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The atomic xenon laser is among the most efficient and powerful of the near-infrared gas lasers, especially
when pumped by molecular ions in an Ar-Xe mixture. Accurate transition probabilities for the laser transitions
are critical in developing a fundamental understanding of the inversion dynamics, gain, and power extraction
of this device. We compare results from several methods of calculating transition probabilities for six laser
lines ranging in wavelength from 1.733 to 3.508 �m. In some cases, our recommended values differ consid-
erably from those employed in previous work.
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I. INTRODUCTION

Lasing in atomic xenon was first demonstrated by Patel
and co-workers in 1962 �1�, at a wavelength of 2.027 �m.
Since then, this laser has been intensively investigated by
many researchers in several countries �2–16�. It has been
found that its highest efficiency is attained by mixing the Xe
with Ar, requiring about two orders of magnitude more Ar to
be present than Xe. The maximum in both efficiency and
power occurs when the 5d�3/2�1→6p�5/2�2 �1.733 �m�
transition �17� is the principal laser line. Altogether, lasing
has been observed on at least six transitions, which are listed
in Table I below. The relative strengths of these lines as
components of the atomic Xe laser exhibit interesting varia-
tions with respect to the Xe concentration, the identity of the
gas with which Xe is mixed, pump power, and pressure.
Interested readers should consult the above-cited references
for further details, particularly Ref. �5�.

Much of the work subsequent to the initial lasing demon-
stration has focused on resolving key physics issues regard-
ing the mechanism of population inversion �4–13�, demon-
strating high single-pulse laser yield �14�, and achieving
quasicontinuous wave �cw� operation by employing a repeti-
tively pulsed generator to drive the laser �15�. A recent re-
view was published by Kholin �16�. Though there is general
agreement that the dissociative recombination of ArXe+ is an
important source of the population inversions, the potentially
significant role of Xe2

+ in that regard is less clear. Some have
suggested that Xe2

+ is either unimportant or populates the
lower laser levels �2,3,7,9,11,13� while others
�5,6,8,10,12,14� maintain that it is a significant driver of the
gain.

Continued confrontation and feedback between models
and experimental as well as theoretical data is critical to

resolving the basic physics issues concerning the laser’s in-
version kinetics as well as further practical improvements in
its operation. One of the most basic elements of any such
model is the set of transition probabilities which characterize
the laser transitions. For each laser line, the gain is propor-
tional to the transition probability, and inversely proportional
to the saturation intensity. In modeling the atomic xenon la-
ser, the transition probabilities obtained by Allen, Jones, and
Schofield �18� or by Aymar and Coulombe �19� are fre-
quently incorporated. In the present work, we compare sev-
eral methods of calculating the transition probabilities which
in some cases differ significantly from those of Refs. �18�
and/or �19�.

II. COMPUTATIONAL METHODS

Below we briefly describe several numerical methods,
which were used to calculate the energy levels and the rel-
evant transition probabilities for the present work. The radia-
tive transition probability from level �j� to a lower level �k�
can be written as

Ajk
r = �32�3� jk

3 /3c3�2Jj + 1�����kJk��D��� jJj��2, �1�

where � is used to designate all quantum numbers other than
the total electronic angular momentum J. Furthermore, D is
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TABLE I. Transition energies �in cm−1� for six principal infrared
laser transitions from 5p56p to 5p55d levels in Xe I. The experi-
mental level splittings �17� are compared with results from the ab
initio structure models.

Transition �E �17� MCDHF BSR

5d�3/2�1−6p�5/2�2 5770 5836 5483

5d�3/2�1−6p�3/2�1 4934 5036 4926

5d�5/2�2−6p�5/2�2 3806 3323 3426

5d�3/2�1−6p�1/2�0 3771 3775 3512

5d�5/2�2−6p�3/2�1 2969 2523 2869

5d�7/2�3−6p�5/2�2 2851 2404 2480
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the electric dipole operator for the electromagnetic interac-
tion and � jk is the wavenumber �in cm−1�. Unless indicated
otherwise, atomic units are used throughout.

A. Modified relativistic Hartree-Fock-Slater method (MRHFS)

We have employed a modified version of Slater’s X� self-
consistent method, which is also known as the Hartree-Fock-
Slater �HFS� procedure in calculating the wave functions of
the outer electrons. The bound orbitals of the core up to the
5s orbital for this calculation were obtained by using the
parameters given by Clementi and Roetti �20�. For the out-
ermost 5p and the excited 6p and 5d orbitals we employed a
semiempirical approximation, which is described in detail in
�21,22�. The radial part of the bound orbital Pnl in this
method is obtained by solving the equation

� d2

dr2 −
l�l + 1�

r2 − 2V0�r� − 2�Vex�r� − 2VD�r� − 2Vmv�r�

− Enl	Pnl�r� = − 

n��n

�n�lPn�l�r� . �2�

Here V0�r� and Vex�r� are the Coulomb and the static-
exchange potentials of the ionic core. They can be expressed
as

V0 = −
Zn

r
+ 


i

wi�1

r
�

0

r

Pi
2�t�dt + �

r

	 1

t
Pi

2�t�dt	 �3�

and

Vex�r� = −
1

2� 81

4�2r2

i

wiPi
2�r�	1/3

, �4�

where the Pi are the radial orbitals of the inner electrons in
subshell “i,” wi is the number of electrons in the subshell,
and Zn is the nuclear charge. The sum on the right-hand side
of Eq. �2�, involving the Lagrange multipliers �n�l, ensures
that Pnl is orthogonal to the other bound orbitals with the
same angular momentum l. Furthermore, VD�r� and Vmv�r�
are the relativistic Darwin and mass-velocity terms, respec-
tively. The radial functions Pnl are obtained by solving Eq.
�2� using the spherically symmetric potential of the charge
distribution for each level and varying the parameter � to
obtain the experimental ionization energy Enl for the fine-
structure level of interest. This method is similar to the HFS
procedure, except that only the contributions of the inner
electrons but not of Pnl are included in the summations for
V0 and Vex. This omission not only simplifies the calculation,
but it also automatically leads to the correct asymptotic form
of the potential V0. In the HFS procedure, the constant Enl is
determined from a variational approach by solving the radial
equation, whereas we use the experimental binding energy
value for Enl and vary �. This method emphasizes the behav-
ior of the outer part of Pnl which is usually most important
for transition probability calculations.

The radial wave functions for the 5p56p and 5p55d levels
were calculated by using the experimental binding energy for
each individual fine-structure level. For each level, we gen-

erate the relevant F and G integrals, as well as the spin-orbit
parameter 
nl from the term-averaged wave functions Pnl.
Using an intermediate angular-momentum coupling scheme,
each mixed level for a given angular momentum J is ex-
pressed as

��J� = 

SL

C�SLJ��SLJ� �5�

within the same configuration �. For mixing among the LS
terms with the same parity and total angular momentum, J,
the mixing coefficients C�SLJ are obtained by diagonalizing
the spin-orbit Hamiltonian with level specific F ,G, and 
nl
for each J. The transition probabilities are then calculated for
the desired transitions.

B. Multiconfiguration Dirac-Hartree-Fock calculations
(MCDHF)

The theoretical basis of this computation is the multicon-
figuration Dirac-Hartree-Fock �MCDHF� method �23� to-
gether with the core-valence �CV� correlation model. This
model proved to be very effective for computing
2p4�3P�3p−2p4�3P�3d transitions in Ne II �24,25�. It gener-
ally works well for transitions between excited states, if both
states have the same LS parent configuration. In Xe, this
parent is �Kr�4d105s25p5 2P3/2

o . We use nonrelativistic nota-
tion and do not specify the J values for the sake of brevity,
although the calculations were properly carried out using
fully relativistic terms. An inactive �Kr�4d10 core is assumed
and the problem is treated as a 5s25p56p−5s25p55d transi-
tion. The CV model does not accurately predict the energy of
the ground state relative to the excited states and, therefore,
any interaction with this even-parity J=0 state �the ground
state� will be very approximate.

In the MCDHF procedure, the wave function � for the
state labeled �J is approximated by an expansion over
j j-coupled configuration state functions �CSFs�

���J� = 

j

cj��� jJ� , �6�

where the CSFs ���J� are antisymmetrized linear combina-
tions of relativistic orbital products of the form


�r� =
1

r
� Pn��r���m�r̂�

iQn��r��−�m�r̂�

 . �7�

Here � is the relativistic angular momentum, Pn��r� and
Qn��r� are the large and small component radial wave func-
tions, and ��m�r̂� is the spinor spherical harmonic in the lsj
coupling scheme. Transition calculations between separately
optimized wave functions were computed using bi-
orthogonal transformations �26�.

In the core-polarization model, the wave function is an
expansion over the set of either odd or even configuration
states 5s25p4nln�l� and 5s5p5nln�l�, where nl and n�l� are
members of an orbital set. In our work, the 1s ,2s ,2p , . . . ,4d
orbitals for the parent states were determined from extended
optimal level �EOL� calculations for 5s25p56p or 5s25p55d
and the selected J. The 1s ,2s ,2p , . . . ,5p orbitals were then
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kept fixed in calculations that included correlation. The first
calculation for each state of interest had expansions over the
set of orbitals 5d ,5f ,5g ,6s ,6p ,6d ,6f ,6g. �Since the princi-
pal quantum number is not important for correlation orbitals,
it was convenient to treat 4f as inactive.� If the state of
interest was not the lowest in energy, the 5d ,5f ,5g orbitals
�for even parity� and the 5f ,5g, 6s orbitals �for odd parity�
were optimized on the lower states in order to define a rea-
sonable spectrum, whereas the remaining n=6 orbitals were
optimized on the excited state of interest. The expansions
were then extended to also include 7s ,7p, and 7d orbitals
optimized on the specific state of interest. The Breit correc-
tion was not significant and the transition probabilities were
obtained in the Dirac-Coulomb approximation.

C. Multi-channel B-spline R-matrix (BSR) calculations

The calculations of Xe bound states are complicated by
several factors. First, the valence orbitals in the 5p5nl con-
figurations exhibit a strong term dependence, particularly in
the 5p5nd1,3P and 5p5np1,3S states. Second, due to the un-
filled 5p shell, there is a strong spin-orbit mixing of different
terms. Further complication arises from strong configuration
mixing between the 5p5�n+1�s and 5p5nd series. These ef-
fects can be directly accounted for by employing the B-spline
box-based multichannel method described by Zatsarinny and
Froese Fischer �27�.

In this method, the atomic wave function describing the
total �N+1�-electron system is expanded in terms of products
of the N-electron target states and the radial functions for the
outer electron, which in turn are expanded in a B-spline ba-
sis. In the present calculation of the Xe Rydberg series, the
corresponding close-coupling expansion had the structure

��5s25p5nl;J�� = A

i,j

cij��5s25p5;2P�Bi�r��ljs�

+ A

i,j

cij��5s5p6;2S�Bi�r��ljs�

+ A 

i,j,LS

cij��5s25p45d;LS�Bi�r��ljs�

+ A 

i,j,LS

cij��5s25p46s;LS�Bi�r��ljs� .

�8�

Here the B-splines Bi�r� represent the radial part of the va-
lence orbitals and �ljs� denotes the spin-angular part of the
one-electron functions. The operator A includes antisymme-
trization and implies that the target function � is coupled to
the valence electron, according to the usual angular-
momentum rules, to form a state with total electronic angular
momentum J and parity �. The choice of B-splines as basis
functions has some advantages. A detailed discussion of B-
splines and their application in atomic structure calculations
can be found in the review of Bachau et al. �29�. The expan-
sion coefficients cij for each given set of �J ,�� are found by
diagonalizing the atomic Hamiltonian inside a box of radius
a. In the B-spline basis, this leads to a generalized eigenvalue
problem of the form

Hc = ESc, �9�

where S is the overlap matrix. If the usual orthogonal con-
ditions are imposed on the channel orbitals, it reduces to a
banded matrix, consisting of overlaps between individual B
splines. In the more general case of nonorthogonal orbitals
used in the present calculations, a detailed description of the
structure of the H and S matrices in the B-spline representa-
tion was given by Zatsarinny and Froese Fischer �28�. The
boundary conditions are imposed by deleting from the ex-
pansion the first and last splines, i.e., the only splines which
have a nonzero value at the boundaries r=0 and r=a. In the
present calculations, the atomic Hamiltonian H includes all
one-electron Breit-Pauli operators plus the two-electron spin-
other-orbit interaction. Therefore, our B-spline expansions
for the Rydberg orbitals �and hence the radial functions for
the outer electron� directly include relativistic corrections.

The correlation corrections in the excited Xe states are
primarily due to the core-valence interaction. The importance
of the latter interaction manifests itself in the Hartree-Fock
�HF� binding energies of the lowest states, which differ from
the experimental values by approximately �0.25, 0.35,
and0.15� eV for the 5p55d, 5p56s, and 5p56p states, respec-
tively. The core-valence correlation was introduced in the
present calculations by using excited target states in the
close-coupling expansion �8�, where the last three terms are
included to simulate the core-valence correlation for the
5p5nl states represented by the first term. The 6s and 5d
orbitals in the third and fourth terms were obtained from HF
calculations for the corresponding target states in Xe+. Alto-

TABLE II. Wavelengths ��m� and transition probabilities �s−1� of six principal infrared laser transitions from 5p56p to 5p55d levels in
Xe I. The notation x .xx�+n� is used to denote x .xx�10n, and the superscript L �V� refers to the results obtained with the length �velocity�
form of the electric dipole operator. All theoretical results were rescaled using the experimental level splittings �17�.

NIST �17� MRHFS MCDHF BSR Ref. �19� Recommended

Transition � Aki
L Aki

L Aki
V Aki

L Aki
V Aki

L Aki
V Value

5d�3/2�1−6p�5/2�2 1.733 4.61�+5� 3.94�+5� 3.96�+5� 5.81�+5� 5.42�+5� 3.05�+5� 1.57�+5� 4.8±.9�+5�
5d�3/2�1−6p�3/2�1 2.027 2.24�+6� 2.39�+6� 5.72�+5� 2.57�+6� 2.93�+6� 2.46�+6� 1.15�+6� 2.4±.2�+6�
5d�5/2�2−6p�5/2�2 2.628 5.95�+5� 5.87�+5� 4.07�+5� 6.90�+5� 1.09�+6� 7.42�+5� 5.29�+5� 6.2±.5�+5�
5d�3/2�1−6p�1/2�0 2.652 1.69�+6� 1.38�+6� 3.76�+5� 1.77�+6� 1.73�+6� 1.27�+6� 9.30�+5� 1.6±.2�+5�
5d�5/2�2−6p�3/2�1 3.368 5.87�+5� 5.48�+5� 5.65�+5� 6.30�+5� 8.68�+5� 6.81�+5� 7.22�+5� 5.9±.4�+5�
5d�7/2�3−6p�5/2�2 3.508 5.59�+5� 5.84�+5� 4.74�+5� 6.90�+5� 1.05�+6� 7.37�+5� 7.68�+5� 6.1±.7�+5�
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gether, our CC expansion �8� included 18 LS target states,
and we restricted our consideration to the ns, np, nd, and nf
Rydberg series. This resulted in up to 67 channels and a
maximum rank of 3685 of the interaction matrix. Using this
expansion, we managed to reduce the errors in the binding
energies to 0.1 eV or less.

It was generally thought that the inner-core correlation
only has a small influence on the valence orbitals and, there-
fore, the frozen HF 5p5 core would be a good approximation
for all excited states. As shown in recent MCHF calculations
by Irimia and Froese Fischer �30�, however, the core corre-
lation is also important for an accurate calculation of the
transition probabilities in Ar, and a similar importance can be
expected for the Xe case. In the present calculations, the
inner-core correlation was taken into account by using exten-
sive multiconfiguration expansions for the 5s25p5 core state,
obtained by single and double promotion of the 5s and 5p

orbitals to 6̄l correlated orbitals. �The 1s-4d subshells were
treated as an inert core, and we use a bar over the principal
quantum number to indicate a correlation orbital.� The main

contributions originate from the 5s5p56̄d, 5s5p46̄d2, and

5s5p56̄f configurations. Another important parameter is the
spin-orbit splitting of the 5p5 core. This parameter is a domi-
nant factor in the spin-orbit mixing of different terms in the
excited states. The nonrelativistic HF core orbitals do not
include the relativistic contraction of the one-electron orbit-
als and, therefore, underestimate the spin-orbit interaction. In
order to reproduce the experimental value for the 2P3/2
− 2P1/2 core splitting, we multiplied the 
�5p� spin-orbit pa-
rameter by 1.215.

The number of physical states that we can generate by this
method depends on the radius a of the B-spline box. Our
choice of a=300a0 �with a0 denoting the Bohr radius� yields
a good description for all spectroscopic states 5s25p5nl up to
n=10. We used B-splines of order 8 with an exponential grid
of knots that required 55 B-splines to cover the entire region
under consideration. We emphasize again that the above pro-
cedure generates nonorthogonal, term-dependent radial func-
tions for each individual �5s25p5nl LSJ�� state, also account-
ing for term mixing due to the spin-orbit interaction. All
calculations were performed with the recently published
B-spline code BSR �31�.

III. RESULTS AND DISCUSSION

In variational, ab initio methods such as MCDHF and
BSR, the wave functions that are used in the transition prob-
ability calculation are optimized on the energy. One check on
the adequacy of the wave functions is the theoretical transi-
tion energy. Table I compares these energies �in cm−1� with
the National Institute of Standards and Technology �NIST�
values compiled from observation �17�. For some transitions,
the agreement is within a few percent, whereas for others the
difference is as large as 15%.

The results for the transition probabilities obtained from
the various methods described above are summarized in
Table II. All have been rescaled to the observed wavelengths.
For the ab initio methods, results obtained in both the length
and velocity forms of the electric dipole operator are pro-
vided. Though agreement in the two gauges is desirable, it is
not a direct check on accuracy. Among the methods used in
this work, the BSR model is the only one currently account-
ing for both core-valence and inner-core correlation, and this
may explain the relatively good overall agreement between
the results obtained in the two gauges. On the other hand, the
Breit-Pauli approximation is a low-order relativistic theory
for the wave function. The transition operator in the velocity
form has omitted some low-order corrections that are par-
ticularly important for transitions between states with differ-
ent total spin �32,33� or, as in the present case, between
components of the wave function with different total spin.
Note that all states involved in the transitions of interest have
highly mixed singlet and triplet components.

No such corrections are needed in the length form. This
form is also preferred for MCDHF calculations, where re-
sults from the length form have been shown to be in better
agreement with experiment �34�. Figure 1 shows the spread
of the length-form results from all methods for the six tran-
sitions considered in this work. In the absence of both direct
experimental data and even more elaborate calculations,
which are nontrivial and should ideally be performed in a
fully relativistic framework including extensive correlation
in the description of the 5p6, 5p56s, 5p56p, and 5p55d levels,
it is difficult to judge which of the current results is most
reliable. However, we believe that the average of the present
length values is to be preferred over the values currently used
in the literature, and that the spread in the individual results
can serve as an indicator of the uncertainty. These have been
included in Table II as recommended values.

IV. CONCLUSIONS

In the present work, semiempirical relativistic Hartree-
Fock-Slater calculations are reported for six transitions in Xe
and checked with ab initio Breit-Pauli and multiconfigura-
tion Dirac-Hartree-Fock theories that included selected cor-
relation effects. All these results agree in that the transition
rate for the most important 1.733 �m transition is signifi-
cantly larger �3.9�105−5.8�105� / s than the 3.05�105/s
reported earlier by Aymar and Coulombe �19�. For other
transitions there is more variation, with MRHFS agreeing
with either BSR or MCDHF within 7%.

FIG. 1. Length-form results of the transition probabilities from
the various methods listed in Table II. The transition number corre-
sponds to the row number in the table.
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