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The stepwise behavior of quantum defects along the periodic table of the elements is related to the
�n+ � ,n� building-up rule in the table.
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The stepwise behavior of quantum defects along the peri-
odic table of the elements—i.e., with variation of atomic
number Z—has been known for a long time �1,2�. Originally
it was found in theoretical analysis and immediately received
an appropriate physical explanation, as discussed in more
detail below. The special regularities in the position of the
steps on the Z scale are less known. The objective of the
present paper is to reassess the latter issue by updating, put-
ting together its different aspects, and exposing it in a broad
theoretical context. The systematical improvement of theo-
retical results and experimental data on the individual quan-
tum defects for special values of Z and the Rydberg electron
orbital momentum � does not preclude interest in the general
overall trends.

The stepwise behavior is well seen in the results of early
calculations �1,2� of quantum defects ���Z� across the peri-
odic table. The “empirical” position of the steps Zemp

�d� for d
waves �i.e., for the orbital quantum number of an active elec-
tron �=2� and Zemp

�f� for f waves ��=3� extracted from the
plots provided by Manson �1� are listed in Table I further
explained below. The plots actually depict the phase shift
���Z ,�=0� for zero energy �, but since Seaton’s paper �3� the
relation to quantum defects is universally known:

����Z� = ���Z,� = 0� . �1�

The increment of �� at each step is roughly equal to 1.
The stepwise structure had received a fully adequate ex-

planation right at the moment of its recovery. The effective
potential seen by the active electron

Ueff�r� = U�r� +
��� + 1�

2r2 �2�

�atomic units are used throughout the paper� exhibits two
wells separated by a potential barrier, as first noticed by
Goeppert Mayer �4� �see also discussion by Manson and
Cooper �5��. The short-range potential Us�r� is operative
mostly in the inner well, while in the outer well U�r� reduces
to pure Coulomb attraction −Z0 /r. Here Z0 is the charge of a
residual core seen by the outer �active� electron �Z0=1 if the
spectrum of a neutral atom is considered�. Now we resort to
citations from Manson �1�: “Increasing Z, the inner well gets
deep enough to support a bound d state so that the first loop
of the continuum wave function is in the inner region even at

�=0. The same thing happens for f waves: here, however,
the barrier is wider and higher, so that it is more effective in
keeping �=0 waves essentially nonpenetrating up to the val-
ues of Z around where the first f state becomes bound in the
inner well¼. For f waves it is seen that at �=0 the curve
����Z ,�=0�� is a step function since it depends essentially
only on the outer region of the potential and on the number
of bound states the inner well can support.¼ The s and p
waves, being very penetrating, are determined by the poten-
tial over entire range of r¼.” A similar discussion was given
by Fano et al. �2�.

The separation of inner and outer wells can be further
analyzed by using the well-known Thomas-Fermi potential
for Us�r� �6�:

Us�r� = −
Z

r
��x�, x = rZ1/3/b , �3�

where b= 1
2 �3� /4�2/3�0.885. The Thomas-Fermi function

��x� does not have a closed-form expression but could be
well approximated by the simple analytical formula

�T�x� =
1

�1 + �x�2 �4�

suggested by Tietz �7,8�. He used two different methods to
choose the parameter �: the normalization condition in
momentum space �7� gave �n= �� /8�2/3�0.569 while the
variational principle �8� led to �v=2−4�35� /4�2/3�0.538.
Both these values ensure a good approximation in the
intermediate range of x �or r� most important for considering
an atomic ground-state or zero-energy scattering shift. For
large r the behavior of ��x� and �T�x� differ, but in this
domain the asymptote of ��x� is known to be of little
physical sense. The quality of the approximation �4� is quite
robust against variation of �; Ref. �9� suggested to use

*Electronic address: Valentin.Ostrovsky@pobox.spbu.ru

TABLE I. Position of steps in dependence of quantum defects
���Z� on atomic quantum number Z and assignment of quantum
numbers N=n+� �see text for details�.

N 5 6 7 8

�n� �N for ��2 3d 4d 4f ,5d 5f ,6d

ZN
rule 21 39 57 89

Zemp
�d� 19 37 55 87

Zemp
�f� 55 87

PHYSICAL REVIEW A 74, 012714 �2006�

1050-2947/2006/74�1�/012714�5� ©2006 The American Physical Society012714-1

http://dx.doi.org/10.1103/PhysRevA.74.012714


numerologically attractive value �DO= 1
2 which also gave

good result.
Combining formulas �3� and �4� we obtain the analytical

approximate one-electron potential in an atom:

Us
�an��r� = −

Z

r�1 + r/R�2 , R = �−1Z−1/3b . �5�

The Tietz approximation is often omitted when simple
atomic models �10� or the Thomas-Fermi approximation �11�
are discussed. Schwinger and Englert �12–14� undertook an
extensive study of the Thomas-Fermi approximation, but
were not aware of the Tietz approximation until 1985 when it
was successfully used �15,16�. On the other hand, the ap-
proximation has been actively employed in the well-known
collection of problems in quantum mechanics �17� and used
in various applications until now �18,19�. The beautiful ana-
lytical properties of the approximate potential revealed by
Demkov and Ostrovsky �9� add to its value; see the brief
discussion below.

Following Latter �20� �see also Ref. �21�� we match the
potential Us

�an��r�, Eq. �5�, with the Coulomb tail; the match-
ing point rm is defined from Us

�an��rm�=−1/rm. The depen-
dence rm�Z� is shown by the solid curve in Fig. 1 �parameter
value �n was employed�. The outer turning point ro for
�=0 lies in the domain where only the attractive Coulomb
potential −1/r and repulsive centrifugal potential
��+ 1

2
�2 / �2r2� are operative �the well-known Langer correc-

tion is applied�. The position of ro does not depend on Z,
being given by the horizontal lines for �=1,2 ,3 in Fig. 1.
For the motion in the inner potential well the turning points
are defined from the condition Us

�an��r�+ ��+ 1
2

�2 / �2r2�=0.
The inner right turning point rt�Z� is also shown in Fig. 1 for
�=1,2 ,3. Inspecting the figure one sees that for d and f
waves the ordering of radial points of interest is

rt�Z� 	 rm�Z� 	 ro �6�

�the analytical expressions for all these magnitudes are
straightforward; they are not cited here for brevity�. This
means that the inner and outer domains of classically al-

lowed electron motion are separated by a potential barrier,
which supports the early reasoning cited above and thus ex-
plains the stepwise behavior of ���Z�. The matching of po-
tentials occurs inside the barrier and does not influence
simple semiclassical formulas. On the contrary, for p waves
�moreover for s waves not shown in Fig. 1� the ordering �6�
is violated, which means that the outer and inner wells are
not separated by a barrier but merge.

The application of Thomas-Fermi theory to various prob-
lems in atomic physics has a long and fruitful history �24�.
The literature is very extensive; here we refer to the compre-
hensive review by Spruch �11�, the series of papers by
Schwinger �12� and Englert and Schwinger �13–15�, and
book by the latter author �16�. The semiclassical �Thomas-
Fermi� method is indispensable when the trends along the
periodic table are explored. “The HF method is designed for
the investigation of individual atoms with given nuclear
charge and number of electrons. In contrast, the semiclassical
approach is meant to deal as a whole with the periodic table”
�14�.

In their recent paper, Kolomeisky and Timmins �KT� �22�
look for manifestation of the Zel’dovich effect in the evolu-
tion of atomic Rydberg spectra along the periodic table of the
elements. The effect appears in the energy spectrum of a
potential U�r� with a Coulomb tail and some short-range
behavior Us�r� for small separations r from the force center.
Since the terminology seems to be introduced for the first
time, the authors choose to summarize Zel’dovich’s �23�
findings in the following terms:“¼ he stated that as the di-
mensionless coupling constant w �potential parameter� in-
creases, the spectrum of the problem En�w� evolves in a fash-
ion resembling decreasing staircase. The steps are located at
critical values of w at which bound states occur in Us�r�
only.”

Following Zel’dovich, KT limit consideration to s states
and come to the conclusion that such a “peculiar reconstruc-
tion” of the bound-state spectrum is absent for atoms. In-
stead, they show that “along the periodic table of elements,
the Zel’dovich effect manifests itself as a systematic periodic
variation of the Rydberg spectra proportional to the cubic
root of the atomic number” or atomic nucleus charge Z.
Thus, in this alternative definition of the effect, the staircase
behavior originally put forward by Zel’dovich is substituted
by an actual smooth modulation. The terminological di-
lemma might be formulated as follows: should the name
Zel’dovich effect be reserved to the stepwise behavior of
quantum defects for any potential with a Coulomb tail �in-
cluding those with centrifugal repulsion�, or it should be ap-
plied to an arbitrary �including smooth� behavior of quantum
defects as the short-range s-wave potential Us�r� deepens and
new bound states appear. A possible resolution is provided
by KT who talk about Zel’dovich modulations with Z1/3 scale
when a smooth behavior is discussed.

It is well established that Z1/3 is a natural characteristic
parameter within the Thomas-Fermi scheme �see bibliogra-
phy above and also Ref. �25��. In view of this, the attempted
separation of Zel’dovich modulations from the similar but
more pronounced Z1/3 modulations induced by atomic shell
structure �11–16� is not easy, as justly indicated by KT, and
not without some artificial flavor.

FIG. 1. �Color online� Dependence on atomic number Z of the
turning points rt and ro in the effective atomic potential for various
values of orbital momentum �. The matching distance rm is also
shown; see text for details.
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As exposed above, the stepwise behavior is found in the
periodic table as long as one lifts restriction to consider only
s states. The physical background is quite obvious:
Zel’dovich �23� stressed that the stepwise behavior appears
under condition of resonance scattering of low-energy par-
ticles by potential Us�r�. Such a shape resonance emerges for
potentials with a barrier, but a barrier is absent in one-
electron potential for atomic s states. On the contrary, for
high enough electron orbital momentum � the barrier is
clearly manifested in the effective potential �2�.

The arguments cited above of early papers �1� on the step-
wise behavior were based on considering wave function and
oscillatory behavior �loops� inside the potential well. The
similar arguments were applied also by Zel’dovich �23�
along with a more quantitative construction. The paper by
Zel’dovich �23� was not referred to in the original interpre-
tation of the stepwise behavior of quantum defects �1,2,5�.
This circumstance finds its historical explanation in the fact
that different, but in many aspects parallel, theoretical
schools and traditions existed; in particular, Zel’dovich’s pa-
per was addressed primarily to the solid-state community.

The early reasoning �1,2,5� complemented by the later
studies �18,26–28� and by the simple arguments put forward
above could successfully conclude the quest for search and
explanations of the stepwise effect in atomic spectra. How-
ever, under a deeper scrutiny, the peculiar features are re-
vealed that add a quite special flavor to the effect. As the first
“phenomenological” observation one might notice that the
locations of the steps Zemp

�f� for f waves coincides with these of
the steps Zemp

�d� for d waves; see Table I. This is not a mere
coincidence, but a reflection of the general structure of the
periodic table of the elements well described by �n+ � ,n�
Aufbau �or building-up� rule. I remind the reader that accord-
ing to this rule �i� the one-electron orbitals �n� � in the
ground-state neutral atoms are filled in the order of increas-
ing sum N�n+� and �ii� for a fixed N in the order of in-
creasing n. Sometimes this rule is referred to as the Made-
lung �29� �1936� rule although it was Karapetoff �30� �1930�
who published it first. The rule was rediscovered several
times as traced in detail in Ref. �31� where a vast bibliogra-
phy related to the rule is analyzed. The works by Klechk-
ovskii �32,33� summarized in his book �34� should be par-
ticularly praised since this author studied systematically
different aspects of the �n+ � ,n� rule in much detail. Al-
though the rule allows a number of exceptions, it describes
adequately the general Aufbau pattern, while the alternative
�n , � � rule breaks down completely for higher Z, as illus-
trated graphically by Demkov and Ostrovsky �9�.

The really quantum-theoretical interpretation of this rule
requires an operator with eigenvalues depending on n+�.
This particular linear combination of quantum numbers had
never appeared as a result of solution of any Schrödinger
equation �this situation can be compared with that for a pure
Coulomb field where in the course of a detailed mathemati-
cal solution the combination nr+ � +1 �where nr is the radial
quantum number� naturally emerges in the expression for the
bound-state energy, subsequently being designated as the
principal quantum number n�. The puzzle was resolved by
Demkov and Ostrovsky �9� when it was noticed that the

Schrödinger equation for the potential �5� allows an exact
analytical solution, but only for the energy �=0. This means
that setting �=0 one can quantize the potential strength or,
equivalently, the potential parameter Z, with the result

ZN = � �

2b
N�N + 1��3/2

. �7�

In the literature such a statement of the quantization problem
is known as Sturmian. The specific quantum number N
appears naturally in this treatment, as testified by analytical
expression �7�. For Z=ZN the zero-energy bound states
exist on the border between the scattering continuum, �
0,
and the bound states domain, �	0. Most remarkably, the
bound states with the same sum N�n+� are degenerate. In
other words, as Z increases, the energy levels with the
same n+� but different � �and n� appear �at �=0� simulta-
neously at Z=ZN; the ordering of appearance is described
by the first part of the �n+ � ,n� rule. This degeneracy
explains aforementioned observation that Zemp

�f� �Zemp
�d� . For

Z
ZN the bound-state energies become negative and the
degeneracy is lifted. The ordering of the levels within the
given N group was established by perturbative analysis �9�.
In this way the second part of the �n+ � ,n� was reproduced.
This completes the quantum ab initio �i.e., without using
empirical information or fitting� derivation of the �n+ � ,n�
building-up rule �9�. The specific linear �n+ � � degeneracy
intrinsic for the potential �5� was rediscovered 13 years
later by Englert and Schwinger �15�, albeit only in the
semiclassical approximation.

Denote as ZN
rule the lowest value of the ordering number Z

at which the states with given N appear according to the
�n+ � ,n� rule. As seen from the Table I, these values are very
close to the values Zemp

�d� , Zemp
�d� . This allows us to assign the

labels N to the “empirical” values Zemp
��� , as shown in the

table. Actually the values of ZN
rule are by two units larger than

Zemp
��� . This has clear interpretation since �i� the �n+ � ,n� rule

refers to filling orbitals in the ground state atoms and �ii� the
orbitals are filled for larger Z than the appearance values
Zemp

��� .
In order to test performance of formula �7�, the ratio

KN =
Zemp

���

�N�N + 1��3/2 �8�

is depicted in Fig. 2 for different N. It is seen that KN only
weakly depends on N in agreement with Eq. �7�, albeit the
numerical value of the ratio proves to be somewhat different
from this that follows from Eq. �7�.

Another closely related issue is the �n+ � � grouping in
atomic spectra. Klechkovskii �33� and Sternheimer �35�
empirically noticed that the excited energy levels in the
one-electron spectra of some atoms and singly charged
positive ions form groups with the same value of the sum
n+�. It is operative in some interval of orbital momenta,
0� � ��0, where the limiting value �0 depends on Z. The
quantum defects are small for �
�0: ���1. Such a group-
ing is distinct from that of the slightly distorted Coulomb
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potential where levels with the same n and different � form
clusters. The n+� groups do not overlap if the following
condition is satisfied:

max
�

���−1�Z� + � � − min
�

����Z� + � � 	 1. �9�

The grouping was discussed in Refs. �27,36�. It was related
to the �n+ � ,n� rule in Refs. �26,28�, although probably a
more detailed study is needed here.

This brief paper is limited to outlining specifics of the
stepwise behavior of quantum defects. I omit many physi-
cally important and interesting issues, such as the shape of
classical electron trajectories in the potential �5� with un-
usual focussing properties �9�, its generalizations �37�, pecu-
liar behavior of s states �28�, clustering of resonances in
different partial waves �38�, or symmetrical �group-
theoretical� aspects of the problem �28,39�. I note only that
the dynamical group of the atomic potential was constructed

in Ref. �28�. An alternative construction was suggested by
Kitagawara and Barut �40�. Although it contains some inter-
esting observations, the ultimate goal was not achieved, as
argued in Ref. �39�.

In conclusion some general remarks are in order. The
steplike behavior of ���Z� found in Refs. �1,2� by numerical
integration might be reproduced also by using a well-
developed arsenal of the semiclassical approximation, such
as comparison �or etalon� equation and uniform approxima-
tions intended to describe the situation with closely lying
turning �or other singular� points �see, for instance, the book
by Child �41�; for the potential �5� some correction terms in
quantization condition were discussed also in Ref. �42��. The
development of this kind needs some calculations, not diffi-
cult in principle, but probably a bit cumbersome. It seems
that such an exercise hardly would substantially improve our
qualitative understanding of ���Z� features �i.e., the stepwise
Zel’dovich effect�, as described above. If the most quantita-
tively accurate results are required, then the numerical inte-
gration is unavoidable, but the efforts are to be directed to-
wards improving the interaction potential, for instance, by
taking into account the core polarization at large r and going
beyond the Thomas-Fermi approximation in the inner region
of U�r�, for example, by effectively accounting for electron-
electron correlations �for more discussion see Ref. �2��. In
any case, when the “old” problems are reexamined one has
to take a full account of earlier achievements.

As a summary, in the present study the stepwise behavior
of quantum defects along the periodic table of the elements
is analyzed and its specific feature is emphasized: the degen-
eracy of the step positions with respect to the electron orbital
momentum �, for d and f Rydberg series. The degeneracy is
related to the �n+ � ,n� rule of filling one-electron states in
the periodic table.
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