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Quantum phase transitions are explored with reduced-density-matrix �RDM� mechanics. While in wave
mechanics the quantum phase transition is identified by a crossing or avoided crossing between ground- and
excited-state energies, in RDM mechanics the transition is characterized by movement of the ground-state
two-electron RDM �2-RDM� along the boundary of the convex set of 2-RDMs between regions with dramati-
cally different expectation values �order parameters� of one or more operators. With recent advances the
ground-state 2-RDM can be directly computed without the many-particle wave function by variational opti-
mization of the energy with the 2-RDM �D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 �2004��. Because the
variational calculation of the 2-RDM does not depend on a reference wave function, it can accurately predict
the energies and properties of a system both near and far from the quantum phase transition.
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I. INTRODUCTION

Quantum mechanical systems can undergo significant
changes in properties with a small change in a system pa-
rameter such as the doping ratio of a superconductor. These
dramatic changes, known as quantum phase transitions, are
signatures of the quantum world, and the value of the param-
eter at which the change occurs is called the critical point
�1�. In wave mechanics the transformation at the critical
point is associated with either an actual or an avoided level
crossing of the energies from ground- and excited-state wave
functions where one or more properties, described as order
parameters, exhibit an abrupt change. In this paper a differ-
ent approach to computing and identifying quantum phase
transitions using two-particle reduced density matrices
�2-RDMs� �2� is developed and applied to investigating the
phase transition in the Lipkin quasispin model �3�. The two-
particle density matrix �2-RDM� is defined by integrating the
N-particle density matrix over coordinates 3 to N,

2D�1,2;1�,2�� =� ND�1,2, . . . ,N;1�,2�, . . . ,N�d3 ¯ dN ,

�1�

where, when the quantum system is in a pure state, the
N-particle density matrix is expressible in terms of the wave
function ��1,2 , . . . ,N�

ND�1,2, . . . ,N;1�,2�, . . . ,N��

= ��1,2, . . . ,N��*�1�,2�, . . . ,N�� . �2�

Because Rosina’s theorem �4,5� demonstrates that for Hamil-
tonians with pairwise interactions there is a one-to-one map-
ping between the ground-state 2-RDM and its many-particle
wave function, the 2-RDM contains sufficient information to
describe ground-state energies and properties including the
location of critical points and the behavior of order param-
eters within quantum phase transitions �6�.

The goal of the paper is twofold: �i� to present a general
2-RDM perspective on the process of quantum phase transi-

tions with the Lipkin model as a specific example and �ii� to
demonstrate the accuracy of the variational 2-RDM method
�7–12� without construction of the wave function for model-
ing the energies and properties of a quantum system in the
vicinity of the quantum phase transition. In RDM mechanics
the transition is characterized by movement of the ground-
state 2-RDM along the boundary of the convex set of
2-RDMs between regions with dramatically different expec-
tation values �order parameters� of one or more operators.
The change in the location of the 2-RDM on the boundary of
its convex set collectively describes the changes in all of the
order parameters. With recent advances the ground-state
2-RDM can be directly computed without the many-particle
wave function by variational optimization of the energy with
respect to the elements of the 2-RDM �7–12�. Because the
variational calculation of the 2-RDM does not depend on a
reference wavefunction, it can accurately predict the energies
and properties of a system both near and far from the quan-
tum phase transition. The formulation of RDM mechanics
for quantum phase transitions has relevance to optimization
theory, particularly semidefinite programming �13�, as well
as quantum entanglement �14� and electronic structure
�7–12�.

II. THEORY

The Lipkin quasispin model consists of N fermions dis-
tributed over two N-fold degenerate levels separated by an
energy � where the particles have a pairwise “monopole-
monopole” interaction of strength V that scatters pairs of
particles between the two levels �3,5,7,15–20�. Because N
fermions can occupy each level, the Lipkin model may also
be interpreted as a two-level bosonic model �15,16� with the
Hamiltonian

Ĥ =
�

N
�

m=±1
mâm

† âm +
V

N�N − 1� �
m=±1

â+m
† â+m

† â−mâ−m, �3�

where â†�â� are bosonic creation �annihilation� operators,
m�±1� denotes the two levels, and � and V are parameters.
The expectation value of Eq. �3� yields the energy*Electronic address: damazz@uchicago.edu
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E =
�

N
�

m=±1
m1Dm

m +
V

N�N − 1� �
m=±1

2D−m,−m
+m,+m, �4�

where the elements of the 1- and 2-RDMs are defined in
second quantization as

1Dk
i = ���âi

†âk��	 , �5�

2Dk,l
i,j = ���âi

†âj
†âlâk��	 . �6�

The 1-RDM can be obtained from integration �or contrac-
tion� of the 2-RDM. With the generators of the SU�2� group
the Hamiltonian can be expressed in terms of the operators

Ĵz, Ĵ+, and Ĵ− which obey the usual angular-momentum com-
mutation relations �3�,

Ĥ =
2�

N
Ĵz +

V

N�N − 1�
�Ĵ+

2 + Ĵ−
2� , �7�

and the elements of the 2-RDM can be fully parametrized by
the expectation values of these three operators. Because of
symmetry the N-particle wave function has at most �N+1�
degrees of freedom, and exact solutions of the Schrödinger
equation are available from diagonalization of the Hamil-
tonian in the basis �J ,Jz	 with J=N /2 and Jz ranging from −J
to J. Two properties of the Lipkin model will be especially
important in this study. First, sets of approximately
N-representable 2-RDMs can be visually compared with the
set of N-representable 2-RDMs because the model’s 2-RDM
is fully described by three expectation values �17�, namely

�Ĵz	, �Ĵz
2	, and �Ĵ+

2 + Ĵ−
2	. Second, the model exhibits a quan-

tum phase transition�18–20� at Vc= ��� from an ordered phase
with most particles in the lower level to a deformed phase.

Equation �4� suggests that the ground-state energy may be
minimized with respect to the 2-RDM matrix elements with-
out the many-particle wave function. �In general, for any
quantum system of indistinguishable particles with pairwise
interactions the energy may be expressed as a linear func-
tional of the 2-RDM.� However, direct minimization of Eq.
�4� yields an energy which is significantly below the correct
ground-state energy. A reduced density matrix requires non-
trivial constraints, known as N-representability conditions
�21,22�, to guarantee that it derives from the integration of an
N-particle density matrix �or wave function�. The
N-representability problem of the 2-RDM stymied the varia-
tional calculation of the energy with respect to elements of
the 2-RDM for 50 years �2,12�. Recent calculations �7–10�,
however, show that N-representability of the 2-RDM can be
controlled by systematic necessary constraints on the
p-RDM, known as p-positivity conditions �7�.

The p-positivity conditions can be defined by restricting
the metric �or overlap� matrix M with elements

Mj
i = ���ĈiĈj

†��	 �8�

to be positive semidefinite, where the operators Ĉi are prod-
ucts of p second-quantized operators. The metric matrix M is
block diagonal with p+1 distinct blocks corresponding to the

number of creation operators in Ĉi. For p=2 we obtain the
three metric matrices �7,22�

2Dk,l
i,j = ���âi

†âj
†âlâk��	 ,

2Gk,l
i,j = ���âi

†âjâl
†âk��	 ,

2Qk,l
i,j = ���âiâjâl

†âk
†��	 , �9�

which are three representations of the 2-RDM corresponding
to the probability distributions for two particles, one particle
and one hole, and two holes, respectively, where a hole is the
absence of a particle. Although each matrix can be computed
from the other matrices by linear mappings from rearranging
the second-quantized operators by commutation relations,
constraining each matrix to be positive semidefinite is nec-
essary to prevent each probability distribution from becom-
ing negative.

The ground-state energy as a functional of a 2-RDM re-
stricted by 2-positivity conditions can be minimized by a
special type of optimization known as semidefinite program-
ming �7–10,16�, which under mild assumptions yields a glo-
bal minimum �13�. Because 2-positivity conditions are only a
subset of the complete N-representability conditions, the set
of 2-positive 2-RDMs is larger than the set of
N-representable 2-RDMs. Consequently, unlike a Rayleigh-
Ritz variational calculation with a wave function, a varia-
tional 2-RDM computation with 2-positivity constraints
yields a rigorous lower bound to the exact energy. The results
of 2-positivity may be systematically improved by imposing
p-positivity conditions for p�2 �7,16�. A 2-RDM is said to
be p-positive when it derives from the integration of a
p-RDM that satisfies the p-positivity conditions. The
2-positivity constraints have been shown to give accurate
ground-state electronic energies and properties of molecules
at both equilibrium and nonequilibrium geometries �8–10�.

In the Lipkin model the information in the 2-RDM is
completely equivalent to the expectation values of the three

operators �Ĵz	, �Ĵz
2	, and �Ĵ+

2 + Ĵ−
2	 �5,17�. The convex set of

N-representable 2-RDMs is three dimensional with axes la-
beled by the expectation values of these operators. Further-
more, the extreme points of the set may be generated by
calculating the ground-state 2-RDMs for all Hamiltonians
expressible by linear combinations of the three operators.
The Lipkin Hamiltonian in Eq. �7�, however, does not de-

pend on Ĵz
2, and hence, it generates a subset of the extreme

N-representable 2-RDMs. While this convex subset is still
three dimensional, we can visualize the boundary of the set
in two dimensions because each ground-state 2-RDM from a
Lipkin Hamiltonian is extreme in the pair of expectation val-

ues �Ĵz	 and �Ĵ+
2 + Ĵ−

2	. For the remainder of the paper we will
use the phrase “the convex set of N-representable 2-RDMs”
to refer to this subset of 2-RDMs characterized by the two

expectation values �Ĵz	 and �Ĵ+
2 + Ĵ−

2	. The above discussion
applies equally well to “the convex set of p-positive
2-RDMs” whose extreme points are generated by minimiz-
ing each Lipkin Hamiltonian with respect to a p-positive
2-RDM.
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III. CALCULATIONS

For a Lipkin model with 50 fermions the convex set of
N-representable 2-RDMs is compared in Fig. 1 with the con-
vex set of 2-positive 2-RDMs. The boundaries of the
2-positive and N-representable sets are computed by evalu-

ating the expectation values �Ĵz	 and �Ĵ+
2 + Ĵ−

2	 with respect to
the 2-positive and N-representable ground-state 2-RDMs of
the Hamiltonians in Eq. �3� with �=1 and V� �−200,200�.
Pairs of expectation values �Ĵz	 and �Ĵ+

2 + Ĵ−
2	 can be obtained

from an N-representable 2-RDM if and only if they lie inside
the solid curve. Similarly, pairs of expectation values can be
obtained from a 2-positive 2-RDM if and only if they lie
inside the dashed curve. Because the 2-positivity conditions
are necessary but not sufficient N-representability conditions,
the convex set of 2-positive 2-RDMs contains the set of
N-representable 2-RDMs. At the two points where the expec-

tation value of the two-body interaction �Ĵ+
2 + Ĵ−

2	 vanishes, all

of the fermions are in one level ����Ĵz	 � =1�, and the
2-positive and N-representable sets coincide. The scaling
factors � and � are 2/N and 2/ �N�N−1��, respectively. The

difference between the two sets peaks at ��Ĵz	
0.6. Plotting
the convex set of 3-positive 2-RDMs in Fig. 1 would yield a
curve indistinguishable from the N-representable curve.

Because the positivity conditions are neither perturbative
nor reference dependent, they have been observed to yield
accurate energies and properties for multireferenced systems
�7–10,16�. For N=50 in the vicinity of the quantum phase
transition Table I compares the accuracy of ground-state en-
ergies from variational RDM theory with p-positivity condi-
tions �pPOS� with those from coupled-cluster theory �20�
with p-particle excitations �CCp�. Both 2-POS and CC2 are
similar in accuracy, but the 2-RDM method exhibits much

faster convergence with p. The 4POS �6POS� energies are 2
to 3 �4 to 6� orders of magnitude more accurate than the CC4
�CC6� energies. Furthermore, the coupled-cluster equations
do not have a solution for V�1 without a change in the
reference wave function �20�, but the variational 2-RDM
method, which selects the scaled identity matrix as an initial
guess for the 2-RDM, does not depend upon a reference
2-RDM or wave function.

A quantum phase transition is usually characterized by an
actual or avoided level crossing between the energies of the
ground- and excited-state wave functions with an accompa-
nying significant change in one or more expectation values
called order parameters. With 2-RDM mechanics quantum
phase transitions can be characterized by a complementary
approach. The information contained in the 2-RDM is
equivalent to the expectation values of all one- and two-body
operators. At the critical point of a quantum phase transition
one or more of these expectation values displays dramatic
changes. In the language of convex sets a change in a Hamil-
tonian parameter across a critical point corresponds to a dra-
matic movement of the ground-state 2-RDM along the
boundary of the convex set where the initial and final points
on the boundary of the set are distinguished by significant
changes in each of the order parameters. In a second-order
phase transition from an avoided level crossing, the ground-
state 2-RDM for all V is a unique extreme point on the
boundary of the set. The signature of a second-order quan-
tum phase transition is rapid movement of the 2-RDM as a
function of V along the boundary of the set. In a first-order
phase transition from a level crossing the ground-state
2-RDM is degenerate at the critical point, meaning that it can
be any convex combination of two extreme points on the
boundary that differ significantly in one or more order pa-
rameters. The first-order phase transition, therefore, can be
visualized as a movement of the 2-RDM through the interior
of the convex set between extreme points with concurrent
changes in the order parameters.

In the thermodynamic limit, a quantum phase transition
occurs in the Lipkin model around V=1. Circles on the
dashed curve for the 2-positive set in Fig. 1 denote the posi-
tion of the 2-RDM as a function of the parameter V in the

TABLE I. For N=50 and V=0.9, 0.99, and 0.999 the errors in
the ground-state energy from variational 2-RDM theory with 2-, 4-,
and 6-positivity �2POS, 4POS, and 6POS� are compared with errors
from coupled cluster methods with 2-, 4-, and 6-particle excitations
�CC2, CC4, and CC6�.

Methoda 0.9 0.99 0.999

CC2 −2.3�−4� −8.7�−4� −1.0�−3�
2POS −3.4�−4� −8.8�−4� −9.8�−4�
CC4 2.1�−5� 1.4�−4� 1.8�−4�
4POS −3.7�−8� −9.9�−7� −1.5�−6�
CC6 −2.5�−6� −3.6�−5� −4.7�−5�
6POS 8.8�−10� −5.8�−10� −1.1�−9�
aErrors with parentheses denoting powers of 10 are determined
with respect to following FCI energies of −1.010 638 664,
−1.014 011 958, and −1.014 412 186 at V=0.9, 0.99, and 0.999.FIG. 1. The convex set of 2-positive 2-RDMs �2POS� is com-

pared to the convex set of N-representable 2-RDMs �FCI� for the
Lipkin model. The 2-positive set contains the N-representable set.
The circles show the movement of the 2-RDM along the boundary
of the set of 2-positive 2-RDMs as a function of the interaction V.
The significant increase in the “speed” of the 2-RDM around the
critical point �V
1� is a signature of the quantum phase transition.
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Lipkin Hamiltonian. Between V=0 and V=1.0 the position
of the 2-RDM on the boundary of the convex set does not
change significantly, but from V=1.0 to V=1.5, where there
is a second-order quantum phase transition, the 2-RDM
markedly alters its position on the boundary of the set. After
the point V=1.5 the derivative in the 2-RDM’s position with
V decreases. Between V=5 and V=200 the position of the
2-RDM changes less than between V=1.0 and V=1.5. In
general, the movement of the 2-RDM in the convex set col-
lectively represents the changes in all of the order param-

eters. Figure 2 shows the order parameter ��Ĵz	 and the
“speed” of the 2-RDM defined as �v� ·v��1/2 where v�

= ���Ĵz	 /�V ,��Ĵ+
2 + Ĵ−

2	 /�V�. The peak in the 2-RDM “speed”
defines the location of the critical point. For the Lipkin
model with 50 fermions the maximum speed occurs at V
=1.14. As N→�, calculations show, the peak approaches
V=1 which is the location of the critical point in the thermo-
dynamic limit for the model. In the N→� limit the deriva-
tive of the 2-RDM “speed” becomes discontinuous which is
consistent with a second-order phase transition. Although we
illustrate RDM mechanics for quantum phase transitions
with the Lipkin model, the concept of 2-RDM “speed” is
generally applicable to quantum systems with an arbitrary
number of degrees of freedom. For a 2-RDM with n degrees
of freedom the velocity vector generalizes to an
n-component vector where each component is the derivative
of a degree of freedom with respect to a Hamiltonian param-
eter like V.

IV. DISCUSSION

A complementary, alternative approach to quantum phase
transitions has been developed through 2-RDM mechanics.
In wave mechanics the quantum phase transition is charac-
terized by a crossing or avoided crossing between the ener-
gies of the ground- and excited-state wave functions. In
2-RDM mechanics the quantum phase transition is character-
ized by the movement of the ground-state 2-RDM within the
convex set of N-representable or p-positive 2-RDMs. For a
second-order phase transition, as in the Lipkin model, the
2-RDM moves rapidly along the boundary of the convex set
within the vicinity of the phase transition where the move-
ment reflects significant changes in one or more order param-
eters. The “speed” of the 2-RDM movement in the set peaks
at or nearby the critical point. In a first-order phase transition
the ground-state 2-RDM at the critical point can move
through the convex set between two extreme points with
markedly different order parameters.

The ground-state energy and properties of a quantum sys-
tem, such as the position of the critical point and order pa-
rameters of a quantum phase transition, can be determined
from a variational calculation of the 2-RDM where the varia-
tional set of 2-RDMs is constrained by approximate
N-representability conditions, known as p-positivity con-
straints �7�. The variational 2-RDM method has recently
been applied to computing the ground-state electronic
2-RDM for a variety of atoms and molecules �8–11�. For the
Lipkin model the convex set of 2-RDMs is computed with a
series of p-positivity conditions in which p ranges from 2 to
6. Rapid convergence of the energy with p is observed for all
interaction strengths. The 4-positivity energies are 2 to 3 or-
ders of magnitude more accurate than the energies from
renormalized perturbation theories like coupled-cluster with
four-particle excitations. All variational energies are rigorous
lower bounds to the exact ground-state energies. The 5- and
6-positivity conditions have not been previously imple-
mented within a variational 2-RDM calculation. Because the
p-positivity conditions are neither perturbative nor dependent
upon a mean-field reference determinant, the 2-RDM method
accurately captures the high correlation in the vicinity of the
quantum phase transition.
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FIG. 2. Both the order parameter ��Ĵz	 and the “speed” of the
2-RDM, measuring the movement of the 2-RDM on the boundary
of the convex set of 2-positive 2-RDMs, show significant changes
around the critical point V
1 of the phase transition.
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