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We derive a class of inequalities, from the uncertainty relations of the su�1,1� and the su�2� algebra in
conjunction with partial transposition, that must be satisfied by any separable two-mode states. These inequali-
ties are presented in terms of the su�2� operators Jx= �a†b+ab†� /2, Jy = �a†b−ab†� /2i, and the total photon
number �Na+Nb�. They include as special cases the inequality derived by Hillery and Zubairy �Phys. Rev. Lett.
96, 050503 �2006��, and the one by Agarwal and Biswas �New J. Phys. 7, 211 �2005��. In particular, optimi-
zation over the whole inequalities leads to the criterion obtained by Agarwal and Biswas. We show that this
optimal criterion can detect entanglement for a broad class of non-Gaussian entangled states, i.e., the su�2�
minimum-uncertainty states. Experimental schemes to test the optimal criterion are also discussed, especially
the one using linear optical devices and photodetectors.
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I. INTRODUCTION

Entanglement, one of the defining properties of quantum
mechanics, is a key element for quantum information pro-
cessing using discrete or continuous variables �CVs� �1�. In
many applications, it is of great importance to verify en-
tanglement for multipartite systems in one way or another.
One possible approach is to derive the “classical” limit at-
tainable by classical means for a specific quantum protocol.
Experimental demonstration of surpassing this limit can be
an indirect proof of entanglement. For example, in the CV
quantum teleportation of coherent states, the fidelity larger
than 1/2 may indicate the presence of entanglement in the
state shared by two parties �2�. Another approach is to derive
the inequalities that all separable states must satisfy. Viola-
tion of such inequalities is sufficient, though not necessary in
general, for demonstrating entanglement. Previously, those
inequalities were derived for CVs in terms of the variances
of the canonical operators x̂i and p̂i �i=1,2�, or the quadra-
ture amplitudes for optical fields �3–6�. In particular, those
conditions were proved to be both sufficient and necessary to
manifest entanglement for bipartite Gaussian states �3,4�.

Non-Gaussian states, however, are also important and
even essential in some cases �7�. It is therefore crucial to
have entanglement criteria applicable beyond Gaussian states
for further applications. Working in this direction, several
authors recently obtained some inequalities by considering
the su�2� and the su�1,1� algebra �8,9�. In particular, Agarwal
and Biswas used the negativity of partial transposition �NPT�
to derive a separability condition for testing single-photon
entangled states, ��1,0�+��0,1� �9�. Interestingly, Shchukin
and Vogel showed that all the previously known criteria for
CVs in Refs. �3–5� and in Refs. �8,9� can be derived in
principle by taking into account the NPT condition for a
hierachy of two-mode moments �10,11�. In practice, how-
ever, measurement of higher-order moments needed particu-
larly in the approach of Ref. �10� seems to be rather demand-

ing �12�. For practical applications, it may be desirable to
have inseparability criteria that can be tested in experiment
with the least possible resources �13�. In addition, once a
certain criterion is derived, it is necessary to identify the
class of states that can be detected by such a criterion.

In this paper, we study in some detail the separability
conditions that can be obtained from the uncertainty relations
in the su�2� and the su�1,1� algebra in conjunction with par-
tial transposition. The su�2� algebra deals with the angular
momentum operators Jx, Jy and Jz, which obey the commu-
tation relations �Ji ,Jj�= i�ijkJk�i , j ,k=x ,y ,z�. This algebra
can be realized in optics using two-mode fields represented
by the annihilation operators a and b, as

Jx =
1

2
�a†b + ab†� ,

Jy =
1

2i
�a†b − ab†� ,

Jz =
1

2
�a†a − b†b� . �1�

On the other hand, the su�1,1� algebra with the operators Kx,
Ky, and Kz that satisfy �Kx ,Ky�=−iKz , �Ky ,Kz�= iKx, and
�Kz ,Kx�= iKy can be realized as

Kx =
1

2
�a†b† + ab� ,

Ky =
1

2i
�a†b† − ab� ,

Kz =
1

2
�a†a + b†b + 1� . �2�

Starting from the uncertainty relations in the su�1,1� algebra
and applying the partial transposition, we will derive a class
of inequalities, in a sum form of the variances of the su�2�*Email address: phylove00@gmail.com
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operators, that must be satisfied by all separable states. These
include as special cases the inequality derived by Hillery and
Zubairy �8�, and the one by Agarwal and Biswas �9�. In
particular, the inequality optimized over the whole inequali-
ties is none other than the one obtained by Agarwal and
Biswas �9�. Importantly, it will be clarified that this optimal
criterion can be implemented in experiment by measuring
the variances �Jx, �Jy, and the mean photon number �a†a
+b†b�, as is the case with the inequality by Hillery and
Zubairy �8�. Furthermore, we will show that the optimal in-
equality can detect entanglement for a broad class of non-
Gaussian entangled states, i.e., the su�2� minimum-
uncertainty states.

The minimum-uncertainty states for the su�2� algebra
were first derived by Aragone et al. �14�, and have long
attracted much theoretical interest �15–20�. On an applica-
tion side, the su�2� squeezed states have been proposed to
improve the accuracy of phase measurement in quantum in-
terferometer �19,20�. Furthermore, it may be natural to ex-
pect more useful applications because the su�2� minimum-
uncertainty states are non-Gaussian entangled ones. For
example, it was recently shown that the Gedanken Bell ex-
periment involving the spin-singlet states proposed by Peres
�21� can be approximately realized in quantum optics using
the su�2� coherent states �18�. These states belong to a sub-
class of the su�2� minimum-uncertainty states under study in
this paper. Our approach thus suggests in a sense an alterna-
tive method to verify entanglement in those states.

This paper is organized as follows. In Sec. II, we briefly
introduce the partial transposition within the phase-space de-
scription. In Sec. III we derive a class of inequalities in an
arbitrary sum form by combining the uncertainty relation
between Kx and Ky of the su�1,1� algebra with the notion of
partial transposition. In particular, the strongest inequality
among them is obtained that is expressed in terms of the
su�2� operators Jx, Jy, and the total photon number Na+Nb. In
Sec. IV we present the su�2� minimum-uncertainty states and
show that the strongest criterion can detect entanglement for
all those states. In Sec. V experimental schemes to generate
the minimum-uncertainty states and those to measure the ob-
servables Jx and Jy, especially a linear optical scheme, are
discussed. Finally, we summarize our results in Sec. VI.

II. PARTIAL TRANSPOSITION

In this section, we briefly introduce partial transposition
of a density operator in the phase space. Let us first consider
a single mode field in the position representation, �
=�dxdx��xx��x��x��, where x̂�x�=x�x�. The position x̂ and the
momentum p̂ are defined via the relations a= �x̂+ ip̂� /	2, and
a†= �x̂− ip̂� /	2. The characteristic function C�T���

Tr��TD���� for the transposed density operator �T

=�dxdx��xx��x���x� is then given by

C�T��� =
 dxdx��xx��x�D����x��

=
 dxdx��xx��x��D�− �*��x� = C��− �*� , �3�

where C���� is the characteristic function of the original state

�, and D���=e�a†−�*a is the displacement operator. There-
fore, the s-ordered distribution �22� of �T is related to that of
� as

W�T��,s� =
1

�2 
 d2�e��*−�*�es���2/2C�T���

=
1

�2 
 d2�e��*−�*�es���2/2C��− �*� = W���*,s� .

�4�

That is, W�T��x ,�y ,s�=W���x ,−�y ,s� for all s �−1�s�1�.
This reflects the fact that transposition physically represents
the motion-reversed state �4,11�.

From now on, let us work in the Glauber-P representation
�s=1�. A normally ordered moment �a†man��T of the trans-
posed density operator is expressed in terms of another mo-
ment of the original state, as

�a†man��T =
 d2��*m�nP�T��x,�y�

=
 d2��*m�nP���x,− �y�

=
 d2��m�*nP���x,�y� = �a†nam��. �5�

For an arbitrary operator Ô represented in the normal order-

ing as Ô=	Cmna†man, we obtain �Ô��T =	Cmn�a†nam��. If the

coefficients Cmn are all real, we simply have �Ô��T = �Ô†��.
Extension of the previous results to the partial transposi-

tion for the multimode case is straightforward. For example,
in the case of partial transposition for mode b, we have

�a†manb†pbq��PT = �a†manb†qbp��. �6�

III. SEPARABILITY CONDITIONS

In this section, we will derive a class of inequalities via
uncertainty relations among the su�1,1� operators along with
the partial transposition considered in Sec. II. To begin with,
from the commutator �Kx ,Ky�=−iKz, we have the uncertainty
relation �Kx�Ky 


1
2 �Kz�. If a two-mode state is separable, it

remains physical after partial transposition �11�. Thus, the
above inequality must be satisfied also by the partially trans-
posed density operator �PT, i.e.,

��Kx��PT��Ky��PT 

1

2
�Kz��PT, �7�

if the state is to be separable �9�. Using Eq. �6�, we find that
��Kx��PT is related to ��Jx�� as

��Kx��PT
2 
 �Kx

2��PT − �Kx��PT
2

=
1

4
�a†2b†2 + a2b2 + a†ab†b + aa†bb†��PT

−
1

4
�a†b† + ab��PT

2
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=
1

4
�a†2b2 + a2b†2 + a†ab†b + aa†bb†��

−
1

4
�a†b + ab†��

2

= �Jx
2�� +

1

4
− �Jx��

2 = ��Jx��
2 +

1

4
. �8�

Similarly, we obtain

��Ky��PT
2 = ��Jy��

2 +
1

4
�9�

and

�Kz��PT = �Kz��. �10�

Now let us construct an arbitrary sum of ��Kx��PT
2 and

��Ky��PT
2 . Using x2+y2
2xy, with x=	���Kx��PT and y

=	���Ky��PT, we have

���Kx��PT
2 + ���Ky��PT

2

 	���Kz��PT, �11�

where the inequality �7� was used. In terms of the moments
of the original separable state �S, using the relations in Eqs.
�8�–�10�, the inequality �11� becomes

��Jx��S

2 + c2��Jy��S

2 

1

2
c�N+��S

−
1

4
�c − 1�2, �12�

where N+
Na+Nb is the total photon number and c

	� /��0 is an arbitrary parameter. On the other hand, for
a general state, entangled or not, the su�2� commutator
�Jx ,Jy�= iJz sets the uncertainty relation

��Jx�2 + c2��Jy�2 
 c��Jz�� =
1

2
c��N−�� , �13�

where N−
Na−Nb is the photon number difference. Note
that the terms on the left-hand sides of Eq. �12� and Eq. �13�
are the same. Therefore, if the quantity on the right-hand side
of Eq. �12� is larger than that of Eq. �13�, there can be some
entangled states that satisfy the inequality �13�, but that vio-
late the one in Eq. �12�. The inequalities �12� thereby define
a class of separability criteria for CVs. This is the case in
which c is chosen in the interval �c− ,c+�, where c±= �1
+2Nm�±	�1+2Nm�2−1 and Nm
min��Na� , �Nb��.

Note that a special case for c=1 in Eq. �12� is the inequal-
ity obtained by Hillery and Zubairy in Ref. �8�, where they
used a different procedure to derive the separability condi-
tion

��Jx�2 + ��Jy�2 

1

2
�N+� . �14�

We now want to optimize the inequality �12� by choosing
a proper parameter c=copt. This can be done in the following
way �23�. Since our goal is to make the inequality violated
by a given entangled state, we need to minimize, possibly
lower than zero, the following value:

��Jx�2 + c2��Jy�2 −
1

2
c�N+� +

1

4
�c − 1�2

=
1

4
��1 + 4��Jy�2��c −

1 + �N+�
1 + 4��Jy�2�2

+ 1 + 4��Jx�2

−
�1 + �N+��2

1 + 4��Jy�2� . �15�

Since �Jx, �Jy, and �N+� are just real numbers for a given
state, we can always choose c=copt= �1+ �N+�� / �1
+4��Jy�2��0. Then, the inequality �12� is reduced to

�1 + 4��Jx�2��1 + 4��Jy�2� 
 �1 + �N+��2. �16�

This inequality is in fact the one that can be directly obtained
from Eq. �7� by inserting the relations in Eqs. �8�–�10�. The
inequality �16� provides the strongest condition for separa-
bility among the ones in Eq. �12�. Indeed, it can be readily
checked that, in general, regardless of the operator algebra
involved, the separability condition in the product form, like
Eq. �7�, always gives the optimal inequality among those in a
sum form, on account of the simple algebraic relation x2

+y2
2xy used in the derivation �6�.
The inequality �16� was previously derived by Agarwal

and Biswas in Ref. �9�, though not explicitly presented in
terms of �Jx and �Jy. Identification of the terms �Jx and
�Jy, however, becomes important in an experimental point
of view, and we will discuss it further, particularly their mea-
surement, in Sec. V.

IV. su(2) MINIMUM-UNCERTAINTY STATES

In this section, we apply the criterion �16� to detect en-
tanglement for the su�2� minimum-uncertainty states. For
comparison, however, we also consider the inequality �14�
and investigate its power of detecting inseparability. The
su�2� minimum-uncertainty states were derived in the litera-
ture �14,20�, and we first present those states in the follow-
ing. Then, we will show that the optimal inequality �16� can
detect entanglement for any arbitrary su�2� minimum-
uncertainty states, whereas the inequality �14� is limited in
its applicability.

A. Minimum-uncertainty states

For two general Hermitian operators u and v, we have the
uncertainty relation �u�v
 ���u ,v��� /2. The minimum un-
certainty states refer to those that satisfy the equality, i.e.,
�u�v= ���u ,v��� /2. These states can be derived by solving
the eigenvalue equation �24�

�u + i�v���� = ���� , �17�

where � is a complex eigenvalue. After some algebra, it is
found that
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��u�2 =
1

2
����u,v��� ,

��v�2 =
1

2
� 1

�
��u,v��� . �18�

Therefore, �u�v= ���u ,v��� /2 is satisfied, and the parameter
��� can be interpreted as the degree of squeezing. For ���=1,
the two variances are the same, i.e., no squeezing, and for
����1, the fluctuation of one variable is reduced at the ex-
pense of that of the other variable.

In our case, u=Jx and v=Jy, and Eq. �17� becomes

��1 − ��ab† + �1 + ��a†b����� = 2�����. �19�

We will consider only the case in which the mean number of
mode a is larger than that of mode b, �Na�� �Nb� ���0�,
because the opposite case can be treated just by interchang-
ing the modes a and b. Thus, for the su�2� minimum-
uncertainty states, the following relations are satisfied:

��Jx�2 =
�

4
�N−�, ��Jy�2 =

1

4�
�N−� , �20�

where �N−�
�Na�− �Nb�. We see that only the calculations of
�N±� are necessary to use the separability conditions �14� and
�16�, due to the relations in Eq. �20� for nonzero �.

In the following, we will consider the minimum-
uncertainty states only for 0���1, i.e., Jx-squeezed states
in Eq. �20�. The case for ��1, i.e., Jy-squeezed states, can
be treated without further calculation by the following obser-
vation: If the annihilation operator b is redefined as be−i��/2�,
the operator Jx is changed to Jy and vice versa. �See Eq. �1�.�
This implies that local phase shift of the mode b by the
amount of �

2 transforms Jx-squeezed states to Jy-squeezed
ones. Moreover, note that the inequalities �14� and �16� are
symmetric with respect to Jx and Jy. Therefore, the problem
of detecting inseparability for Jy-squeezed states is redun-
dant.

More precisely, using the relation ei
b†bbe−i
b†b=be−i
,
the eigenstate ���� for ��1 �Jy-squeezed state� is obtained
from the state ���1/� �Jx-squeezed state�, as ����

=e−i��/2�b†b���1/�, which can be easily checked in Eq. �19�.

B. su(2) minimum-uncertainty states

We now solve Eq. �19� to obtain su�2� minimum-
uncertainty states.

�i� �=1. In the unsqueezed case, Eq. �19� becomes
a†b���=����. Using the photon-number basis, ���
=	Cn1,n2

�n1�a�n2�b, we obtain the recurrence relation
Cn1−1,n2+1	n1�n2+1�=�Cn1,n2

for n1
1 and n2
0. If � is
nonzero, we additionally have C0,n2

=0 for all n2
0, since
a†b��� does not contain the vacuum-state component for
mode a. We then find no solution, because all the other co-
efficients also vanish from the recurrence relations. The ei-
genvalue � therefore must be zero. The same reasoning will
be used below for the case of ��1.

For �=0, the recurrence relation suggests that the mode b
is in the vacuum state. That is, ���= ���a�0�b, where ���a is

an arbitrary state, which represents a product state. Thus,
these unsqueezed states are of no interest in our work �25�.

�ii� ��1. In the squeezed case, let us introduce a trans-
formed state ����=S−1�z����, where S�z�
ezab†−z*a†b de-
scribes the beam-splitter action �26�. We choose the complex
value z
rei
z to make simple the recurrence relations for the
state ���� �20�. By inserting ���=S�z����� into Eq. �19�, and
using S�z�aS†�z�=a cos r+be−i
z sin r and S�z�bS†�z�
=b cos r−aei
z sin r, we get

�	1 − �2�Na − Nb� + 2�a†b����� = 2����� , �21�

with the choice tan r=	1−�
1+� and 
z=0.

A further simplification is made by the observation that
the operators in Eq. �19� or Eq. �21� preserve total photon
number, i.e., N=Na+Nb becomes a constant of motion. We
can thus construct N manifolds such that the eigenstates ����
for a given N are of the form ����=	pCp�p�a�N− p�b. We
then obtain the recurrence relation

2�	p�N − p + 1�Cp−1 = �pCp, �22�

where �p
2�−	1−�2�2p−N�. Clearly, the parameter �p

must be zero for a certain p, otherwise no solution exists.
�See the argument in �i� for �=1.� If �p vanishes for p=m,
where m is a non-negative integer �0�m�N�, the eigen-
value 2� is given by 2�=	1−�2�2m−N�, and ���� contains
only the terms for p
m. The parameter m is thereby a trun-
cation number that characterizes distinct eigenstates. We now
obtain �p=�p

�m�=−2	1−�2�p−m�.
The recurrence relation in Eq. �22� can be readily iterated

to give

����N,m =
1

WNm
	p
mCp

N,m�p�a�N − p�b, �23�

where

Cp
N,m =

�p−m

�p − m�!
	p!�N − m�!

m!�N − p�!
�24�

and �=− �
	1−�2 . The normalization constant WNm is given by

WNm= 2F1�m+1,m−N ,1 ,−�2�, where 2F1 is the hypergeo-
metric function. The subscripts/superscripts �N ,m� are used
to classify different eigenstates, where N is the total photon
number and m is the truncation number in Eq. �23� �27�.
Note that the states in Eq. �23� are generally non-Gaussian
entangled states, and in particular, the state for m=0 de-
scribes a two-mode binomial state �28�.

We can calculate �N−� using the transformed state ����
with the relation S†�z�N−S�z�=�N−−2	1−�2Jx as

�N−� = ��N−����� − 2	1 − �2�Jx�����. �25�

Then, the variances ��Jx�2 and ��Jy�2 are given by the rela-
tions in Eq. �20�. Let us first consider some simple su�2�
minimum-uncertainty states and see whether entanglement in
those states can be detected using the inequality �14� or �16�.

�a� Case of m=N. The eigenstates are simply ����N,N
= �N�a�0�b in Eq. �23�, and, in the original frame, they become
���N,N=S�z��N�a�0�b. These states thus can be generated by
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injecting a Fock state �N� and a vacuum state �0� as inputs
into a beam splitter with the transmittance cos2 r= �1+�� /2.
Since the photon number difference is obtained as �N−�
=�N from Eq. �25�, it is easily checked that the states ���N,N
all violate both the inequalities �14� and �16�.

The states ���N,N actually correspond to the su�2�-
coherent states considered in Ref. �18�. For N=1, the state
���1,1 is an arbitrary superposition of the single-photon
states, ���1,1=cos r�1�a�0�b+sin r�0�a�1�b �29�.

�b� Case of m=N−1. In this case, we find

����N,N−1 =
1

	�2 + �2
���N − 1,1� + ��N,0�� , �26�

where �=	1−�2, �=−�	N, and

�N−� =
��3N − 2 + �N2 − 3N + 2��2�

1 + �N − 1��2 . �27�

Now, the inequality �14� is violated only for the squeezing
parameter ���c= 1

	N−1
. On the other hand, the optimal in-

equality �16� is violated for any values of �, showing that the
inequality �16� is stronger than �14�.

Instead of seeking further analytic expressions, we nu-
merically study the violation of the inequalities by the su�2�
minimum-uncertainty states, and the results are displayed in
Figs. 1–3. We calculate the quantities Q and R defined by

Q 

��Jx�2 + ��Jy�2

�N+�/2
− 1,

R 

�1 + 4��Jx�2��1 + 4��Jy�2�

�1 + �N+��2 − 1. �28�

The negativity of Q and R represents the violation of the
inequality �14� and �16�, respectively.

In Fig. 1, we plot Q and R for ���N=10,m as functions of
the squeezing parameter �. We have found that Q and R
values for ���N,m are the same as the corresponding ones for
���N,N−m in general. For example, the curves �ii� and �vi� in
Fig. 1 represent Q and R for the states ���N=10,3 and ���N=10,7
alike.

We can show that the R values are always negative, indi-
cating that the inequality �16� is violated, for arbitrary states
���N,m with any degree of squeezing. In Fig. 2, for instance,
we plot the R values for the states ���N=50,m and ���N=100,m.
As the degree of squeezing is increased, i.e., �→0, the nega-
tivity of R values deepens. In the extreme squeezing of �
=0 ���Jx�2=0�, we obtain ����N,m= �m�a�N−m�b from Eqs.
�23� and �24�. Then, by a direct calculation of ��Jy�2, the

extreme R value is given by R=−
N2+N�1−2m�+2m2

�1+N�2 .

On the other hand, the Q values become negative only for
a certain range of ���c, where the critical value �c satisfies
the equality in Eq. �14�. Arranging terms, we find that �c
satisfies the equation

�m̃ + 3m + 4�2m�2F1�m + 1,− m̃,1,− �2�

= 2m�1 + 2�2��m̃ + 1�2F1�m + 1,− m̃,2,− �2� ,

�29�

where m̃
N−m and �=− �
	1−�2 . For fixed N, �c varies with

the difference �N /2−m�, and more precisely, �c decreases
with the increasing value of �N /2−m�. In other words, the
range of the squeezing parameter �, for which the inequality
�14� is violated, becomes broader for a larger difference
�N /2−m�. In Fig. 3, we plot the critical value �c for different
�N ,m� values.

FIG. 1. �i�–�iv� �dotted lines� Q and �v�–�viii� �solid lines� R
values, defined in Eq. �28�, as functions of the squeezing parameter
� for the states ���N=10,m: �i�,�v� m=5; �ii�,�vi� m=3; �iii�,�vii� m
=2; and �iv�,�viii� m=1.

FIG. 2. The R values, defined in Eq. �28�, as a function of the
squeezing parameter �. Solid �dotted� curves for the states
���N=50,m ����N=100,m�: �i� m=20,30; �ii� m=10,40; �iii� m=1,49
and �iv� m=30,70; �v� m=15,85; �vi� m=1,99.

FIG. 3. The critical value �c as a function of total photon num-
ber N �
12� with m=N /2+2 �triangle�, m=3N /4+1 �circle�, and
m=N−2 �square�, for the states ���N,m. The inequality �14� is vio-
lated for the squeezing parameter ���c.
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In conclusion, we have shown that the optimal inequality
�16� can detect entanglement for any arbitrary su�2�
minimum-uncertainty states, whereas the inequality �14� has
some limited applicability of detecting entanglement.

V. MEASUREMENT SCHEME

In this section, we discuss the generation of the su�2�
squeezed states and the measurement of the observables Jx
and Jy necessary for testing the criterion �16�. The experi-
mental schemes for generating the su�2� squeezed states have
been suggested for an atomic system �16� and for optical
fields �17�. In particular, Luis and Perina proposed to gener-
ate the su�2� coherent states, ���N,N in our notation, using
two parametric downconverters �PDCs� with the aligned
idler modes �17�. In their scheme, however, it is required to
project the idler mode to a photon number state, which seems
hard to implement in practice. They also showed that other
su�2� squeezed states can be produced in the signal modes
within the same setup when a beam splitter is inserted be-
tween the PDCs and projective measurements are performed
on the two idler modes.

Another method to generate the su�2� coherent states is to
inject a photon number state �N ,0� to a beam splitter, as
addressed in the Sec. IV B. �ii� �a�. It is, however, also de-
manding to produce the photonic Fock states. Recently, an
experimental scheme was proposed to extract a Fock state
from an input coherent state using linear optics and projec-
tive measurements �30�.

Let us now discuss how to measure the observables Jx
= �a†b+ab†� /2 and Jy = �a†b−ab†� /2i in experiment. Hillery
showed that the variances �Jx and �Jy can be measured via
a nonlinear interaction, i.e., the difference-frequency genera-
tion described by the Hamiltonian H=�g�a†bc†+ab†c� �31�.
Specifically, the variances of the two orthogonal quadrature
amplitudes for mode c, which can be measured in homodyne
detection, correspond to �Jx and �Jy, respectively.

Alternatively, we can use linear optical devices along with
photon detectors �Fig. 4�. The mode b first goes through a
phase shifter and the two modes a and b are injected to a
50:50 beam splitter. The output modes c and d are given by
c= 1

	2
�a+be−i
� and d= 1

	2
�−a+be−i
�. One then measures the

photon number difference at the output, i.e., c†c−d†d
=a†be−i
+ab†ei
, which becomes 2Jx �2Jy� for 
=0 �

= �

2
�. In fact, this scheme is none other than the typical ho-

modyne detection when one of the input modes, say b, is
replaced by a large intensity coherent field. Although this
method does not require the nonlinear interaction as com-
pared with Hillery’s scheme, photon counting is usually less
efficient than homodyne detection. The photon detectors cur-

rently available in the laboratory are known to be sensitive
only to low photon numbers. So the measurement via linear
optics seems to be rather demanding for the su�2� squeezed
states with large photon numbers. However, we believe that
the experimental progress in this direction will be continu-
ously made �32�.

VI. SUMMARY

In this paper, we have derived a class of inequalities �12�
from the su�1,1� and the su�2� algebra in conjunction with
the partial transposition that all separable CV states must
satisfy. The strongest inseparability criterion among them is
the same as the one derived by Agarwal and Biswas �9�. We
have shown that this optimal condition can detect entangle-
ment for a broad class of non-Gaussian entangled states, that
is, the su�2� minimum-uncertainty states with any degree of
squeezing. Examples of such states include the ones pro-
duced by superposing a Fock state �N� and a vacuum state �0�
at a beam splitter. For comparison, we also considered the
inequality �14�, also independently derived by Hillery and
Zubairy, which is found to be capable of detecting insepara-
bility only for a certain range of the squeezing parameter. We
have proposed a linear optical scheme with photon detectors
to test the optimal criterion in experiment.
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