
amplitude frequency domain controls are often employed in
the laboratory �22–29��. Thus, regardless of the representa-
tion used for the control, the maximization of Pi→f generally
entails a search through a high dimensional control space for
an optimal field. With no further information available, the
natural expectation is that the control landscape in Eq. �2�
would likely have a highly complex topology with perhaps
many maxima, minima, and saddle points. In particular, it is
reasonable to expect that suboptimal local maxima would be
encountered with values Pi→f �1.0.

The present analysis will assume that the quantum system
is controllable �31–34� such that in principle one can steer
the transition probability about at will. However, this state-
ment in itself does not evidently preclude the possibility of
local maxima existing to act as traps, especially for control
searches employing local algorithms �e.g., gradient meth-
ods�, which would naturally stop at the first local maximum.
The many successful control simulations producing high
yield outcomes �4–21� for Pi→f over a variety of chemical
and physical applications as well as the increasing number of
successful closed-loop adaptive control experiments �22–29�
suggest that the landscape in Eq. �2� has a very favorable
topology regardless of the detailed nature of the Hamil-
tonian. Furthermore, the success of the rapidly increasing
number of experiments also suggest that there is an inherent
degree of robustness at the landscape extrema to the inevi-
table presence of laboratory noise.

This paper will analyze the topology of the landscape in
Eq. �2� to reveal the origins of the observations above. More
complex circumstances can arise, including systems in
mixed states and the presence of decoherence processes.
Nevertheless, the analysis here provides the basis for assess-
ing the basic features of controlling quantum phenomena. An
initial effort along these lines was undertaken based on start-
ing with the formulation of the system unitary evolution op-
erator expressed in the form U�T�=exp�iA� where A†=A
�30,35�. It was argued that the control variables may be
transferred from ��t� to effectively being the elements of the
action matrix A. This abstraction revealed valuable informa-
tion about the control landscape, although it left wanting an
explicit connection to the control field ��t�, which is natu-
rally the true function being varied either in simulations or in
the laboratory. Thus, the present paper will explicitly work
with the control field ��t� to make the landscape analysis
transparent in a physical context. A formal Lie group analy-
sis of Pi→f was also undertaken �36,37�, and the mathemati-
cal underpinnings of this analysis can be traced back to work
in the early development period of quantum mechanics �38�.
Finally, an earlier Hessian �stability� analysis of Pi→f was
carried out with other costs involved besides that of Eq. �1�,
but the complexity of the resultant situation gave only a par-
tial glimpse of the fundamental underlying landscape �39�.
The present work will go beyond these prior studies to reveal
the landscape topology in the familiar physical context of the
control field ��t� and employing the standard variation for-
mulation based on Eq. �1�.

Section II will present the variational formulation along
with first order �gradient� and second order Hessian analyses.
Special emphasis will be given to �a� identifying the condi-
tions under which the variational equations are identically
satisfied or violated, as well as �b� seeking bounds on the
slope and curvature over the control landscape. Section III
will present concluding remarks on the physical significance
of the findings in this paper.

II. OPTIMAL CONTROL VARIATIONAL EQUATIONS
AND THEIR ANALYSIS

The quantum system subjected to control in this work is
assumed to be of arbitrary, but finite dimension N. Nominally
this would exclude controlled molecular dissociation where a
continuum of final states is involved, however in practice,
one may model such problems as having a finite �possibly
large� number of levels �40,41�. The system is assumed to
have the common Hamiltonian structure H�t�=H0−���t�, al-
though other forms could just as well be treated. Importantly,
the system is assumed to be controllable such that, in prin-
ciple, at least one field exists that will permit an exact tran-
sition from an arbitrary initial state �i� to the final state �f�. A
formal set of analysis tools is available to assess controlla-
bility starting with knowledge of the operators H0 and �
�31–34�. In practice, testing for controllability can be a te-
dious process, and it has only been established in a limited
number of systems. A statistical assessment starting from a
related connectivity analysis perspective suggests that only a
null set of quantum systems is likely to be uncontrollable
�42�. These analyses, along with the empirical evidence from
the many high quality numerical optimal control calculations
�4–21� and now the emerging experiments even on complex
systems �22–29�, suggests that most realistic applications in-
volve systems that are either fully controllable or acceptably
so from a practical perspective. The presence of a high den-
sity of states per se does not imply a lack of controllability,
although bandwidth or other restrictions on the applied con-
trols may in practice limit the achieved outcome to being less
than ideal. The present work will accept the premise that the
quantum system is controllable, and this point will be ex-
ploited in the analysis below.

The control cost function is taken to have the following
standard form �7�:

J = �i�U†�T,0��f��f �U�T,0��i�

+ Im�
0

T

���t��	ı �
�

�t
− H0 + ���t�
���t��dt , �3�

where ���t�� is the Lagrange multiplier state introduced to
preserve satisfaction of Schrödinger’s equation and U�T ,0�
is the system time evolution operator evaluated at the target
time T. As the last term in Eq. �3� is zero upon satisfaction of
Schrödinger’s equation for the evolving quantum state ��t�,
it is evident that J takes on the value Pi→f = ��f �U�T ,0� � i��2.
The three Euler-Lagrange equations associated with demand-
ing that �J=0 are

ı �
�

�t
���t�� = �H0 − ���t�����t��, ���0�� = �i� , �4�
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ı �
�

�t
���t�� = �H0 − ���t�����t�� ,

���T�� = −
2

�
�f��f �U�T,0��i� , �5�

�J

���t�
= Im����t������t���

=
2

�
Im��i�U†�t,0��U�t,0�U†�T,0��f��f �U�T,0��i��

=
2

�
Im��i���t��q�� = 0, �6�

where

��t� = U†�t,0��U�t,0� �7�

and

�q� = U†�T,0��f��f �U�T,0��i� . �8�

The distinct but equivalent forms of �J /���t� in Eqs. �6� will
be exploited in different particular circumstances below. In
Eqs. �7� and �8�, ��t� is the evolution of the system dipole
under the full controlled dynamics and �q� is a state, which
under the system dynamics would generally be a superposi-
tion of the eigenstates of H0. The remainder of this section is
concerned with the conditions under which �J /���t�
=0, " t, as well as with other associated behavior of J.

A. When can �J /��„t…=0, 	 t be satisfied?

This section will consider three circumstances where con-
trol fields will either satisfy or not satisfy the right-hand side
of Eq. �6� being zero. Naturally the cases of Pi→f =0 and 1.0
are extrema of the landscape, and it is expected that the
variational equations are exactly satisfied for these cases.
This conclusion will be explicitly confirmed in Secs. II A 1
and II A 2, followed by an analysis of the circumstance
0� Pi→f �1.0.

1. Null control conditions Pi\f=0

The situation considered here either corresponds to the
introduction of no control field, or where a control field is
present but we have �f �U�T ,0� � i�=0. The case of no control
corresponds to �f �U�T ,0� � i�= �f � i�exp�−ıEiT / � �=0, where
Ei is the eigenvalue associated with the ith state of H0 and
the final state �f� is naturally assumed to have no overlap
with the initial state �i�. In the case where a control is present
under these circumstances, there will be evolution ���t��
=U�t ,0� � i� from one point in the landscape of Eq. �2�, where
���0��= �i� to another point in the landscape, where ���T��
=U�T ,0� � i�, such that �f ���T��=0. The path between these
two landscape points can be highly complex, and the analy-
sis of such evolution is the subject of Sec. II A 3 below. It is
evident from Eq. �8� that �q�=0 under both circumstances
above. Thus, we have that �J /���t�=0, "t for those controls

satisfying Pi→f =0. From a previous analysis on the multi-
plicity of control solutions �43,44�, we can generally expect
an infinite number of nontrivial control fields to exist, carry-
ing out the mapping �i�→U�T ,0� � i�, where �f �U�T ,0� � i�
=0, from one location to another in the control landscape, all
corresponding to extreme minima points where Pi→f =0.
Thus, in cases of either no control field or when the control
takes the system from one null transition probability value to
another in the landscape, the Euler-Lagrange equations are
automatically satisfied.

2. Perfect control conditions Pi\f=1.0

This case corresponds to the presence of a control field
��t� introducing dynamics such that

U�T,0��i� = eı
�f� , �9�

with 
 being an arbitrary real phase. In this circumstance,
there is perfect control with Pi→f = ��f �U�T ,0� � i��2=1.0.
By operating on the expression in Eq. �9� with U†�T ,0� it
is easy to show that U†�T ,0� � f�=e−ı
 � i�, implying that
U†�T ,0� � f��f �U�T ,0�= �i��i�. Substituting the latter relation
into Eq. �8� leads to �q�= �i� which reduces Eq. �6� to

�J

���t�
=

2

�
Im��i���t��i�� = 0. �10�

The latter equality follows from ��t� being a Hermitian op-
erator with a real expectation value. We may conclude that
control fields producing dynamics leading to Pi→f =1.0 will
automatically satisfy the variational Eqs. �4�–�6� including
�J /���t�=0, " t. The multiplicity of control solutions
�43,44� implies that the landscape will have many, if not an
infinite number, of such perfect control extrema, each ac-
cessed by a unique control field ��t�.

3. Behavior of �J /��„t… for arbitrary control fields

The analysis in Secs. II A 1 and II A 2 above formally
confirms that the control landscape has critical points corre-
sponding to either no control or perfect control satisfying the
variational equations. The remaining question is whether
other control fields ��t� might exist satisfying the Euler-
Lagrange variational conditions, Eqs. �4�–�6�, producing
0� Pi→f �1.0. Equations �4� and �5� by construction will
always be satisfied by an arbitrary control field ��t�. Thus,
the question reduces to whether Eq. �6� can be satisfied such
that �J /���t�=0, " t. Satisfaction of the latter relation also
implies that the nth derivative of �J /���t� must in turn sat-
isfy the relation

�n

�tn	 �J

���t�

 = 0, " t, n = 1,2, . . . . �11�

These derivatives may be readily evaluated from Eqs. �6�
and �7� using the relations

d��t�
dt

= 	− ı

�

���t�,H�t�� , �12�
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dH�t�
dt

= −
d��t�

dt
��t� . �13�

In particular, the first and second derivatives in Eq. �11� are

�

�t

�J

���t�
=

2

�
Im�	− ı

�

�i����t�,H�t���q�� , �14�

�2

�t2

�J

���t�
=

2

�
Im�	− ı

�

2

�i�����t�,H�t��,H�t���q�� ,

�15�

and similar expressions can be produced for the higher order
derivatives. This hierarchy of expressions involves matrix
elements �i � ¯ �q� of all combinations of commutators of �
and H0. These commutators are the operators needed to es-
tablish controllability for the quantum system �31�. In par-
ticular, if the rank of the algebra formed by this hierarchy of
operators has dimension N2 �or N2−1 for a traceless H0�,
then the system is fully controllable. All that is required in
the present case is that the arbitrary state �q� be fully reach-
able from state �i�, which is demanded by the original as-
sumption that the system is controllable. Reaching �q� will
only happen if the commutators satisfy the rank condition,
which implies that Eq. �11� cannot be satisfied for all time.
Therefore, a contradiction exists and we may conclude that
the variational condition in Eq. �6� cannot satisfy �J /���t�
=0, " t for an arbitrary control field, which does not either
satisfy Pi→f =0 or Pi→f =1.0. As a final comment, note that
Eq. �11� will automatically be satisfied under the conditions
in Sec. II A 1 as �q�=0, and in Sec. II A 2 where �q�= �i�
�e.g., since ���t� ,H�t�� is an anti-Hermitian operator and
����t� ,H�t�� ,H�t�� is a Hermitian operator, then the corre-
sponding right-hand sides of Eqs. �14� and �15� have no
imaginary parts, etc.�

This analysis may be alternatively argued by rewriting
�J /���t� as

�J

���t�
=

2

�
Im	

k=1

N

�i���t��k��k�U†�T,0��f��f �U�T,0��i�

=

2

�
Im��i���t��i��i�U†�T,0��f��f �U�T,0��i��

+
2

�
Im�	

k�i

�i���t��k��k�U†�T,0��f�
�f �U�T,0��i��
=

2

�
Im�	

k�i

�i���t��k��k�U†�T,0��f�
�f �U�T,0��i��
�16�

which is equal to zero for all t, if and only if either �i� the
matrix element �f �U�T ,0� � i�=0 or �ii� the sum
k�i�i ���t� �k��k �U†�T ,0� � f�=0. The former case corre-
sponds to Pi→f =0, whereas the latter case leads immediately
to the result that �k �U†�T ,0� � f�=0, "k� i, with the reason-
able assumption that �i ���t� �k� form a set of linearly inde-
pendent functions of time for all k. Thus, in the second case
we have that Pi→f =1.0−k�i � �k �U†�T ,0� � f��2=1.0.

The conclusion we may draw from the collective analyses
in Secs. II A 1, II A 2, and II A 3 is that the landscape in Eq.
�2� only has extrema corresponding to null control Pi→f =0
or perfect control Pi→f =1.0. Particular control fields will be
associated with each of these extrema values and no other
control fields will satisfy the variational criterion �J /���t�
=0, " t in Eq. �6�. Thus, there are no false extrema in the
control landscape at values 0� Pi→f �1.0, but the desirable
extrema satisfying Pi→f =1.0 will correspond to a null set of
control fields ��t�. This point is easily understood, and veri-
fied numerically, as randomly guessing a control field has no
chance of producing the outcome Pi→f =1.0. Nevertheless,
almost any reasonable iterative procedure for solving Eqs.
�4�–�6�, especially a hill climbing technique, should be able
to converge to Pi→f =1.0 from an arbitrary initial trial field.
This comment may at first appear to be only partially con-
sistent with the many control simulations �16,20� where suc-
cessful fields are readily found by a number of search algo-
rithms, but rarely does one get close to a perfect yield �e.g.,
Pi→f �0.99�. The reason for this latter behavior is twofold.
First, many of the computations in the literature include an-
cillary costs besides that in Eq. �3�, and typically a fluence
term −w�0

T�2�t�dt is included with a weight w�0. In this
case the variation in Eq. �6�, becomes

�J

���t�
=

2

�
Im��i���t��q�� − 2w��t� . �17�

No longer can a perfect control solution be reached in accord
with Eq. �9�. This point follows from first assuming that
perfect control is achieved that reduces Eq. �17� to
�J /���t�=2w��t�, which clearly cannot be equal to zero for
all time. Even removing the fluence term and utilizing the
original cost functional in Eq. �3� generally does not produce
perfect control, Pi→f =1.0, in numerical calculations for the
additional reasons that �a� the target time T is typically fixed
at a finite value, and �b� the control field ��t� is always con-
strained in one way or another at least minimally by some
form of numerical discretization. However, careful numerical
calculations �45� show that the final transition probabilities
can readily be found satisfying the criteria of Pi→f �0.99 by
using the cost function in Eq. �3� with sufficiently large val-
ues for T �e.g., much larger than all natural time scales in the
system� and discretizing the control ��t� with as much free-
dom as possible �e.g., creating a very fine mesh over time
with the control variables being �i=��ti� , i=1,2 , . . .�.

The above analysis was presented in the context of nu-
merically performing optimal control designs, and the find-
ings here clearly indicate that such future studies should con-
tinue to produce high quality yields �i.e., even perfect yields,
when suitably performed, within machine precision and dis-
cretization errors�. With this assurance of attaining quality
control designs, the emphasis of such studies perhaps may be
shifted more towards understanding mechanistic or other
physical issues. But, ultimately the real purpose of quantum
control is to achieve success in the laboratory, and adaptive
learning control �8� is proving to be attractive for that pur-
pose, even in systems of high complexity �22–29�. The find-
ings in this section have a direct bearing on explaining the
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success of the growing numbers of these experiments, al-
though the laboratory conditions are generally less well de-
fined than in most of the numerical simulations of quantum
control processes. The absolute final yields of the control
experiments are typically not known, but the experiments
collectively show that it is relatively easy to drive up the
final yield to acceptable if not, dramatically enhanced values.
This behavior occurs even in the common circumstances of
the systems initially being in mixed states and exposed to
some environmental decoherence during the control process.
The control experiments also inherently involve some degree
of laser, noise, and this issue will be returned to in Sec. II C.
Finally, and perhaps most importantly, the experiments are
carried out typically with highly constrained controls. This
point is most evident from the fact that virtually all of the
current experiments employ the Ti:sapphire laser system cen-
tered around 800 nm with initial unshaped pulses of �25 nm
bandwidth �29�. Such a “one control fits all dynamics” solu-
tion is surely a significant constraint. As with the numerical
simulations, control field constraints inevitably reduce the
iterative learning control process to taking a pathway across
the control landscape that may be convoluted as well as quite
likely not capable of achieving the desired goal �i.e., Pi→f
=1.0�. Even modest constraints on the controls could yield
what appears as artificial structure in the landscape �i.e., local
suboptimal extrema�, but which in fact corresponds to fol-
lowing a constrained path over the landscape. Importantly,
the true landscape topology, as revealed in the analysis
above, exists invariant to the constraints on the controls, just
as controllability exists invariant to the same constraints be-
ing present. With these comments in mind, it is most encour-
aging that the present control experiments across broad
classes of quantum phenomena appear so successful. The
experimental outcomes should only get better as more flex-
ible laser control capabilities �e.g., broader bandwidth
sources� become available �46,47�.

B. A bound on the landscape slope

The efficiency and stability of laboratory searches �or
their computational counterparts� for effective quantum con-
trols is a topic of prime concern. The magnitude of the land-
scape slope on the way towards an extremum is important in
this regard. The following upper bound for �J /���t� can eas-
ily be established using Eq. �6�,

� �J

���t�� �
2

�
��� , �18�

where the unit norm of the time evolution operator was used.
In any practical application, the norm of the dipole operator
��� will always be finite. The bound in Eq. �18� has the
simple physical interpretation that the landscape slope on the
way towards an extremum is expected to be rather gentle
without steep regions, thereby better assuring instability in
the search effort. This behavior, along with the lack of false
extrema, is attractive and suggests that the traditionally em-
ployed genetic algorithms for laboratory searching may be
supplanted by other more efficient algorithms, possibly even
including local ones, provided that due consideration is given

to laboratory noise �e.g., sufficient signal averaging is em-
ployed�.

C. Stability behavior in the neighborhood
of an optimal control solution

The analysis in the preceding sections shows that upon
searching over unconstrained control fields at least one may
eventually be found such that �J /���t�=0, "t, producing an
ideal solution Pi→f =1.0. A point of prime interest is the to-
pology of the landscape in the vicinity of such an extremum,
and this analysis is especially relevant for considerations of
robustness to control field noise �48–50�. Robustness infor-
mation may be extracted from the system’s Hessian

H�t,t�� =
�2J

���t�����t�
�19�

evaluated at the maximum of Pi→f =1.0. The eigenvalues 
and eigenvectors u�t�� satisfying the integral equation

�
0

T

H�t,t��u�t��dt� = u�t� �20�

are of special interest. As the Hessian will be evaluated at a
maximum, it follows that �0, and an analysis of the eigen-
values will be presented after first determining the Hessian.

Starting with Eq. �6�, we may differentiate it once again to
produce

�2J

���t�����t�
= Im	� ���t�

���t��
�����t�� + ���t���� ���t�

���t���
 ,

t � t�. �21�

The time restriction in Eq. �21� follows from causality con-
ditions. The upper triangular portion of the Hessian in Eq.
�21� is real, and the lower triangular portion is obtained by
the transpose operation.

To evaluate Eq. �21�, we first need � ���t�� /���t��, which
may be obtained by functionally differentiating Eq. �4� and
noting that the time evolution operator U�t , t�� satisfies

	ı �
�

�t
− H0 + ���t�
U�t,t�� = 0, U�t�,t�� = 1 �22�

to produce

����t��
���t��

=
ı

�
U�t,t������t��� . �23�

Similarly, upon functionally differentiating Eq. �5� and solv-
ing the resulting differential equation we have

����t��
���t��

= −
2ı

�2U�t,T��f��f �U�T,t������t���, t � t�.

�24�

As explained above, the analysis here will focus on the con-
dition t� t�, and combining Eqs. �21�, �23�, and �24� pro-
duces the following result:
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�2J

���t�����t�
= −

2

�2 Re��i�U�0,T��f�

��f �U�T,t��U�t,t���U�t�,0��i�

− �i�U�0,t���U�t�,T��f��f �U�T,t��U�t,0��i��

= −
2

�2 Re��i�U�0,T��f�

��f �U�T,t��U�t,t���U�t�,0��i�

− �i�U�0,t��U�t,T��f�

��f �U�T,t���U�t�,0��i��, t � t�, �25�

by noting that ���t��=−�2/ � �U�t ,T� � f��f �U�T ,0� � i�, from
Eq. �5�. Equations �19� and �25�, and the symmetry relation

H�t,t�� = H�t�,t� �26�

constitute the fundamental Hessian for analysis. To facilitate
the discussions below, Eq. �25� can be further written as
follows:

H�t,t�� =
�2J

���t�����t�

= −
2

�2 Re��i�p��p���t���t���i� − �i���t��p��p���t���i��

= −
2

�2 Re
k=1

N

���i�p��p���t��k�

− �i���t��p��p�k���k���t���i��

= −
2

�2 Re
k�i

���i�p��p���t��k�

− �i���t��p��p�k���k���t���i��

= −
2

�2 Re
k�i

��i���p��p���t�

− ��t��p��p���k��k���t���i��

= −
2

�2 Re
k�i

�k�t�
k�t��, t � t�, �27�

where we introduce �p�=U�0,T� � f�, �k�t�= �i���p��p ���t�
−��t� � p��p � � �k�, and 
k�t�= �k ���t� � i�. The Hessian expres-
sion in Eq. �27� is valid anywhere on the landscape. It is in
general nondegenerate except for the two extreme cases, i.e.,
Pi→f =0 and 1.0, considered in the following sections.

1. Hessian evaluation at a null solution: Pi\f=0

In parallel with the analysis in Sec. II A 1 this case in-
volves either ��t�=0 or equivalently a nontrivial control field
��t� such that �p � i�= �f �U�T ,0� � i�=0 is satisfied. In either
case, the first term in brackets in Eq. �25� is zero, which
follows from the assumption �f � i�=0. In the special case that
��t�=0, corresponding to applying no control, Eq. �25� re-
duces to

�2J

���t�����t�
=

2

�2 ��i���f��2. �28�

Similarly, the diagonal elements, t= t�, of the Hessian in Eq.
�25� have the following form even for nontrivial control
fields

�2J

����t��2 =
2

�2 ��i�U�0,t��U�t,T��f��2, �29�

which is a positive quantity and reduces to Eq. �28� under the
special case of ��t�=0 and t= t�. From Eq. �29�, it is evident
that the trace of the Hessian �0

TH�t , t�dt is positive and
bounded such that

��
0

T

H�t,t�dt� �
2T

�2 ���2. �30�

This relation implies the intuitive result that the rate of leav-
ing the initial state is directly dictated by the norm of the
dipole moment operator. Furthermore, it may be readily
shown from Eq. �28� that the Hessian in the trivial case of
��t�=0 has only one positive nonzero eigenvalue 
= �2T /�2� � �i �� � f��2 with an eigenfunction, u�t�=constant.
From Eq. �27�, the case of a nontrivial null control, i.e.,
��t��0 for at least some times, produces

H�t,t�� =
2

�2 Re��i���t��p��p���t���i�� , �31�

where �p � i�= �f �U�T ,0� � i�=0. The Hessian in Eq. �31� is a
rank 2 operator with at most just two nonzero eigenvalues
and eigenvectors. In this case, variations in two distinct di-
rections around the minimum have particular effects associ-
ated with the nature of the original control field.

2. Stability analysis around a control maximum: Pi\f=1.0

This case concerns evaluating the Hessian at a control that
produces the desired maximum Pi→f =1.0. The relation
�p��p � =U†�T ,0� � f��f �U�T ,0�= �i��i� may once again be em-
ployed to rewrite Eq. �25� in a physically transparent form
using the dipole moment operator definition in Eq. �7�,

�2J

���t�����t�
= −

2

�2 Re��i���t���t���i� − �i���t��i��i���t���i��

= −
2

�2 Re�i�����t� − �i���t��i��

����t�� − �i���t���i����i�, t � t�, �32�

This result shows that the Hessian may be interpreted in
terms of the covariance of the evolving dipole moment op-
erators in the neighborhood of a transition probability maxi-
mum. Furthermore, the diagonal elements become
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�2J

����t��2 = −
2

�2 �i����t� − �i���t��i��2�i�

� −
2

�2 �i���t���t��i�

= −
2

�2 ���t���2���t��

� −
2

�2 ��2� , �33�

which is clearly negative, and the trace of the Hessian is
bounded from below by the relation

Tr H = �
0

T

H�t,t�dt � −
2T

�2 ��2� , �34�

noting that the norm ��2� should be finite in realistic appli-
cations. The remaining issue concerns the eigenvalue spec-
trum of the Hessian in Eq. �20�.

A simple inspection of Eq. �27�, recalling that �p �k�
= �f �U�T ,0� �k�=0 "k� i and �p��p � = �i��i� when Pi→f =1.0
�i.e., producing �k�t�=
k

*�t��, shows that the Hessian in Eq.
�20� at a transition probability maximum is a separable and
symmetric kernel of the form

H�t,t�� = −
2

�2 Re
k�i


k
*�t�
k�t��

= −
2

�2 
k�i

�
k
Re�t� � 
k

Re�t�� + 
k
Im�t� � 
k

Im�t��� ,

�35�

where the 2N−2 individual functions 
k
Re�t�

=Re��k ���t� � i�� and 
k
Im�t�=Im��k ���t� � i��, k=1,2 , . . . , i

−1, i+1, . . . ,N, come from the generally distinct matrix ele-
ments of the dipole operator ��t�. At most 2N−2 of these
functions can be linearly independent �51�. These functions
may be reexpressed as a linearly independent orthogonal set,
e.g., by suitable application of the Gram-Schmidt orthogo-
nalization procedure �52�. From Eqs. �20� and �35�, it is evi-
dent that

�
0

T �
0

T

H�t,t��u�t�u�t��dtdt�

= −
2

�2 
k�i
�	�

0

T


k
Re�t�u�t�dt
2

+ 	�
0

T


k
Im�t�u�t�dt
2�

� 0, �36�

for any arbitrary continuous function u�t�, t� �0,T�. Conse-
quently, the finite rank Hessian H�t , t�� at Pi→f =1.0 is a
continuous symmetric kernel function of negative semidefi-
nite type, and it possesses at most 2N−2 nonzero, negative
eigenvalues 1�0, 2�0, . . . ,2N−2�0 associated with
2N−2 orthonormal eigenfunctions u1�t� ,u2�t� , . . . ,u2N−2�t�
�53�. In addition, the Hessian at Pi→f =1.0 has infinitely
many zero eigenvalues and associated eigenfunctions u0

i �t�
satisfying �
k

Re�t� �u0
i �t��=0 and �
k

Im�t� �u0
i �t��=0. As the sum

of these eigenvalues �i.e., the trace of the Hessian� is
bounded by −�2T /�2� ��2� from Eq. �34�, it is evident that as
the Hilbert space dimension N increases, each individual
nonzero eigenvalue will likely take on an ever smaller value,
i.e., the average eigenvalue of the Hessian falls off as � 1

2N−2 .
Furthermore, it is readily seen that around the control maxi-
mum Pi→f =1.0, any small perturbation �i.e., noise� ���t� in
the control field ��t� yields a deviation �Pi→f in the optimal
yield

�Pi→f �
1

2
�

0

T �
0

T

���t�H�t,t�����t��dtdt�

= −
1

2
�

0

T �
0

T

���t�	 
i=1

2N−2

�i�ui�t�ui�t��
���t��dtdt�

= −
1

2 
i=1

2N−2

�i����,ui�2

� −
1

2

��
2

�2N − 2� 
i=1

2N−2

�i�

� −
T��2�

�2

��
2

�2N − 2�
, �37�

where ��� ,ui�=�0
T���t�ui�t�dt is the projection of the control

field noise ���t� in the direction of the ith eigenfunction ui�t�
of the Hessian H�t , t�� given in Eq. �35� and ��

2 = ��� ,���
=i=1

2N−2��� ,ui�2 is the mean square value of ���t�. The inter-
pretation of the result in Eq. �37� calls for consideration of
whether ��

2 likely has a dependence on N, especially as N
rises. In the next to the last step in Eq. �37� the relation
��� ,ui�2���

2 / �2N−2� was utilized based on the reasonable
assumption that the control field noise is expected to be
equally dispersed along any of the eigenvectors of the Hes-
sian �54�. However, in principle, ��

2 could depend on N,
considering that more energy in the control could be required
to manipulate systems of higher complexity �i.e., larger N�.
Practical considerations in realistic applications likely will
call for a limited use of laser energy regardless of the system
Hilbert space dimension N, which is consistent with the in-
creasing success of controlling ever more complex systems
�22–29�. Thus, it is reasonable to expect that ��

2 is essen-
tially a system invariant constant or at most slowly varying
in N. To this end, we may conclude the important result from
Eq. �37� that control solutions at the maximum value of
Pi→f =1.0 have an inherent degree of robustness, which also
tends to increase �or in the worst case remain neutrally
stable� as the Hilbert space dimension rises. This behavior is
very attractive for practical control, as noise is inevitably
present in the laboratory.

III. CONCLUSION

This paper presents a quantum control landscape analysis
directly in terms of the physically relevant control field in-
cluding an elaboration of the topology around the null and
maximal solutions to the variational equations. The basic
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conclusions of this work are coincident with the more ab-
stract previous analysis utilizing the action matrix represen-
tation of the controlled dynamics �30�. Previous work also
came to the natural conclusion that many, or even an infinite
number of control maxima may be expected to exist �43,44�.
This paper clearly shows that the landscape corresponding to
these extrema has no false features. Furthermore, the slopes
on the maxima and the curvature at the maxima solutions are
both bound by the magnitude of the transition dipole mo-
ment. The trace of the Hessian being bounded from below
has the important feature of implying robustness, and likely
of an enhanced degree, with increasing Hilbert space dimen-
sion. In general, all of these results reveal the existence of
remarkably attractive quantum control landscapes where the
search efforts will encounter gentle slopes as well as maxima
that are robustly flat. This behavior suggests that various,
even simple, algorithms should be able to search through the
accessible controls to find viable solutions, and second, a
respectable degree of robustness to laboratory noise should
exist �55�. The many successful control experiments are cer-
tainly consistent with this analysis.

The simple topology of the Pi→f landscape indicates that
perhaps the main limiting factor in the control of quantum
systems is the presence of constraints restricting access to the
controls. That is, despite the fact that the landscape has an
ideal topology, the presence of constraints could easily lead
to tortuous search pathways across the landscape, which
might artificially introduce multiple local extrema. These lat-
ter extrema would be reflective of the control constraints
rather than the inherent structure of underlying the land-
scape. Other physical issues will certainly also enter, includ-
ing the system being at finite temperature and exposed to

decoherence during the dynamics. As with control noise, the
presence of decoherence, at least of a weak nature, can be
viewed as producing a lower resolution landscape rather than
a fundamental change in its topological features �30�. How-
ever, starting out at a finite temperature, implies that the
system contains entropy, which only could be removed by
interaction with suitable bath. A landscape analysis based on
starting with an arbitrary mixed initial state, as well as for
the case of directly controlling unitary transformations them-
selves, has been carried out using the action matrix represen-
tation �56�. A similar analysis to that in this paper based on
working with the control field ��t� should be insightful for
these cases as well.

In summary, this work presents the basis to qualitatively
understand the many successful optimal control simulations
and the growing number of successful experiments. Perhaps
most importantly, the conclusions from the generic topology
of the quantum control landscapes provides the foundation to
project ahead that many more positive quantum control ex-
perimental outcomes may be expected, even in manipulating
complex systems. Having adequate controls is a central issue
in executing the experiments to take advantage of the simple
landscape topology. The many laboratory control successes,
often with very constrained controls, bodes well for even
better results in the future as the control sources improve.
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