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We calculate the fidelity of transmission of a single qubit between distant sites on semi-infinite and finite
chains of spins coupled via the magnetic dipole interaction. We show that such systems often perform better
than their Heisenberg nearest-neighbor coupled counterparts, and that fidelities closely approaching unity can
be attained between the ends of finite chains without any special engineering of the system, although state
transfer becomes slow in long chains. We discuss possible optimization methods, and find that, for any length,
the best compromise between the quality and the speed of the communication is obtained in a nearly uniform
chain of four spins.
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I. INTRODUCTION

Quantum-information processing offers several advan-
tages over classical computation in solving problems associ-
ated with large and/or dynamical systems. One of the main
goals of current research in the field is to find ways and
means of reliably transmitting quantum information, encoded
in quantum bits �or qubits�, over arbitrarily large distances.
In order to ensure the information is received as the sender
intended, the qubits must be protected from interacting with
the environment in any way. For this reason, until now the
qubits of choice have mostly been photons, which have an
extremely small interaction cross section and can thus be
used to generate quantum states that are sufficiently robust to
perform protocols such as quantum cryptography and tele-
portation ��1–6��.

However, in recent years much effort has been dedicated
to studying systems in which quantum information is en-
coded in stationary qubits, and is propagated from one part
of the system to another by the interaction between the sys-
tem’s components. One of the simplest geometries in which
this can be achieved is a one-dimensional chain of interact-
ing particles, where the qubit is encoded in some internal
degree of freedom �which we call “spin,” using �0� for spin
up and �1� for spin down�. Originally an exchange-coupled
chain of spins with a constant nearest-neighbor �NN� inter-
action was studied �7�; it was found that a qubit could be
transferred with a fidelity exceeding the maximum classical
value in a time that grows polynomially with the length of
the chain. Subsequently, it was shown that such simple
chains allow transmission fidelities arbitrarily close to unity
also if the qubit is taken to be a carefully designed “wave
packet,” provided the sending and receiving parties can ac-
cess a sufficiently large portion of the chain �8�. Stronger
results can be found for more complex systems: in the ab-
sence of structural imperfections, an XY Hamiltonian on a
hypercubic lattice allows perfect state transfer �9–11�, as
does a pair of parallel spin chains �12�, or a spin chain acting
as a quantum wire connecting two qubits �13�. Plenio et al.
�14� have studied the situation for chains of harmonic oscil-
lators �i.e., where each particle on the lattice possesses a
continuous, rather than a discrete, degree of freedom�, while

Hartmann et al. �15� have recently found that quantum infor-
mation can be made to propagate with arbitrarily high fidel-
ity through both oscillator and spin chains near a quantum
phase transition, provided the ground state and the lowest
excited state of the system are not degenerate. However, this
transfer is exponentially slow; more rapid transmission is
possible at the quantum critical point, but at some cost to the
fidelity.

It has also been shown that high fidelities can be attained
by engineering the strength and the nature of the interactions
between the spins �16�. However, this requires structures that
would be very difficult to manufacture, both because the
communicating parties would need to have an extremely
high degree of control over the system, and because the com-
ponent spins would have to exhibit NN couplings only, with
precisely defined strengths. This is clearly an idealization,
because long-range interactions are also likely to be present.
Previous work has been dedicated to systems more “realis-
tic” from this point of view. Kay has studied finite spin
chains in which the total Hamiltonian accounts for the pres-
ence of local magnetic fields and a potential of the form of
the magnetic dipole interaction �17�. The approach adopted
in this case was to predetermine a spectrum of eigenvalues
that would ensure perfect state transfer for all chain lengths,
and subsequently derive the corresponding local fields and
the interspin distances by solving an inverse eigenvalue
problem. This method is applicable to a Hamiltonian con-
taining any number of parameters, and could provide very
useful theoretical guidelines on the optimal way to structure
a system, although, once again, the gap between theory and
experiment may prove difficult to bridge.

In this work, by contrast, we investigate simple one-
dimensional arrays of spins interacting via a pure magnetic
dipole interaction. We allow no site-specific locally tunable
fields; nevertheless, we show that fidelities for quantum-state
transfer closely approaching unity can be attained between
the ends of finite chains, without any special engineering of
the system. Furthermore, because of the long-range interac-
tion, the transfer rate grows polynomially in the system size,
rather than exponentially, as in the case studied by Hartmann
et al. �15�. Our results may be relevant to two-level atoms in
atomic traps �18,19� or to one-dimensional arrays of endohe-
dral fullerene species encapsulated within carbon nanotubes
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�20�, as well as to natural magnetic dipolar systems such as
LiHoF4 �21�, and finite spin chains of a more complex de-
sign, for example engineered from arrays of quantum dots
�22�.

II. THE SYSTEM

We build on the work done by Bose �7� on transferring
quantum information through an infinite, uniform chain ex-
hibiting isotropic NN interactions only. In this system, the
qubit is represented by a single flipped spin, which propa-
gates between different sites in a manner defined by a time-
independent Hamiltonian of the form

H = −
J

2
�i+1,j�

�i,j�
�i · � j − B�

i=1

N

�z
i , �1�

where N is the number of spins in the chain, �i

= ��x
i ,�y

i ,�z
i , � are the Pauli spin matrices for the ith spin,

B�0 is a uniform magnetic field, and �J /2��i+1,j is the cou-
pling strength between spins i and j, which is nonzero for
nearest-neighboring spins only. If the ground state of the
system is expressed as �↓ � � �↓ � � ¯ � �↓ �, it has been
shown that, provided the chain is sufficiently short, perfect or
near-perfect state transfer can be achieved by simply letting
an initial state of the form �↑ � � �↓ � � ¯ � �↓ � evolve natu-
rally in time according to the effects of H. It is important to
note that �H ,�i=1

N �z
i�=0, that is, the Hamiltonian conserves

the total magnetization M of the system, allowing the chosen
initial state to evolve only into states in which one spin is
flipped at any given time.

We propose to investigate the quality and efficiency of
quantum-state transfer through infinite and finite chains of
spin-1

2 fermions coupled by long-range interactions having
the form of the magnetic dipole interaction. These two sys-
tems differ in that the finite chain has end points, whereas the
infinite chain does not; indeed, due to the periodic nature of
the infinite chain we will hereafter refer to it as a ring. We
examine a simplified system in which any external magnetic
field is constant and parallel to the axis joining the dipoles,
which is chosen to coincide with the z direction. The align-
ment of the magnetic and dipole axes is not a trivial point,
but a necessary condition to ensure that the total magnetiza-
tion M remains a good quantum number, and allows us to
work in the subspace where only one spin is flipped with
respect to the ground state, reducing the Hamiltonian from a
2N�2N to an N�N matrix. Within this subspace the effect
of the magnetic field is to add a constant to the energies. We
will hereafter omit this constant. Following the notation used
in �7�, we denote by �0000¼0� the �unique� ground state of
the system �i.e., all spins facing down, parallel to the external
field� and by �j� the block of states in which the spin at the
jth site has been flipped from 0 to 1. For simplicity, we
assume there are no thermally excited spin flips in the sys-
tem. We adopt a Hamiltonian of the form

Hd =
C

r3 �Si · S j − 3Si
zS j

z� , �2�

where C is a constant, Si and S j are the total spin operators at
sites i and j, and Si

z and S j
z are the respective z components.

The value of C is determined by the type of particle in the
chain. For a system of spin-1

2 fermions �e.g., electrons� C is
given by

C =
�0��Bg�2

4��2 �3�

where �0 is the permeability of free space, �B is the Bohr
magneton, g is the electronic Landé g factor, and �=h /2�.
Throughout this paper we will assume that �0=�B=�=1, so
that

C =
g2

4�
. �4�

We define a to be the spacing between neighboring fermions.
In this case, the strength of the interaction between nearest
neighbors is

�i�Hd�i ± 1� =
C

2a3 . �5�

For the results shown we define our length, energy, and time
units by setting the nearest-neighbor separation and the in-
teraction energy between nearest neighbors to unity. How-
ever, Eq. �5� implies that the Hamiltonian has an overall
scaling factor of 1 /a3, so a uniform compression or expan-
sion of the system should only have the quantitative effect of
rescaling the system’s energy by a constant. Therefore, pro-
vided the chain remains uniform and the number of compo-
nent spins is fixed, the energy and performance of a chain of
any size can be extrapolated by simply adjusting the value of
a as necessary.

A. Rings

We initially consider a ring of N spins in its ground state.
Our aim is to calculate the maximum fidelity of transmission
of a qubit from site r to a distant site s, as a function of time
and number of spins in the ring. We denote the initial and
final states of the system by �r� and �s�, respectively. The
expression for the maximum fidelity of quantum state trans-
fer is given by �7� as:

Fr,s
N �t� =

�fr,s
N �t��
3

+
�fr,s

N �t��2

6
+

1

2
, �6�

where fr,s
N �t� is the propagator, which is calculated from the

following:

fr,s
N �t� = �

m=1

N

�r�m��m�s�e−iEmt. �7�

We assume that the eigenvectors �m� of the system can be
expanded using the basis formed by the �j� states. Imposing
periodic boundary conditions allows us to express these
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eigenstates as Bloch states, so that for a ring of circumfer-
ence L=Na

�m� =
1

	N
�
j=0

N−1

eikmja�j� . �8�

The propagator can then be reexpressed as

fr,s
N �t� =

1

N
�
m=1

N

eikma�r−s�e−iEmt =
1

N
�
m=0

N−1

ei2�m/N�r−s�e−iEmt. �9�

Using Eq. �8�, we calculate the energies of the system, which
can be written as

Em = �m�Hd�m� =
1

N
�
i,j=0

N−1

eikma�j−i��i�Hd�j� . �10�

We require only matrix elements for which i� j, since by
symmetry the diagonal terms of Hd are independent of N,
and therefore change the energy of the system by a constant
shift. For evenly spaced spins with nearest-neighbor separa-
tion a, these off-diagonal terms are

�i�Hd�j� =
C

2�rj − ri�3
=

C

2a3�j − i�3
. �11�

As Eq. �11� depends only on the difference �j− i�, we can
reduce the double summation to a single sum over j by fixing
a value of i. For convenience we choose i=0, so that

Em =
C

2a3 �
j=−N/2

N/2

eikmja 1

�j3�
=

C

a3�
j=1

N/2
cos�kmja�

j3 . �12�

Figure 1�a� shows the maximum fidelity of state transfer
for rings of N=3 to 30 spins, when the sending and receiving
parties are located at diametrically opposite sites, for which
�r�=1 and �s�= N

2 or �s�= N+1
2 for even and odd, N respectively.

We have assumed that transfer occurs along the arc joining
sites r and s, but this may not always be the case, as the state
may choose to propagate along the cord joining r and s,
which is shorter than the arc distance. Figure 1�a� also shows
the performance of a ring in which the spins are coupled by
NN interactions only. We note that for N�3 the performance
of the dipole-coupled ring is better, particularly if the ring is
composed of an even number of spins. Unfortunately, we
also find that for N�8, transfer seems to be much slower if
the ring comprises an even number of spins �Fig. 1�b��, so
there appears to be some trade-off between the speed and the
quality of the communication. Finally, we note that the times
of optimum transfer tend to rise as we increase N in both the
dipole- and the NN-coupled rings.

B. Single-qubit transfer in uniform chains

We now extend the previous analysis to a finite chain,
calculating the full Hamiltonian of the system, which has the
form

�i�Hd�j� =
C

2a3�j − i�3
, �13�

�j�Hd�j� = −
C

2a3 �
�k,l�

1

�k − l�3
+

C

a3�
i�j

1

�j − i�3
, �14�

where �000. . .0�Hd�000. . .0�=− C
2a3 ��k,l�

1
�k−l�3 is the ground-

state energy of the system.
The fidelity of state transfer between the ends of the chain

is obtained by taking �r�= �1� and �s�= �N�. We find that
F1,N

N �t� exhibits three trademark features.
First of all, the maximum value of F�t�1,N

N is close to unity.
Second, the value of F1,N

N �t� oscillates between 1/2 and the
maximum �which we call Fmax� with a regular frequency,
which is generally quite small, implying that state transfer
occurs slowly �Fig. 2�. Finally, the period of oscillation of
F1,N

N �t�, which we call T, is uniquely defined by the energy
splitting �	 between the two lowest eigenvalues of Hd�N�.
The transfer process is therefore dominated by the beating of
two nearly degenerate states localized near the ends of the
chain. This behavior is explained by the variation of the on-
site energies of the spins as a function of j, shown in Fig. 3;

FIG. 1. �Color online� �a� shows the maximum fidelity that can
be achieved in transferring an input state �1� to an output state �N /2�
or ��N+1� /2� on a ring of spins coupled by dipole-dipole �dashed
�blue� curve� or nearest-neighbor �black solid curve� interactions, as
a function of N. The �red� dotted line at F=2/3 indicates the highest
fidelity for classical transmission of a quantum state. �b� shows the
time at which the fidelity first peaks in this system. We note that the
minima in the dashed �blue� curves are in antiphase, indicating the
aforementioned trade-off between the speed and the fidelity of the
communication. Units are as specified in Sec. II.
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it is immediately evident that the most favorable positions
for a spin to flip are sites 1 and N. Consequently, states �1�
and �N� are the most strongly coupled to the system’s �two�
bound states, which are shown in Fig. 4. In this system, this
phenomenon is a natural consequence of the geometry, but
systems in which the spin-flip energy is specifically chosen
site by site have also been studied �23�.

The period of F1,N
N �t� is related to �	 by

T =
2�

�	
. �15�

Consequently, the time at which F1,N
N �t� first peaks is

t�Fmax� =
T

2
=

�

�	
. �16�

This time rises with chain length, as the splitting �	 de-
creases with increasing N.

A summary of our results for N=2–23 spins is shown in
Fig. 5�a�. We note that, in addition to N=2, N=3, and 4 also
give perfect transfer, and in general Fmax
0.9. This is a
marked improvement on the performance of a NN-coupled

chain �also shown in Fig. 5�a��; in particular, it seems that by
replacing the NN couplings with dipole couplings we no
longer obtain poor transfer when N is a multiple of 3 �7�.
Unfortunately, we again observe a trade-off between fidelity
and time, which becomes particularly evident for N�6. In
fact, we find that at large N, t�Fmax� increases as the cube of
the chain length �Fig. 5�b��. It is therefore evident that in
long chains it will take an impractical length of time to com-
plete the protocol unless the system can be optimized in
some way.

1. Structural optimization

We now analyze the efficiency of state transfer for a fixed
chain length, as a function of the number of spins in the
chain. We define � as the transmission time giving maximum
fidelity at unit chain length, i.e.,

� =
t�Fmax�

L3 . �17�

Figure 6 shows a plot of � as a function of N, which reveals
two interesting features. The first is the presence of a mini-
mum at N=4, which we will discuss subsequently. The sec-
ond is the fact that � tends to a constant at large L. This
indicates that, above a certain threshold value of N, the evo-
lution of the system is determined almost exclusively by the
magnetic dipole coupling between spins 1 to q with spins
N−q to N, irrespective of the number of spins that separate
these two “clumps.” To explore this hypothesis, and deter-
mine the behavior of � for large N, we work with states �B�
and �E� localized at the beginning and end of the chain,
which are the bound-state eigenfunctions of a semi-infinite
chain extending to the right and the left, respectively. We
take

FIG. 2. The evolution in time �abscissa� of the fidelity of state
transfer between sites 1 and 10 of a uniform chain of magnetic-
dipole-coupled spins. We note the regularity of the oscillation and
the high value of Fmax. Units are as specified in Sec. II.

FIG. 3. The on-site energy as a function of the site j of the spin
flip for a chain of 15 magnetic-dipole-coupled spins. We note that
the energies at sites 1 and 15 are much lower than the rest. Units are
as specified in Sec. II.

FIG. 4. �Color online� The energy splitting �Em between the
ground state !0000. .0� and states with a single flipped spin for a
uniform chain of N spins, showing the evolution of the two bound
states. Values of �Em of the same index m counting from the
bottom of the spectrum, are shown in the same color. Units are
specified in Sec. II.

AVELLINO, FISHER, AND BOSE PHYSICAL REVIEW A 74, 012321 �2006�

012321-4



�B� = �
n=1

q

an�n� �18�

and

�E� = �
n=1

q

an�N + 1 − n� . �19�

The energy splitting of the two lowest eigenvalues of Hd�N�
in a finite chain is

�	 = 2�B�Hd�E� . �20�

From �13�

�i�Hd�j� = Hd��i − j�� . �21�

Hence

�B�Hd�E� = �
n,m=1

q

an
*am�n�Hd�N + 1 − m�

= �
n,m=1

q

an
*amHd��N + 1 − m − n�� . �22�

We adopt a dummy variable X= �i− j�, so that

Hd�X� =
C

2a3X3 , �23�

�Hd�X�
�X

= −
3C

2a3X4 . �24�

Using �22� and the fact that L=a�N−1�, we can expand
Hd��N+1−m−n�� as a Taylor series to first order in �=m
+n−2. Then

Hd��L − ��� = Hd�L� − �
 �Hd

�X



X=L
=

C

2L3 +
3Ca�m + n − 2�

2L4 .

�25�

Hence

�B�Hd�E� =
C

2
� 1

L3 �
n,m=1

q

an
*am +

a

L4 �
n,m=1

q

3an
*am�m + n − 2��

�26�

=
C

2
� Q

L3 +
aR

L4 � �27�

with

Q = �
n,m=1

q

an
*am, �28�

R = �
n,m=1

q

3an
*am�m + n − 2� . �29�

We find it is possible to model the asymptotic behavior of
the system very accurately if we assign to the coefficients an

FIG. 5. �Color online� �a� shows the maximum fidelity that can
be achieved in transferring an input state �1� to an output state �N� in
a chain of spins coupled by dipole-dipole �dashed �blue� curve� or
nearest-neighbor �solid black curve� interactions, as a function of N.
The �red� dotted line at F=2/3 indicates the highest fidelity for
classical transmission of a quantum state. We note that the dipole-
coupled chain almost always performs better. �b� shows the time at
which the fidelity first peaks in these two systems, plotted on a log10

scale. The �red� dotted curve is the function y=L3. We see that at
large L the dashed �blue� and dotted �red� curves are parallel, indi-
cating that the transfer time scales as the cube of the chain length.
Units are as specified in Sec. II.

FIG. 6. The behavior of � as a function of the number of spins
in the chain. Note the minimum at N=4 and the flatness of the
curve for N�15. Units are as specified in Sec. II.
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the amplitudes of the ground-state eigenvector of the q�q
submatrix generated by truncating the full Hamiltonian
Hd�N� for an arbitrarily large N �Fig. 7�. The values of an

used to obtain the fit in Fig. 7 come from the ground-state
eigenvector of the 4�4 submatrix of Hd�14�, and give Q

0.325 and R
−0.957. These quantities show only a very
weak dependence on N, so we have assumed them to be
constants. The fact that Q�1 shows that the transfer rate for
chains of many spins is always less than that attained be-
tween two completely isolated spins; Eq. �28� indicates this
is a result of interference between positive and negative com-
ponents in the localized states �B� and �E�.

Therefore, only chains with few spins can improve on the
performance of a simple dipole pair, as shown by the mini-
mum in the function ��N� at N=4 �Fig. 6�. This result, to-
gether with Fig. 5�a�, shows that, in a uniform chain, the best
compromise between the quality and the speed of the com-
munication is obtained with four spins. This occurs because
for short chains the bound states at the two ends have a large
overlap, i.e., there exist terms in Eq. �22� which simulta-
neously have significant positive values of an

*am and small
values of �N+1−m−n�. We have attempted to optimize the
uniform four-spin chain still further, and find it is possible to
improve its performance slightly by modifying the positions
of the inner spins while maintaining mirror symmetry. For a
chain of unit length, this corresponds to taking r1,2=r3,4

0.314 and r2,3
0.373, which yield a value �
0.512.
However, a comparison with �
0.568 for a uniform chain
�r1,2=r2,3=r3,4
0.333� shows the improvement is minimal.

2. Input and output optimization

We now investigate the effects of altering the initial and
final states �r� and �s�, while leaving the structure of the chain
intact.

If the starting and ending points are chosen at random, the
characteristic oscillation of Fr,s

N �t� is lost, unless either �r�
= �2� and �s�= �N�, or �r�= �1� and �s�= �N−1�. However, in
both cases the signal is considerably noisier, and the maxi-
mum fidelity is greatly reduced. This is a result of the lesser

efficiency of coupling to the bound states as one moves away
from the ends of the chain �cf. Fig. 4�.

Conversely, it is possible to boost the maximum fidelity to
unity and smooth out all noise in the signal by encoding the
states �r� and �s� in two or more adjacent spins1 �Fig. 8�. This
is equivalent to adopting �r�= �B� and �s�= �E�, where the an
are now obtained from the first and last n coefficients of the
ground-state eigenvector of Hd�N�, with the additional con-
dition that �n�an�2=1. This choice of input and output states
leaves the transfer time unaffected.

III. DISCUSSION AND CONCLUSIONS

We present a scheme for transferring quantum informa-
tion through infinite and finite chains of spins coupled via a
pure magnetic dipole interaction. This differs from much pre-
vious work in that the dipole interaction is long range, mak-
ing for a system in which every spin interacts with all other
spins in the system, rather than with nearest neighbors only.
We find that, in general, the maximum fidelity achievable by
using a dipole-coupled system to transfer a state between two
maximally distant sites is greater than or equal to that which
can be attained in a system exhibiting nearest-neighbor inter-
actions only. The finite chain, in particular, can be engineered
to give unit fidelity by simply adjusting the placement of the
spins and the input and output states. We have verified this
result only for L=2–23, but believe it extends to longer
chains also.

The main weakness of both our systems is length of time
taken to complete the protocol, which increases polynomi-
ally in the size of the system. However, we find that for a
finite chain this obstacle can be considerably lessened by
simply modifying the relative placement of the spins. There-
fore, it does not necessarily preclude the possibility of being
able to transmit information over longer distances on useful

1The possibility of improving state transfer by encoding a state in
more than a single spin is also discussed in �8�.

FIG. 7. �Color online� Comparison between the predictions of
our q-spin model ��red� dashed line� and the data calculated from
the treatment of the system in its entirety. We note that the model
becomes increasingly accurate at large N.

FIG. 8. The evolution in time �abscissa� of the fidelity of trans-
mission of an input state of the form C1�1�+C2�2� to an output state
of the form C9�9�+C10�10� in a uniform chain of ten dipole-dipole
coupled spins. Comparing with Fig. 2, note that the curve is
smoother and the maximum fidelity has increased. Units are as
specified in Sec. II.
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time scales. Furthermore, the protocol seems to be reason-
ably robust against errors in spin placement; if we define a
“failure rate” as the probability that the fidelity at time
t�Fmax� will fall below the classical value, we find that, in a
uniform four-spin chain of arbitrary length, a random error of
2% on the placement of each spin yields a failure rate of
approximately 5%. The corresponding uncertainty on t�Fmax�
is significantly greater, but as F1,N

N �t� is a slowly varying
function of time, it is quite unlikely that the fidelity at
t�Fmax�±�t�Fmax� will have fallen significantly below the
maximum. Therefore, the simple and predictable behavior of

the fidelity in time in a finite chain greatly increases the
probability of carrying out successful state transfer. The
long-range interactions also open up the realistic possibility
of measurements on individual spins, and it would be inter-
esting to investigate in the future whether this can increase
the speed of quantum state transfer as in Ref. �24�.
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