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Levinson theorem for the Dirac equation in one dimension
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The Levinson theorem for the (1+ 1)-dimensional Dirac equation with a symmetric potential is proved with
the Sturm-Liouville theorem. The half-bound states at the energies E=+M, whose wave function is finite but
does not decay at infinity fast enough to be square integrable, are discussed. The number n, of bound states is
equal to the sum of the phase shifts at the energies E=+M:5,(M)+ 8.(~M)=(n,+a), where the subscript =
denotes the parity and the constant a is equal to —1/2 when no half-bound state occurs, to 0 when one
half-bound state occurs at E=M or at E=—M, and to 1/2 when two half-bound states occur at both E=+M.
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I. INTRODUCTION

The Levinson theorem [1] is a fundamental theorem in
quantum scattering theory, which shows the relation between
the number of bound states and the phase shift at zero mo-
mentum. During the past half century more than 100 papers
were devoted to generalization of this theorem and to its
applications in physics. Since one-dimensional models on
scattering theory are often employed to gain deeper insight
into physical phenomena in real three-dimensional space,
they have attracted the great attention of many authors for a
long time. Newton [2—4] studied inverse scattering through a
one-dimensional model by the Jost function. The Levinson
theorem for the one-dimensional Schrodinger equation was
studied by the operator formalism of scattering matrices
[5.6], by the orthogonality and completeness relations for the
eigenfunctions of the Hamiltonian [7-9], and by the Sturm-
Liouville theorem [10]. Furthermore, the Levinson theorem
for the (1+1)-dimensional Dirac equation was first studied
by the Jost function and the relativistic field-theoretic
method [11], and then, special attention was shown to the
continuity of the S matrix [12]. By analyzing the critical
cases with the half-bound states in detail, Lin [13] estab-
lished the Levinson theorem for the (1+1)-dimensional
Dirac equation with the Green’s function method. The
Levinson theorem for the (1+ 1)-dimensional Dirac equation
in the presence of a soliton was also discussed [14].

Recently, a stronger version of the Levinson theorem
for the (1+ 1)-dimensional Dirac equation has been presented
[15], where the scattering phase shifts at E=M and at
E=-M were connected to the number of states that have left
the positive energy continuum or joined the negative one,
respectively. Although it is correct, how does one measure a
bound state whether it is transferred from the positive energy
continuum or from the negative energy continuum? Such a
connection was not very evident in the course of the proof
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with the Green’s function method [13]. However, the con-
nection is only a medium step in the course of the proof with
the Sturm-Liouville theorem method. Moreover, it should be
pointed out that the latter method is very intuitive in physical
meaning and explicit in the demonstration of the connection
between the number of the bound states and the scattering
phase shifts. This is the reason why we prefer to employ the
Sturm-Liouville theorem method to prove the Levinson theo-
rem for the (1+ 1)-dimensional Dirac equation in this work.

The plan of this paper is organized as follows. In Sec. II
we sketch the Dirac equation in 1+ 1 dimensions. The Sturm-
Liouville theorem for the (1+ 1)-dimensional Dirac equation
is established in Sec. III. The Levinson theorem is proved
with the Sturm-Liouville theorem in Sec. IV. A conclusion is
given in Sec. V.

II. DIRAC EQUATION IN 1+1 DIMENSIONS

The Dirac equation in (1+ 1)-dimensional space-time is
[13]
1
i Y49, +ieA )V (x,1) = MW (x,1), (1)
u=0

where the natural units A=c=1 are used, ))Ozy0=0'3, and
Y'=—y,=ic,. We discuss a special case

eAy=\V(x), Vx)=V(-x), A, =0, (2)
where V(x) satisfies the restriction
f AVl < o, )
0

which implies that the potential V(x) is less singular near the
origin than x~2 and vanishes infinity faster than x™2. \ is a
real parameter and eventually is set to 1. Due to the symme-
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try of V(x), the wave function is classified with its parity,
denoted by the subscript “*:

YV (-x,0)= =W, (x1). “

Letting
<F (L EN) ) 5
+()C t) Gi(x’E,)\) ( )

one has

AGEN e i)~ MIFL(EN).
dx

_Mzw_xv(xHM]Gi(hEﬂ\) ©)

Since y’=0, the component functions with a given parity
satisfy

F.(-x,E\)= £ F.(x,E,\), G.(-x,E.\)= T G.(x,E,\).

)
Thus, their boundary conditions at the origin are
lim F_ (xE)\)—hmG (x,E,N) =0,
x—0 —0
. d . d
lim —F,(x,E,\) =1im —G_(x,E,\) =0. (8)
x—0 dxX =0 dx

Hence, the variant region of x reduces to [0,) equivalently.
Since the tail of the potential at large x can be neglected, we
will simply discuss the bounded potential

V(x)=0, when x> x,. 9)

It is easy to see that Egs. (6)—(8) remain invariant by the
replacement F,(x,E,\)+ G+(x,—E,—\). The formulas for
even parity can be obtained from those for odd parity by the
replacement. In the following we will only study the
Levinson theorem for solutions with odd parity and give the
main results for even parity.

1. STURM-LIOUVILLE THEOREM
It is easy to show from Eq. (8) that

dG.(x,E\ dF.(x,E' \
Fi(X,E,,)\,)L) _ Gi(X,E,)\)L
dx dx
=[E-E" = (N=N)V@)]F.(x,E',N\)G.(r,E,\).
The ratio
F_,_(.X,E,)\)
(G, EN)=——— 10
¢.(x,E,N) G EN) (10)

satisfies the generalized Sturm-Liouville theorem

G (.XO,E )\)2

¢+(x0 E7 )\)

X0
- J {F.(x,E.N?+ G.(x,E.Ndx <0, (11)
0
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G.(x.E, 7\)2 ¢+(x0 JEN)

= f h VONF.(x,E\N)? + G (x,E,N)dx.  (12)
0

Except for some values of A where G_(x,,E,\)=0, the ratio
¢.(xo—,E,\) at a given point x,— decreases monotonically
as the energy increases and is monotonic with respect to A\ if
the potential V(x) does not change its sign in the region
[0,x,). Similarly, if the solution W(x,#) with |E| <M tends to
Zero as x goes to inﬁnity, one has

G (Xo,E )\) ¢+(X0+ E )\)

= J i {F.(x,EN)*+G.(x,EN?dx>0. (13)

The ratio ¢,(xo+,E,\) at a given point xy+ increases mono-
tonically as the energy increases.
Introduce the momenta k and k, for different energies:

k=VE>- M2, when |E|> M,

k, = VM2~ E?, when |El<M. (14)

For a free particle, A=0, the orthonormal regular solution of
Eq. (6) with odd parity for |E|>M is

F(.E0)= E |E+M| in(lc)
X, |E| — sin(kx),
E- M|
G_(x,E,0)=— cos(kx). (15)
2k

There is no finite solution with odd parity for |E|<M and
A=0 except for a half-bound state at E=—M:
F_(x,-M,0)=0, G_(x,-M,0)=1, ¢_(x,—M,0)=0.
(16)
For a given \, Eq. (6) can be solved in the region (xy,)
from Eq. (9). For |[E|> M one has

E [|[E+M|
F_(x,E\)=— in[kx+ 6_(E,N)],
(EN) = o sinks+ 0. (EA)]
E-M|
G_(x,E\\)=— cos[kx+ o_(E,N)].  (17)
21k

In fact, the normalization factor is not important in the fol-
lowing calculation. A convention for the phase shift 8,.(E,\)
that can be accepted is that 8,(E,\) with |[E|>M is a con-
tinuous function of N and vanishes for a free particle:

5.(E,0)=0. (18)
Through the matching condition at x,
d’x(xo—,E’)\): ¢1(x0+’E’)\)’ (19)

we are able to obtain the phase shift as
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tan 8_(E,\)
&_(xo— ,E,N)k cos(kx,) + (E/|E|)|E + M|sin(kx,)
~ b_(xo— ,E, Nk sin(kxo) — (E/|E|)|E + M]cos(kx,)
(20)

where the phase shift S_(E,\) and the wave functions
depend upon \. For a fixed k,

d5_(E,N)

a¢(x0 - ’E’)\) k
~ — k(E/|E|)|E + M|cos}[6_(E,N)]
"~ [p_(xo— . E.Nk sin(kx,) — (E/|E|)|E + M|cos(kxq) >
(21)

As ¢(xy—,E,\) decreases, the phase shift 5_(E,\) increases
when E>M and decreases when E<<—M. The phase shift

6_(£M ,\) of zero momentum is the limit of 8 (E,\) as k
goes to zero:

O_(xM,\)= lim 6&_(E,N), (22)

E—+M

where 5_(xM,\) changes discontinuously as A increases.
By expanding Eq. (20) with respect to kx,, one has

d_(xg— .M, N) "+ (2Mx)™!
&_(xg— M\ + 3 = Kxo/2M)°
when E> M, (23)

tan 6_(E,\) ~ — kx,

and

1 ¢ (xg—,EN) - Kxo/(2M)

kxo ¢_(xo—EN) + 1/(2Mx,)’

when E<-M. (24)

tan 8_(E,\) ~

It should be noted that ¢_(x,—,M,\) tends to infinity and
d_(xo—,M ,\)""tends to 0 as G_(xo—,M,\) goes to 0. When
E>M and kx is sufficiently small, as N\ increases from O to
1, each time ¢_(x,—,M,\)"! increases across the value 0,
6_(M,\) jumps by 7 and each time ¢_(xo—,M,\)~" de-
creases across the value 0, 5_(M,\) jumps by —. For the
critical case where ¢_(xo—,M,1)7'=0, 6_(M,\) jumps by
an additional 7/2 (or —7/2) if ¢(xy—,M,\)"" increases (or
decreases) to reach 0 as \ increases to reach 1.

When E<-M and kx, is sufficiently small, |tan 6_(E,\)|
is very small if ¢_(xo—,-M,\)=0 and is very large if
¢_(xo—,—M,\)#0. Note that ¢_(xo—,—M,0)=0 and
6_(-M,0)=0. As \ increases, due to Eq. (21), 6_.(E,\)
decreases (or increases) when ¢_(xo—,-M,0) decreases
(or increases). As N increases from 0, 5_(-M,\) jumps by
/2 if ¢_(xg—,—-M,\) increases and jumps by —m/2 if
¢_(xg—,—M,\) decreases. As N\ increases again, when
¢_(xo—,—M,\) changes across the value —(2Mx,)~',
tan _(E,\) changes sign but its absolute value is still
very large. Each time ¢_(xo—,—M,\) increases across
the value 0, tan 6_(E,\) increases from negative to positive
across the value 0 and &_(—M,\) jumps by 7. Similarly,
each time ¢_(xo—,—M,\) decreases across the value O,

PHYSICAL REVIEW A 74, 012712 (2006)

O_(-M,\) jumps by —m. For the critical case where
¢_(xo—,—-M,1)=0, 5_(-M,\) jumps by an additional /2
(or —7/2) if ¢_(xy—,—M,\) increases (or decreases) to
reach 0 as N\ increases to reach 1.

IV. LEVINSON THEOREM

Now, we turn to discuss the bound states. The solution of
Eq. (6) in the region (x,,%) with odd parity for |E|<M is

F_(x,E)=\M + Ee™™*, G_(x,E)= M - Ee™*, (25)
and its ratio is

2M/ky ~ >, when E— M,
¢(X0 + ’E) = (26)
ky/(2M) ~0, when E— —M.
When E=+M there are half-bound states in the region
(x9,%):

F_(x,M)=1, G_(x,M)=0, ¢_(xo+,M,0)=00,

F_(x,-M)=0, G_(x,-M)=1, ¢_(xo+,-M,0)=0.

(27)

The solution of Eq. (6) in the region [0,x,) cannot be
solved analytically except for A=0. When A=0, the solution
with odd parity for |E|<M is

F_(x,E,0) = M + E sinh(k,x),

G_(x,E,0) = - M — E cosh(k,x), (28)
and its ratio is
—2Mxy), when £E— M,
¢-(x0 =, £,0) —~ {— K2xy/(2M) ~ 0, when E— - M.

(29)

it can be seen from Egs. (26) and (29) that as E increases
from —M to M, ¢_(xy+,E) increases monotonically from O
to positive infinity and ¢_(xy—,E,0) decreases monotoni-
cally from 0 to —-2Mx,. There is a half-bound state at
E=-M for a free particle [see Eq. (16)].

As M\ increases, ¢_(xy+,E) remains invariant, but
¢_(xo—,E,\) changes. Based on the Sturm-Liouville
theorem (11), one only needs to pay attention to variations of
¢_(xo—,M,\) and ¢_(xg—,—M,\). As \ increases from 0 to
1, each time ¢_(xo—,M ,M)~! increases across the value 0, a
scattering state in the positive energy continuum transfers to
a bound state and the phase shift S_(M,\) jumps by 7 and
vice versa. For the critical case where ¢_(xq—,M, 1)'=0, if
¢_(xo—, M ,A)~!increases to reach the value 0 as \ increases
to reach 1, a scattering state in the positive energy continuum
transfers to a half-bound state and the phase shift &(0,\)
jumps by /2. If ¢(xy—,M,\)~! decreases to reach 0 as \
increases to reach 1, a bound state becomes a half-bound
state and the phase shift 5(0,\) jumps by —7/2.

On the other hand, if ¢_(xo—,—M,\) increases as \ in-
creases from 0, a half-bound state becomes a bound state and
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O_(-=M ,\) jumps from O to /2. But if ¢_(xq—,—M,\) de-
creases, a half-bound state transfers to a scattering state in
the negative energy continuum and 8_(-M,\) jumps from O
to —7r/2. As N\ increases again, each time ¢_(xo—,—M,\)
increases across the value 0, a scattering state in the negative
energy continuum transfers to a bound state and 8_(—M,\)
jumps by 7 and vice versa. For the critical case where
¢_(xg—,-M,1)=0, if ¢_(xo—,—M,\) increases to reach
the value 0 as N increases to reach 1, a scattering state in
the negative energy continuum transfers to a half-bound
state and S6_(-M,N\) jumps by /2. Conversely, if
¢_(xo—,—M ,\) decreases to reach the value 0, a bound state
becomes a half-bound state and &_(—M,\) jumps by —/2.
Through the replacement F.(x,E,\)< G=(x,—E,—\)
one can make a similar conclusion for even parity to that
for odd parity. Therefore, the Levinson theorem for the Dirac
equation in (1+ 1)-dimensional space-time is written as

0.(M) + 5.(— M)

(n.—1/2)7, no half-bound state occurs,

=\ n,m, one half-bound state occurs,

(n.+1/2)7, two half-bound states occur,
(30)
where 6,.(xM)=4,(xM,1) is the phase shift at E=+M, n,
is the number of bound states, and the subscript “*” denotes
the parity. A half-bound state at E=M occurs when
¢.(xo—,M,1)7'=0, and a half-bound state at E=—M occurs
when ¢, (xo—,—M,1)=0. When no half-bound state occurs,
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O_(-M)/m and &,(M)/m are half of an odd integer and
6_(M)/ and 8,(—-M)/a are an integer. When a half-bound
state occurs at E=M, 5_(M)/ becomes half of an odd inte-
ger and 8,(M)/m becomes an integer. When a half-bound
state occurs at E=—M, S_(—M)/ becomes an integer and
S,(=M)/m becomes half of an odd integer. Equation (30)
coincides with Eq. (51) in Ref. [13].

V. CONCLUSION

In this paper we reproved the Levinson theorem with the
Sturm-Liouville theorem. The phase shift at E=M jumps by
7 and a scattering state in the positive energy continuum
transfers to a bound state as the ratio ¢,(ro—,M N7 in-
creases across 0 and vice versa. Similarly, the phase shift at
E=-M jumps by —m and a bound state transfers to a scatter-
ing state in the negative energy continuum as the ratio
¢.(ro—,—M ,\) decreases across 0 and vice versa. However,
for a given bound state, one cannot distinguish whether it is
transferred from the positive energy continuum or from the
negative energy continuum, so that the stronger version of
the Levinson theorem does not make new sense.
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