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Off-shell Jost solution for a Coulomb-like potential
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The theory of ordinary differential equations together with judicious use of boundary conditions and certain
properties of higher transcendental functions is exploited to derive a useful analytical expression for the
Coulomb-Yamaguchi Jost solution through an r-space approach to the problem. Note that the off-shell Jost
solution is expressed in its maximal reduced form involving confluent and Gaussian hypergeometric functions.
As an application of the Jost solution the off-shell 7" matrix is also expressed in terms of Gaussian hypergeo-

metric functions.
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The theory of nonrelativistic scattering is considerably
simplified by the use of nonlocal potentials. This simplifica-
tion is justified by the observation that short-range local po-
tentials can be approximated by finite-rank separable poten-
tials in a mathematically well defined sense and also that the
nonlocal potentials can describe a much wider variety of
phenomena than that encompassed with short-range local po-
tentials [1]. In view of the importance of experiments which
involve charge hadrons, the interest in studying potentials
consisting of the sum of a short-range finite-rank separable
potential and Coulomb potential is increased [2—4].

In conventional potential scattering theory the physical
scattering amplitude can be obtained by taking the on-shell
limit of the off-shell 7 matrix. This is no longer true for
Coulomb and Coulomb plus short-range potentials [5] and
they exhibit a discontinuity at the energy shell. Nevertheless,
it is generally expected that one also can extract, in such a
situation, all relevant physical information from the off-shell
T matrix. The outgoing-wave off-shell function can be ex-
pressed directly in terms of an off-shell Jost solution and Jost
function. Also by exploiting the relation that exists between
off-shell 7 matrix and outgoing-wave off-shell function one
can obtain an expression for the 7" matrix. The off-shell Jost
function introduced by Fuda and Whiting [6] is also deter-
mined from the irregular solution of an inhomogeneous
Schédinger equation in the same way as f(k) is determined
from f,(k,r).

Therefore, it is of some importance to have an explicit
expression in the literature for the off-shell Jost solution re-
lating to Coulomb-like potentials which are encountered in
the physical processes like the proton-proton (p-p) brems-
strahlung and (p-2p) reaction.

Separable potentials have been, since the appearance of
Yamaguchi’s original paper [7], an immensely popular tool
in dynamical calculations. In this paper an explicit expres-
sion for the off-shell Jost solution for a Coulomb plus
Yamaguchi potential will be derived by solving the inhomo-
geneous Schodinger equation. The result for an off-shell Jost
solution to author’s knowledge is new. The method proposed
will be applicable for a Coulomb plus separable potential of
arbitrary rank but a higher partial wave treatment will in-
volve mathematical complication.

Yamaguchi [7] has introduced a one term separable poten-
tial
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V(r,s) = he PU+) (1)

to describe the nucleon-nucleon scattering. Here A and 8 are
the strength and range parameters of the potential. The off-
shell Jost solution f(k,q,r) for a Coulomb plus Yamaguchi
potential satisfies the differential equation

d 2kn .
[ﬁ +i - p }f(k,q,r) =d(k,q)e P + (k> — g*)e'"
(2)

with

d(k,q) =\ f dse Pf(k,q,s). (3)

0

Here 7 is the well known Sommerfeld parameter.
To solve Eq. (2) the dependent and independent variables
are changed as follows:

z=—2ikr (4b)

to get

2 d
=5+ (-2 —a|glkq,z)
dz

dz*
1
=— —[d(k.q)e” + (K — g*)e”"] (5)
2ik
with
(B+ik) (k-q)
=1+in, =2, =——and y=—"". (6
a=1+in, ¢ p o mdy="— (6)

Complementary functions of Eq. (5) are given by confluent
hypergeometric functions

T'(c) i [(a+n)z"

P(a.c30) = 1 2 T

(7)

and
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D(a,c;2)=7""Pla—-c+1,2-c;2). (8)

Note that, for c=2, Eq. (8) is not an acceptable solution of

Eq. (2). However,® tends towards the solution [8] of Eq. (2)
when ¢ approaches 2. This is no loss of generalization. See,
for example, the treatment of the Coulomb field by Newton
[9]. Another solution of Eq. (2) defined within the framework
of the same limiting procedure is

o -0
Wa,e32) = I'a-c+1)

I'(c-1)

®(a,c;z) + r@

D(a,c;z2).

)

According to Babister [ 10] the particular solution of the non-
homogeneous confluent hypergeometric equation

d’ d .
zd—Z2+(c—z)£—a y=ePz% !, (10)

where a, ¢, p and o are constants, is written as follows:

©

D O,nla,c;z)p"

; (11a)
n=0 n!

yp=
with

O,(a,c;z) = JFrol,c+aso+ 1,0+ ¢;2).

oloc+c—1)

(11b)
The series in Egs. (11a) and (11b) is convergent for all values
of p and z.

On comparing Egs. (5) and (10) the particular solution
gp(z) is written as follows:

* n 2_ 2
gP(Z):_LE{d(k,q)p L E=a)Y

2ik; o n! n!

}0n+](l +i1,252).

(12)

Combining Egs. (6), (7), (9), and (12) the general solution of
Eq. (5) is obtained as follows:

glk,q,2) =ADP(1 +in2;z) + BY(1 +in,2;2)

Lo | dkgp"  (K-g)y'
- + 611+1(1
2ik ;= n! n!
+i7,2:2), (13)

with A and B are two arbitrary constants.
From Egs. (4a), (4b), and (13) the Jost solution reads

flk,q,r) = rei’"[A@(l +in,2;—2ikr) + BY(1 +i5,2;- 2ikr)

1 <« | dk,gp" K-
BRI E G Gl 0 4 PPPS
2ik = n! n!
—2ikr)]. (14)
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The two arbitrary constants A and B will be determined by
exploiting the values of f(k,q,r) at two extreme points, i.e.,
at r=0 and o°.

The on- and off-shell Jost functions f,(k) and f,(k,q) are
defined by [9]

£1(=2ikr)*
f@(k)thr—%)Wf@(k’r)’ (15)

€1(=2ikr)*

f((k’q)=l‘tr—>0 (2€)' fe(k,q,”)- (16)

The off-shell Jost function for the Coulomb plus Yamaguchi
potential has appeared in a number of publications [5,11,12]
and is written:

flk,q) = f“(k.q)

. N (k,q) <w—my”
D(k)(1 +in)(B-ik)(B*+ k) \ (B +ik)
w+mu+ ™ (g - k)
(B-ik))  (B-igq)f(k.q)

o ~@i@ﬁ;@)
XF<1’ln’2+l77(,8—ik)(q+k) } (17)

X{F(l,in;2+in;

with fC(k,q), the off-shell s-wave Coulomb Jost function
given by

_ (61+lc))"’7
fC(k,q)—<(q_k) (18)
and
~ \ 1 (B—ik) \" .
lxm_]_ﬂ+hMB—%Jkﬁ+kﬁ&B+%) F@J“Q
.,w+mw o1 (.,
" =) Tapp-in T
- w+m)ﬁ
“”[w—mj | "

The function f(k,q,r) satisfies the asymptotic condition

Lt, o f(k,q,r)e” " = 1. (20)
Thus as r—0 Eq. (14) yields
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B=-2ikI'(1 +in)f(k,q) (21)

. T'(c-1) .
with the fact that Lz, W(a,c;z) = T@ 7!7¢ together with

Egs. (16) and (17). Thus, from Egs. (14), (17), and (21)
f(k,q,r) reads

flk,q,r) = re”"[ACD(l +i7,2;- 2ikr) = 2ikI(1

+in)flk,q) V(1 +in,2;- 2ikr)
1 {d(k,q>p"+<k2—q2w}

2ik ;= n! n!

X 6,,,(1 +i7],2;—2ikr)} (22)

Evaluation of constant A as r—o is rather tricky and the
procedure is as follows.
The function 6,(a,c;z) can be expressed in terms of in-

definite integrals [10] involving ®(+) and ®(s) as follows:

1 < _
0,(a,c;z) = ml@(a,c;z)j dss” 2D (a,c;s)
- 0

Z
- CI_)(a,c;z)f dss‘”“_ze_sq)(a,c;s)} . (23)
0

The well known Coulomb regular Green’s function is written

[9]
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G(rsr,) = [(Pc(k’r)fc(k’rl) - (Pc(k’r,)fc(k9r)]/fc(k)
=2ikrr' X D(1 +in,2;- 2ikr)D(1 +in,2;
—2ikr") = D(1 +in9,2;— 2ikr")O(1 +i5,2;— 2ikr)]
(24)
for 7' <r and zero elsewhere. Here ¢“(k,r) and fC(k,r) are
the regular and irregular Coulomb solutions, respectively.

The last two terms in Eq. (22) in conjunction with Egs. (23)
and (24) can be expressed [13,14]

e N
%M“E %0,”1(1 +i7,2;- 2ikr)
n=0 "**

=— (K- qz)fr G(r,5)e'ds (25)
0

and

o

1 . n r
—re* > L 1 (1 +im,2;=2ikr) =— f G(r,s)ePsds.
2ik oy n! 0

(26)
In view of Egs. (25) and (26) and the well known differential
equations for G(r,r"), ¢“(k,r) and f€(k,r) together with the

transposed operator relation [@Oy=[yO¢, where, O=0,
Eq. (22) is obtained as follows:

0

flk,q,r) = |:A - 2ikI’(1 + in){d(k,q)f dsse” B (1 + i, 2;— 2iks) — (k* - qz)f dsse (1 +ip,2;— 2iks)} ] red(1
0

+in,2;- 2ikr) — lZikl“(l +in)flk,q) —d(k,q) f dsse” B5D(1 + in,2;— 2iks) — (k* = ¢°) f dsseFD5P(1 +in,2;
0

- 2iks)] re™W(1 +in,2;-2ikr) + f Sr—s)e'®ds.

0

0

(27)

In case of pure Coulomb problem [14] the coefficient of re’"W(1+i7,2;-2ikr) in the expression for Coulomb Jost solution
vanishes as r— . Thus, in analogy with the Coulomb case d(k,q) is identified as follows:

Nf€(k,q)

d(k,q) =

D)1 +in>(ﬁ—ik)[F(1”"”2””; (B-iK)

™ (g - k) ( . .,(q—k)(ﬁnk)ﬂ
Y =i g\ ) @Y

As r—oo, Eq. (27) in conjunction with Eq. (28) and the condition given in Eq. (20) leads to

NC(k.q)

iml/2
-k
sz@, ;

._M—M)
(1+in)

(g +k)

~ D)1 +in)(B-ik)

(,8+ik)>

F(l,in;2+ in;(ﬁ—ik)
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: 177/2 .
[F(l,in;2+i77;('8+lk)> (g k) (1 in'2+i77;—(q_k)('8+lk)>]. (29)

(B-ik))  (B-iq)f(k.q) (q + k) (B~ ik)
In deriving the above result the following relations [8,15]:
* I'(1+s-d)T(s)
"W (b, ds px)dx = ——————F(b,s;1 +b+s—d;1 - pla), 30
foe * (b,d; px)elx al(1+b+s-d) (b.s g wa) (30)
” F(v+1
f eN"D(a,cpz)dz = %F(a,v+ 1 ;c;§> (31)
0
and
Fla,b;c;2) = (1 =2)“"F(c—a,c = bsc;2) (32)

have been used. Therefore, from Egs. (22), (28), and (29) the desired expression for f(k,q,r) is obtained as follows:

flka.n =/ (""”r)"D(k)(lkfgl;ﬁ)ﬁ—im{F<1’i’7;2””;§§12> (ﬁl—gﬁ(%?q) (1 2 %)}
mF<l,in;2+in;Eztig>®(l+i77,2;—2ikr)+2if;2(i-]:2i)77)(Eﬁ;ig)in\I’(l+i77,2;—2ikr)
+ﬁn20 ,H1(1+i77,2;—2ikr) ret*r. (33)
.
EZZZ #<(k.q.). the Coulomb off-shell Jost solution [14] -t r(glw_:/;) (224_113)”710( o

a2
=/ (k’r)_A{D(k)r(znn)(ﬁ—ik)]

(g -k) ( . (- k)) . B+ ik
fc(k,q,r)= WF Lin;2 + l77,( X (1+l77,2, (1 l?7,2+l7],18 k)
—2ikr) = 2ikT(1 + in)fC(k,q)W (1 + in,2;— 2ikr)
» ) 1 B+ ik
K- < ' . . s ikr —F(l 7,2 +im; )
_2—1162(); n+1(1+l77,2;—2lkr) rek . re (] +l77)(B—lk)22 1\ L, +17]’ﬁ_ik
2ikT(1 +i —ik\"
(34) XD(1 +i7,2:— 2ikr) + — 2( +2”7)<ﬂ ’)
(B +k°) \B+ik

. , P , :

A couple of useful checks is made on the expression for <1 +z77,2,—21kr)—r§) n! a1 +177,2,—21kr)]
Coulomb plus Yamaguchi off-shell Jost solution with par-
ticular emphasis on their limiting behavior and on-shell dis-
continuity. For example, in absence of Yamaguchi potential
i.e. N\=0, f(k,q,r) goes to pure Coulomb Jost solution [14].
Secondly, in the limit of no Coulomb field, =0, Yamaguchi fC(k, r) == 2ikI'(1 + in)reik’\I’(l +in,2;=2ikr). (37)
Jost solution is obtained [16]. When both \ and 7 goes to o

zero, f(k,q,r)=€"". Other useful checks on Eq. (33) consists  Tpe Coulomb-Yamaguchi on-shell Jost function is given by
in showing that

(36)

with

Jk) = Lt,_f(k,r)

_ (k) (ﬂ—ik>”’
agor)y o — flkaq). (35) =B T i F D\ prik)

012710-4



OFF-SHELL JOST SOLUTION FOR A COULOMB-LIKE...

(ﬁ+ik))
(B-ik))

Equations (35) and (36) can easily be verified from the result
in Eq. (33). The result of Egs. (35), (36), and (38) are in
agreement with that of van Haeringen [17] and Talukdar er
al. [18]. In the following the off-shell 7 matrix will be cal-
culated to support another useful check on the expression for
an off-shell Jost solution for the Coulomb-Yamaguchi poten-
tial.

The results for f(k,r) and f(k,q,r) can be used to con-
struct an exact analytical expression for the off-shell outgo-
ing wave solution /*)(k,q,r) by using the relation [18]

2F1<1,i77;2+i77; (38)

1 1
lzb(+)(k’ ‘1,”) == EWCIT(kﬂakz)f(k, r) + 2_l[f(k’q’r)

_f(k,—q,”)], (39)

where the half-shell 7 matrix is

—im/2
Cc+) _ ikl | € (g—k)
Y lkg.r) =re H 21 +i7)

|:e—i7r/2(q + k)
2(1 +in)

]F(l,in;2+i7;;

(g +k)

Fl1l,in2+in;
[y

(B+ik)(B+iq)
2D ()1 +in) (B + KB+ ¢’

K(B.q.k*) =\

o _(q—k)(ﬁ+ik))
{(k—q)zF1<l,m,2+ln,—(q+k)(ﬂ_l.k)

- (k+q)zF1<1,in;2+in;w>], (44)

(q-KB—ik)
and
~ 1 o _(,8+ik)>
X(ﬁ’k’r)_{—(l+in)(ﬁ—ik)2F1<l’”7’2+m’(ﬁ—ik) d(1

1 .
+in,2;— 2ikr) + ﬁz\p,l(l +i7m,2;=2ikr) re'*".
(45)

On expanding e”* as a power series in z, the particular inte-
gral [10] of Eq. (10) can also be expressed in terms of the
function A, ,(a,c;z), where

Apolaciz) =2 0, (.20 (46)
n=0 """

and 6,(a,c;z) is related to confluent hypergeometric func-
tions by

(q—k)
(q+

),@(l +in,2;— 2ikr)-
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k,q) — f(k,—

f q) f( q)}‘ (40)
imqf(k)

Given the expression for /*)(k,q,r) one will be in a po-

sition to write a uncomplicated expression for the off-shell 7'
matrix in terms of the formula

T(k,q.k*) = {

0

2 oo
T(p.q.k*) = @[ f dr Sin(pr)VE(r) ¢ (k,q,r)

+ )\f dr Sin(pr)e_ﬁ’f dse_ﬁsc,b“)(k,q,s)} .
0 0
(41)

Equations (39) and (40) together with Egs. (17)—(19) and
(36)—(38) yield

PP (k,q,r) = p°D (kg 1) + K(B.q. kD)X (B.k,r),  (42)
with

. L K-q) . .

O(1 +in,2;—2ikr) + m Ay (1 +in,2;-2ikr)

(K -¢q°)
4k

Al_%l(l+i77,2;—2ikr)}, (43)

Z
O,(a,c;z) = lfb(a,C;z)J e 7 DB (a,c;7")de!
0

1
(e=1)
- Z ’
—q)(a,C;Z')f e? Z,((HC_Z)CD(G,C;Z,)CZZ, )
0

(47)

Utilizing Eqgs. (41) and (42) the off-shell T matrix for the
Coulomb plus Yamaguchi potential is obtained as follows:

c 2ik
T(p’q’kz) = (p’q’kz) - : nK(ﬁ’qskz)[ll(p’q’kz)
mpq

I\
— L(p.q.k)] - ﬁls(p,ﬁ)[u(m,kz)

+K(B.q.k))15(B.q.k*)], (48)

with the quantities

4k * si
T(p.q.k?) = —2 f PO kg r)dr,  (49)
m™pPqJg r
L(p.q.k) = f drr e X (k. B.r). (50)
0
L(p.q.k*) =1,(p.q.k)],—.» (51)
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L(p.B) = f dr Sin(pr)e ", (52)
0
Mﬁ%#hjhmf&wmw%m (53)
0
and
I5(B,q.k*) = J dre P X(k,B,r). (54)
0

To calculate the off-shell Coulomb T matrix T¢(p,q.,k?)
Eq. (43) is substituted in Eq. (49) to have

Tc(p’q’kz) = TCl(p’qvkz) + TCZ(P,_ q’kz) + TCS(_ p’q’kz)

+T=p,— q.K%), (55)
where
1 2 _ 2ik7y (k- q) .
T (p,q.k*) = —| ———F| 1,in;2
wpq | 2(1 +in)
-k ©
+in; (g ))f dre' P d(1 +in,2;-2ikr)
(g+k)/)Jo
(k2 - 612) ” i r .
- 4—k . dre'P+h) A%l(l +in,2;
- 2ikr)], (56)
T%p.— q.k%) = T (p,q.K)|,_y» (57)
TC3(_ P,q,k2) = TCl(paq»kz)|p~>—p7 (58)
and

T=p,=q.k) = T D, q. k) pprgg (59)

Use of the following relations [8,10,19,20]:

* F(v+1
f dze™7"®(a,c;pz) = (VVH )F(a,v+ 1;6;1—7),
o A A

(60)

o I'v+o+1)p°
J dzz'e ™0 (a,c;pz) = 1)b£g+13F2

<1,0'+a,v
0 olo+c-

p
+o0+ 10+ 10'+c;5>,

Re o> 0,Re(c+c)>1,Rev>-1,Reb>Rep,
(61)
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I'e)I'(c—a-b)

F(a,bic;z) = F(c—a)F(c—b)F(a’b;a+b_C+ 1;1-2)
+(1 —z)c_“_b%ﬂc—a,c—b;c
—a-b+1;1-2) (62)

c[,F,(a,b;c;z) = ,F (a+ 1,b;c;2)] + bz, Fi(a+ 1,b+ 1;¢
+1;2)=0, (63)

Z

2Fl(a,b;c;z)=(1—z)_“zFl(a,c—b;c; > (64)

z—1

Fi(abiei2)=(1-2)“",F (c—a,c—bic;z)  (65)

and the integral representation

1
F(a,b;c;z) = [(c) 5 J di" (1 =) (1 —12)
0

I')I'(c-
(66)

and certain algebraic manipulations in Eq. (56) lead to

E”T/Z

. (g=R(p-k)
F<1’”7’1+m’—(q+k)(p+k))

eiﬂ'/2 (k—q)
_ZWW{w+m+(LHm

—k
xF@Jm2+hﬁZ+kQ}. (67)

In view of Egs. (57)—(59) and (67) equation (55) is obtained
as follows:

p,q,k*) =
mpq

€”T/2

o g=kp-k
[FGJ““”%M+M@+m>

. ..@+mw—m)
‘F@”m““%@—mw+m
_M—M@+M)
(g+k)(p-k)
W+H@+H”
G-oo-n ©

T(p.q.k*) =

mpPq

—F(l,ir];l +in
+F(1,i77;1 +i7;

The result in the above equation is in exact agreement with
that of van Haeringen and van Wageningen [21] derived in
the momentum space approach. Utilizing the relations
(60)—(66) the other integrals involved in Egs. (50)—(54) can
easily be calculated to obtain
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” kz)_L[ 1 B 1
1(p. B, T kpl (B+ik) - (1+in)(B—ik)

(,8+ik)) 2ik

B-ik) B+
-k ik

X2Fl<1,in;1+in;%)},

XzFl(l,in;2+i77;

(69)

2ip
2

@+ "

13(p’:8) =

q k

B gy R

k ik
_(q—k)(ﬁ+ik)>}

- F\ 1,in;1+in;
2 1( YEETET (Gw k)(B— ik)

(71)

and

N2
I5(q. Bk = —— {(B — )

(B +K*)? 2B
)2
+i”;E§J—r—i‘k;2)}' (72)

The integral I,(p,q,k?) is obtained by replacing p by —p in
Eq. (69). Therefore, Eq. (48) together with Egs. (44) and
(68)—(72) gives the desired expression for the off-shell T
matrix for Coulomb-Yamaguchi potential expressed as fol-
lows:

+2ik2F1<1,i17;1

PHYSICAL REVIEW A 74, 012710 (2006)

2 p
’ 9k2 = TC ’ »kz - ) 7k2 |:_ PPN
T(p,q.k*) =T (p,q.k”) + quK(B q.k%) B+ p?)

+ ﬁ{zﬂ(l,im] + i’ﬁw>
(B*+ k%) T 0E—T)

i iy LB
—2F1<1,l7],1+”7’(p_k)(ﬂ—ik))}} 7

In writing T(p,q,k?) in its maximal reduced form the follow-
ing relations are used:

k

(B.4.%) =~ ~K(B.4. DY), (74)
and
I5(8.4,%) = IDW(®) - 1] (75)
together with

1 1
JFi(Lin2+inz)=(1 +i77){; + (1 - Z>2F1(1,i77;1

+i7;;z)}. (76)

The expression in Eq. (73) agrees well with that of Ref. [21]
and produces correct limiting behaviors. However, T(p,q, k)
has been derived via the momentum space approach to the
problem in [21] whereas the r-space approach is adopted
here.

The present approach can easily be extended to deal with
potentials of higher rank and the restriction to symmetric
form factors is not compelling. By exploiting the relation
that exists between an off-shell physical solution and off-
shell Jost solutions and functions, one will be in a position to
write an expression for /*)(k,q,r) and thereby an off-shell T
matrix for Coulomb and Coulomb-like potentials. This con-
jecture represents a straightforward approach to deal with
off-shell scattering on the same class of potentials. Thus, the
exact analytical expression for an off-shell Jost solution for
scattering by a Coulomb plus a Yamaguchi potential is be-
lieved to be useful for the description of the charged particle
scattering/reaction processes.
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