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Concise information on the general features of the quantum-mechanical current density induced in the
electrons of a molecule by a spatially uniform, time-independent magnetic field is obtained via a stagnation
graph that shows the isolated singularities and the lines at which the current-density vector field vanishes.
Stagnation graphs provide compact description of current-density vector fields and help the interpretation of
molecular magnetic response, e.g., magnetic susceptibility and nuclear magnetic shielding. The stagnation
graph of six cyclic, planar aromatic molecules has been obtained at the Hartree-Fock level via a procedure
based on continuous transformation of the origin of the current density formally annihilating the diamagnetic
contribution. Some common distinctive elements observed for cyclic aromatic rings CnHn, with n
=3,4 , . . . ,8, in the presence of a magnetic field normal to the molecular plane, are discussed. The results can
be used for a general discussion of diatropism in aromatic systems.
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I. INTRODUCTION

In his fourth paper on quantization as an eigenvalue prob-
lem �1�, Schrödinger gave a definition of quantum-
mechanical current density satisfying a continuity equation
formally identical to that of classical electrodynamics. A few
months later in 1926, Madelung proposed an alternative
foundation of quantum theory allowing for a hydrodynamical
analogy �2�. Later developments were proposed by Landau
�3� and by London �4�. Within the hydrodynamical approach
to quantum mechanics, the continuity condition and a vector
equation, with the same form as the Hamilton-Jacobi equa-
tion of motion of classical mechanics, replace the wave
equation �5–11�. The equation of motion can also be recast
as Newton’s second law, taking into account a nonlocal
quantum potential �5,12�.

The deep physical significance and the philosophical im-
plications of the proposal put forward by Madelung �2�, Lan-
dau �3�, and London �4� �MLL� can hardly be overempha-
sized. Bohm showed that the hydrodynamical representation
of quantum mechanics offers a broader conceptual frame-
work. It is deterministic and provides an interpretation of
physical reality alternative to that of the Copenhagen School
�5,6�.

Moreover, in a number of instances, the MLL formulation
is quite useful in practical terms, e.g., it yields powerful tools
for studying molecular magnetic response, which can be ra-
tionalized via the electronic current density J�r� induced by
an external magnetic field and by intramolecular magnetic
dipoles at the nuclei. The evident advantages of dealing with
a vector function of position in real space, instead of a com-
plex wave function depending on 3n space-spin coordinates
for an n particle problem, are quite appealing.

The charge density and the current density are called su-
bobervables by Hirschfelder �13�. As charge and current den-
sity distributions are available, one can ignore the quantum

mechanical procedure used to get them, and rely on relation-
ships of classical electrodynamics for solving a number of
problems quite effectively.

In most cases, a simple representation of the J field by a
set of arrows is sufficient to visualize essential features of
systems responding to magnetic perturbations �14–17�.
Nonetheless, separate plots of streamlines and modulus of
the current-density field are required to understand topologi-
cal subtleties �18�. The differential Biot-Savart law �19� af-
fords simple and clear interpretations of nuclear magnetic
shielding �20–23� and nuclear spin-spin coupling �24–27� via
the related concept of property density �28–30�.

However, besides providing powerful interpretative tools,
maps of current-density field are interesting by themselves
for more general reasons. A few problems of physico-
mathematical interest have received attention. The analysis is
carried out by the theory of differential equations and differ-
ential topology. Most relevant characteristics are observed in
the vicinity of the singularities, also referred to as “equilib-
rium” and “stagnation” points, i.e., points where the vector
field vanishes. The singularities determine the topological
structure of the vector field, which is described in compact
form by a “stagnation graph” �SG� that conveys essential
information �31–33� for understanding magnetic response.

The theory underlying the present study is outlined in the
next section. A few observations on magnetic symmetry �34�
are recalled in Sec. III. Section IV reports results obtained
for a few, neutral or charged, monocyclic conjugated systems
described by the general formula CnHn, customarily classi-
fied as “diatropic” �35�, which have aroused particular inter-
est in connection with the so-called ring-current model
�RCM� �18�.

II. SINGULARITIES AND STAGNATION GRAPH OF A
CURRENT-DENSITY FIELD

The field J�r� in the neighborhood of a stagnation point at
r0 can be described by a truncated Taylor series expansion
about r0 as*Corresponding author. Email address: lazzeret@unimo.it
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J��r� = �r� − r0�����J��r=r0
+

1

2
�r� − r0���r� − r0��

������J��r=r0
+ ¯ . �1�

Standard tensor notation is employed. Summation over re-
peated greek indices is implied, according to the Einstein
convention. The 3�3 Jacobian matrix ��J�, evaluated at the
stagnation point r0, has real coefficients. It is nonsymmetric
in the absence of molecular point-group symmetry. In the
linear approximation �36�, only the first term in Eq. �1� is
considered and the description of the field about a stagnation
point amounts to solving three coupled linear differential
equations arranged into a homogenous system. The matrix of
the system is the Jacobian matrix.

Reyn �37� reported a paradigm of all possible phase por-
traits in the vicinity of a stagnation point in three-
dimensional flow and a classification in terms of the eigen-
values and eigenvectors of the Jacobian matrix. A
classification of stagnation points adopting the Euler index
�rank, signature� �38� has been proposed �31–33� and widely
adopted �18,39,40�. The rank r is defined as the number of
nonvanishing eigenvalues of the Jacobian matrix, the signa-
ture s is the excess of positive over negative eigenvalues, if
they are real or pure imaginary �41�. The continuity equation
��J�=0 for stationary flow implies that the Jacobian matrix
is traceless all over the J field, and that only two eigenvalues
are linearly independent. This places a limit on the possible
�r ,s�. The allowed cases are �31–33,42� as follows:

�a� �3, ±1� points corresponding to isolated singularities.
Two eigenvalues satisfy the condition �3=−Re��1+�2� �the
symbol Re denotes the real part of its argument�. If �1 and �2
are real �they may also be �1=�2�, then a node or a saddle
point �see Ref. �36� for the nomenclature� is observed in the
representation of the flow over the plane of the eigenvectors
t1 and t2 corresponding to �1 and �2. If �1 and �2 are complex
conjugate, a focus is found.

�b� �2,0� points; eigenvalues �3=0, �1=−�2. For real
�1,2= ±a �pure imaginary �1,2= ± ib�, the phase portrait of a
saddle �vortex� is observed. The eigenvectors t1 and t2, cor-
responding to �1 and �2, are real in the case of a saddle �they
give the direction of the asymptotes through the singularity�
and imaginary in the case of a vortex. Saddle- and vortex-
stagnation lines are continuous manifolds of �2,0� points.
Usually these stagnation lines are symmetry determined and
lie entirely on the symmetry planes of a molecule. The ei-
genvector t3 is locally tangent to the stagnation line. �2,0�
points can be open lines �this is the case of axial vortices� or
form close loops. A toroidal vortex flows around a closed
vortex line of �2,0� points �43�. Diamagnetic �paramagnetic�
axial vortices of the electronic current density rotate
clockwise �anticlockwise� with respect to an observer placed
at the north pole of the B field. The direction of flow about a
vortex line is determined by the vorticity, i.e., by the local
curl ��J.

�c� �0,0� �degenerate� points corresponding to three zero
eigenvalues of the Jacobian matrix. These loci constitute
transition points at which branching of stagnation lines may
occur. From the mathematical point of view, the regime

variation is due to an exchange between different canonical
forms of the Jacobian matrix �18�. Since a �0,0� point corre-
sponds to a transition between pure imaginary and pure real
eigenvalues, branching must necessarily occur in correspon-
dence of three zero eigenvalues �31,32�.

The denomination “branching point” used for �0,0� singu-
larities is easily understood in practical cases. Consider, for
instance, a molecule of Dnh symmetry, in the singlet elec-
tronic ground state, in the presence of a magnetic field B
along the highest symmetry axis Cn. In general, in the outer
reaches of the molecular domain, the induced electronic cur-
rent density is diamagnetic, that is, it flows in planes at right
angles to B, like the Larmor current that takes place in at-
oms. In the proximity of the north and south poles, at great
distance from the molecular plane, the diamagnetic regime is
represented by the primary �2,0� vortex stagnation line par-
allel to B along Cn. Transition to different regimes, e.g., from
vortex to saddle flow, or vice versa, takes place closer to the
center of charge, i.e., in the regions of higher electron density
��r�, where the primary vortex line may split into saddle and
vortex lines.

Splitting of a stagnation line into several stagnation lines
is regulated by a fundamental theorem of topology proved by
Gomes �31–33,42� in the form of an index conservation con-
straint. Let us assume that the index of a saddle �vortex� line
is −1 �+1�. When a stagnation line of index i0 splits into m
new lines, the sum of the indices of the stagnation lines
emerging from the branching point is

�
k=1

m

ik = i0. �2�

For instance, a vortex line may bifurcate giving rise to two
new vortex lines and one saddle line. This bifurcation
process conserves the total index i0= +1.

III. MAGNETIC SYMMETRY OF MONOCYCLIC
SYSTEMS

Molecular point group symmetry, when present, helps de-
termine the overall features of the induced current-density
field and of its stagnation graph. Dnh�Cnh� magnetic groups
�34,44,45� are considered to discuss the symmetry of conju-
gated cyclic molecules in the presence of a magnetic field
perpendicular to the molecular plane. Thus, assuming B
along the Cn axis, parallel to the z direction, and indicating
by R the time-reversal operator, the magnetic group Dnh�Cnh�
for, e.g., the cyclopropenium cation, with n=3, is

C3h � 6̄ � �E 2C3 �h 2S3� , �3�

D3h � 6̄m2 � �E 2C3 3C2 �h 2S3 3�v� , �4�

D3h�C3h� � 6̄m2 � �E 2C3 3RC2 �h 2S3 3R�v�; �5�

for n=4, e.g., the cyclobutadienyl dication,

C4h � 4/m � �E C4 C2 C4
3 i S4

3 �h S4� , �6�

PELLONI et al. PHYSICAL REVIEW A 74, 012506 �2006�

012506-2



D4h � 4/mmm � �E 2C4 C2 2C2� 2C2� i 2S4 �h 2�v 2�d� ,

�7�

D4h�C4h� � 4/mmm � �E C4 C2 C4
3 2RC2� 2RC2�

�i S4
3 �h S4 2R�v 2R�d� , �8�

for n=5, e.g., the cyclopentadienyl anion,

C5h � �E C5 C5
2 C5

3 C5
4 �h S5 S5

7 S5
3 S5

9� , �9�

D5h � �E 2C5 2C5
2 5C2 �h 2S5 2S5

3 5�v� , �10�

D5h�C5h� � �E C5 C5
2 C5

3 C5
4 5RC2 �h S5 S5

7 S5
3 S5

9 5R�v� ,

�11�

for n=6, e.g., the benzene molecule,

C6h � 6/m � �E 2C6 2C3 C2 i 2S3 2S6 �h� , �12�

D6h � 6/mmm

� �E 2C6 2C3 C2 3C2� 3C2� i 2S3 2S6 �h 3�d 3�v� ,

�13�

D6h�C6h� � 6/mmm � �E 2C6 2C3 C2 3RC2� 3RC2�

�i 2S3 2S6 �h 3R�d 3R�v� , �14�

for n=7, e.g., the tropilium cation, D7h�C7h�, for n=8, e.g.,
the cyclo-octatetraenyl dication and dianion, D8h�C8h�, etc.
The essential characteristics of the J field are directly related
to magnetic group symmetry:

�i� A �h plane cannot be crossed by the trajectories.
�ii� R�v and R�d planes can be crossed only by stream-

lines normal to them in the typical case of vortical regime. If
a streamline approaches the R� plane forming an angle dif-
ferent from 	 /2, it is scattered, and a saddle is found. There-
fore any �open or closed, vortex or saddle� stagnation line
may lie on, but not pass through, an R� plane, and cross
perpendicularly, but not lie on, a �h plane. In the present case
of Dnh�Cnh� symmetries, the stagnation lines are determined
by symmetry and are entirely contained in R� planes.

�iii� As the in-plane components of the J vector vanish
all over R� planes by symmetry, the continuity equation
for stationary flow � ·J=0 is necessarily fulfilled for the per-
pendicular component, even if J has been evaluated via
approximate quantum mechanical methods.

�iv� The symmetry axes Cn, parallel to the inducing mag-
netic field B, lying on R�v planes are necessarily stagnation
lines.

IV. THE STAGNATION GRAPH OF Dnh„Cnh… SYSTEMS

A general quantum-mechanical procedure, referred to as
continuous transformation of origin of the current density-
diamagnetic zero �CTOCD-DZ� �18,30,46,47�, within the
damped DZ2 variant �48,49�, has been employed at the

Hartree-Fock level of accuracy to obtain the stagnation graph
of Dnh�Cnh� aromatic cyclic molecules for n=3, 4, ..., 8. The
current density evaluated via the CTOCD-DZ and DZ2 pro-
cedures is invariant to a change of coordinate system also in
the case of approximate calculations �50�. The third-order
linear autonomous system of differential equations for the
flow was integrated using Runge-Kutta procedures �51�.

A preliminary result for C6H6 had been reported �20�. All
the calculations in the present study have been carried out
using the high-quality basis sets adopted in this reference.
The stagnation graphs obtained for n=3→8 are shown in
Fig. 1, which illustrates some general features. As the graphs
are quite complicated topological objects in real space, in
particular for high n values, a graphic software �52� was
developed to obtain three-dimensional representations that
can be blown up and rotated by three Euler angles to observe
details of the entire SG and of the current-density field in
space.

The stagnation graphs of cyclic conjugated hydrocarbons
in the presence of a magnetic field perpendicular to the mo-
lecular plane are characterized by a number of common fea-
tures. The diamagnetic flow in the tail regions of the molecu-
lar domain is represented by a green open vortex line
extending to the boundaries of configuration space. A couple
of �0,0� branching points, at the same distance above and
below the �h plane, is found for each system. The distance of
�0,0� increases from approximately 1.3 bohr for n=3 to
2.0 bohr for n=4, and to 2.5 bohr for n=5. Similar values
are found for higher n, i.e., 2.5 bohr for n=6, 2.4 bohr for
n=7, and 2.1 bohr for n=8.

Consistent with the Gomes theorem �31–33,42�, n dia-
magnetic vortices, n saddle lines, and a paramagnetic vortex
coinciding with the Cn principal symmetry axis, originate at
the branching point. In Fig. 1, the saddle lines are repre-
sented in blue, the diamagnetic �paramagnetic� vortex lines
are in green �red�. Each diamagnetic vortex crosses the mo-
lecular plane in the region close to the midpoint of a C-C
bond. Each saddle line reaches the molecular plane in the
proximity of the carbon nucleus, just opposite to a C-H bond.
The corresponding plots showing streamlines of the current
density field in the molecular plane ��h� are shown in Fig. 2.

Two main remarks need to be made on the basis of these
results. First, the central paramagnetic vortex constitutes a
leit motiv for the aromatic systems with Dnh�Cnh� symmetry.
It must exist as required by the Gomes theorem �31–33,42�.
Loose statements sometimes reported in the literature, on the
assumption that the return current of the diamagnetic C-C
bond vortices has opposite direction with respect to the out-
ward flow, may be misleading. The central paramagnetic
vortex between two (0,0) points is a physical fact for all
aromatic monocyclic molecules. This feature must not be
overlooked when aromaticity is discussed in terms of indices
like central shielding, or nucleus-independent chemical shift
�53�.

Second, the assumption frequently made by nuclear mag-
netic resonance �NMR� spectroscopists that a proton over the
ring of carbon atoms in diatropic molecules should undergo a
diamagnetic shift caused by 	-electron ring currents �54�
needs to be verified in every instance. The maximum modu-
lus of 	 ring currents is observed at the height of 	1 bohr. If

TOPOLOGY OF MAGNETIC-FIELD-INDUCED CURRENT-¼ PHYSICAL REVIEW A 74, 012506 �2006�

012506-3



the proton probe is placed over the branching point, the dia-
magnetic shift may rather be due to the local primary vortex,
although the ring current effects fade away at quite long
distances �20�.

A peculiar pattern characterizes the SG of CnHn aromatic
cyclic molecules in Fig. 1. At some distance in between the
couple of �0,0� branching points and the molecular plane, the
stagnation lines forming the connected part of the SG
abruptly change color, denoting a transition from saddle like
to diamagnetic vortical regime and vice versa. The points at
which the blue �green� lines turn to green �blue� lie all on the
same plane �	1.52 bohr above and below �h in benzene�.
They are expected to be of �0,0� type. However, no branch-
ing was observed for the stagnation lines in the vicinity of
these �0,0� singularities.

So far such a behavior, possibly violating the Gomes theo-
rem �31–33,42,55�, has neither been predicted nor observed.
The theoretical tools available, and the graphic software de-
veloped by our group, could not enable us to obtain addi-
tional information on the fine structure of the stagnation
graph in the vicinity of these loci. Plots of the current density
field above and below each �0,0� point are fully consistent
with the SG reported in Fig. 1. Further investigations have

been planned in the near future to clarify this fact.
Another common feature characterizing the SG of aro-

matic cyclic molecules for n
3 is observed in the region
nearby the carbon nuclei. A magnification, see Fig. 3�a� for
benzene, reveals the following features. In the upper part of
Fig. 3�a�, two green vortex lines, belonging to the connected
set of seven lines which originate at the �0,0� branching
points, and pass close to the midpoint of the C-C bonds, are
observed. Between them there is a blue saddle line, also
originating at the �0,0� singularities. The phase portrait of a
saddle is clearly seen on the plot plane, which coincides with
that of the molecule, see Fig. 2 and the magnification in Fig.
3�c�.

Two closed stagnation loops, disconnected from the prin-
cipal part of the graph lying between the �0,0� points, and
independent from one another, are found in the lower part of
the figure. Each of them is fully encased in a topological
sphere. The streamline pattern observed on the plane, see
Figs. 2 and 3�c� contains two juxtaposed diamagnetic vorti-
ces, the smaller one with the center on the C nucleus, the
bigger one in the region of the C-H bond. Due to incomplete
information, such a configuration had been erroneously in-
terpreted in previous works �18,56,57� as evidence for a

FIG. 1. �Color� The stagnation graph of aro-
matic cyclic systems CnHn, for n=3→8. Green
�red� indicates diamagnetic �paramagnetic� vorti-
ces, and blue saddle lines. Complete graphs and
the following Figs. 2 and 3 are available on the
web at Ref. �52�.
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toroidal vortex sectioned by the molecular plane, assuming
the existence of only one closed �2,0� vortical manifold.

In fact, both closed stagnation loops are made up of �2,0�
vortexlike and saddleline segments, joined at their extremal
�0,0� points. The number of saddle �vortex� segments, with
topological index −1�+1� within each loop is the same. There
are three vortex lines, two red paramagnetic and one green
diamagnetic, �two, one red paramagnetic and one green dia-
magnetic� in the bigger �smaller� loop.

Disconnected subgraphs with these characteristics do not
seem to have been predicted by Gomes �31–33,42�. Since the
total index after each branching �and within the topological
sphere enclosed in each separatrix� vanishes, a subgraph with
these characteristics could be referred to as a ”fluctuation.”
of the diamagnetic ”vacuum.” Its physical meaning might be
questioned, unless their stability is proved �from a formal
standpoint, such a subgraph can be shrunk to a circumfer-
ence with vanishing radius and disappear �43��. However,
NMR data seem to suggest that the closed stagnation loop
through the carbon nucleus is physically plausible. The car-
bon shielding tensor in benzene is highly anisotropic. Using

the intrinsic magnetic dipole of 13C as a probe, the enhanced
out-of-plane component, �zz

C , as large as 190 ppm �58�, is
attributed to the strong diamagnetic vortex circulating in the
electron-rich region nearby the C nucleus �23�. Although the
extension in space of the corresponding stagnation line
within the isolated closed loop is quite small, as can be ob-
served in the stagnation graph, the modulus of the electronic
current density is very high. Therefore it causes a diamag-
netic shift, increasing the shielding of the carbon nucleus to a
major extent �23�. Figures 3�a� and 3�c� also show a small
paramagnetic whirlpool inside the carbon ring, in the prox-
imity of a carbon nucleus. The corresponding red vortex line
belongs to the smaller stagnation loop, vide supra.

Figure 3�b�, which contains the set of asymptotic stream-
lines in the region of a C-H bond in benzene, shows peculiar
characteristics not described in Fig. 3�c�. Two separate fig-
ures are given for clearly representing the local flow, due to
the complicated structure of the current density field, but the
two sets of different trajectories in complementary Figs. 3�c�
and 3�b� illustrate inseparable features. However, these per-
spective views may be insufficient to examine details that are

FIG. 2. Streamlines of the current-density
vector field induced by a static, uniform magnetic
field pointing upward at right angles to the mo-
lecular plane of aromatic cyclic systems CnHn for
n=3→8. Diamagnetic flow is clockwise. The
plane depicted contains the nuclei.
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better inspected by rotating the local pattern in space via the
graphic software available on the web �52�.

The plane of the plot, coinciding with that of the mol-
ecule, cannot be crossed by any streamline because of the
magnetic symmetry of the system, see Sec. III. Trajectories
in the vicinity of four isolated �3, ±1� singularities outside
the carbon ring, namely two red spiral points, i.e., foci, and
two blue false saddles visible in the SG in Fig. 3�a�, are also
observed in Fig. 3�c�. In order to show the orbits with non-
vanishing out-of-plane component connecting the foci, the
flow was integrated by starting at a point in the plane at the
distance of 0.01 bohr from that of the molecule.

The two foci, one on each side of the C-H bond, are
coupled singularities. They look like a source �repellor� and a
sink �attractor�, respectively, if observed on the molecular
plane, see also Figs. 1 and 3�c�. In fact, the two foci are
connected by trajectories that start spiralling in the proximity
of �3, +1�, and end up in the region about �3,−1�. They are
also joined by an asymptotic streamline, leaving �3, +1� and
approaching �3,−1�, in the direction of the perpendicular ei-
genvector of the local Jacobian, so that the continuity condi-
tion ��J�=0 for stationary flow is obeyed, see Fig. 3�b�.

Another pair of conjugated �3, ±1� points is found outside
the benzene ring, at the sides of a C-H bond direction
�marked in blue in Fig. 3�a��. For an observer above the
molecular plane, each pair of �3, ±1� isolated singularities
looks like a �false� saddle in Figs. 3�c� and 3�b�. However,
above and below �h, there is a pair of asymptotic streamlines
connecting them. These lines leave �3, +1� and approach
�3,−1� in the direction of the perpendicular eigenvector of
the local Jacobian. These unique streamlines cross perpen-
dicularly the plane containing the stagnation loop through
carbon nucleus in two points inside the loop itself. An analo-
gous pattern is found for the pair of �3, ±1� points �marked

in blue in Fig. 1� inside the benzene ring, at the sides of each
C-H bond, close to a C nucleus. The asymptotic streamline
connecting the �red� foci lies in between the two pairs of
�blue� false saddles.

V. CONCLUDING REMARKS

The magnetic response of a molecule to an external mag-
netic field and to intramolecular magnetic dipole moments at
the nuclei can be investigated by analyzing the current-
density induced in the electron cloud. Quantum mechanics
provides powerful tools for evaluating this quantity. In many
cases, visualization of electron flow yields simple and valid
interpretation for the phenomenology. Moreover, well-known
relationships of classical electrodynamics that express in-
duced magnetic moments and magnetic field in terms of a
current density field, e.g, the Ampère and Biot-Savart laws,
can heuristically be used to evaluate magnetic susceptibilities
and magnetic shielding at the nuclei of a molecule.

A precise, rational, and compact description of the current
density is obtained by the stagnation graph defined by the
singularities of the vector field, i.e., isolated points and one-
dimensional manifolds that are referred to as vortex and
saddle lines. The stagnation graphs of six, neutral and
charged CnHn aromatic cyclic molecules, in the presence of a
static, uniform magnetic field perpendicular to the molecular
plane, have been obtained in the present study. The models
of current density reported in this paper are characterized by
some common properties, e.g, branching out of the primary
diamagnetic vortex that flows in the tail regions of the mo-
lecular domain into n diamagnetic vortices ending up on the
molecular plane. This behavior is observed by the splitting of

FIG. 3. �Color� �a� Magnification of the stag-
nation graph of benzene in the region of a C-H
bond. �b� Selected streamlines in the region of a
benzene C-H bond. The asymptotic lines connect-
ing each pair of coupled false saddles and
coupled foci, �3, ±1�. The stagnation graph has
been superimposed. �c� Magnification of the
streamlines in the region of a benzene C-H bond.
Note the spiral streamlines connecting the false
repellor �3, +1� and the false attractor �3, −1�.
The stagnation graph has been superimposed.
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the corresponding primary stagnation line into n saddle and n
diamagnetic vortex lines, plus a central paramagnetic vortex
line in the direction of the principal symmetry axis Cn. The
presence of a central paramagnetic vortex, which provides a
signature of the magnetic response typical of all planar con-
jugated cyclic molecules, constitutes a quite counter-intuitive
aspect. However, this central paramagnetic flow has weak
intensity and does not affect the essential diatropicity of aro-
matics. Another common feature has been observed in the set
of streamlines in the vicinity of an aromatic carbon atom.
The presence of a strong, localized, diamagnetic vortex
around the C nucleus enhances the out-of-plane component

of the magnetic shielding, �
, and is consistent with its large
anisotropy.
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