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Quantum secret sharing based on modulated high-dimensional time-bin entanglement
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We propose a scheme for quantum secret sharing (QSS) that uses a modulated high-dimensional time-bin
entanglement. By modulating the relative phase randomly by {0, 7}, a sender with the entanglement source can
randomly change the sign of the correlation of the measurement outcomes obtained by two distant recipients.
The two recipients must cooperate if they are to obtain the sign of the correlation, which is used as a secret key.
We show that our scheme is secure against intercept-and-resend (IR) and beam splitting attacks by an outside
eavesdropper thanks to the nonorthogonality of high-dimensional time-bin entangled states. We also show that
a cheating attempt based on an IR attack by one of the recipients can be detected by changing the dimension
of the time-bin entanglement randomly and inserting two “vacant” slots between the packets. Then, cheating
attempts can be detected by monitoring the count rate in the vacant slots. The proposed scheme has better

experimental feasibility than previously proposed entanglement-based QSS schemes.
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I. INTRODUCTION

Many quantum-information systems including quantum
cryptography and quantum computers have been intensively
studied in recent years [1]. Of these, quantum secret sharing
(QSS) has been attracting attention [2-9]. The basic idea of
secret sharing is that a secret key transmitted by a sender is
shared between two or more recipients in such a way that the
key can be reconstructed only if all recipients collaborate.
The purpose of QSS is to provide this function with absolute
security using quantum mechanics: a secret key from a
sender is transmitted over a quantum channel to two (or
more) recipients, and the key is used to encrypt communica-
tion between the sender and recipients in a classical channel
that cannot be modified but may be overheard by an eaves-
dropper.

The first QSS scheme proposed by Hillery et al. used a
three-particle entangled Greenberger-Horne-Zeilinger (GHZ)
state [2]. Although this scheme elegantly showed the essence
of QSS, it is hard to realize experimentally because of the
inefficiency as regards the generation of a three-particle en-
tangled state [10]. Several variations and theoretical expan-
sions of QSS have been reported since the publication of this
pioneering work [3-9]. Among them, schemes based on two-
particle entangled states seem to have good experimental fea-
sibility with optical setups [3,4]. These schemes use four
nonorthogonal Bell states and two measurement bases that
are nonorthogonal to each other to prevent an eavesdropper
from obtaining the key without inducing errors. Therefore,
the experimental configurations are complex and difficult to
implement. Recently, simpler schemes have been proposed
based on sequential communication of a single qubit [8,9]. In
a sense, these methods insert some users who undertake uni-
tary transformation into a transmission line of quantum key
distribution (QKD) systems using single photons. Therefore,
the secure key distribution distances of these methods are
expected to be similar to those of QKD systems using single
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photons. In an analogy with the relationship between the
secure key distribution distance of a single-photon-based
QKD and that of an entanglement-based QKD, the secure
key distribution distance of these QSS schemes will be
smaller than those of entanglement-based QSS schemes.

In this paper, we propose a QSS scheme based on a two-
photon entangled state. Our approach employs high-
dimensional time-bin entanglement [11,12], which is an ex-
pansion of time-bin entanglement with two time slots [13].
We apply a differential phase modulation to high-
dimensional time-bin entanglement. We show that our
scheme is secure against an intercept-and-resend (IR) attack
or a beam splitting (BS) attack, because an eavesdropper
cannot reconstruct the whole wave function of the modulated
high-dimensional time-bin entanglement by such attacks. In
other words, our scheme utilizes the nonorthogonality of
modulated high-dimensional entangled states to ensure that
an eavesdropper cannot determine the state with a single
measurement, instead of using four nonorthogonal Bell states
as in [3,4]. In addition, the dimensions of the time-bin en-
tangled states are randomly changed packet by packet and
two vacant time slots are inserted between packets. As a
result, cheating attempts based on an IR attack by one of the
recipients can be detected by monitoring the count rate of the
vacant slots. Note that our security analysis is based on spe-
cific attacks and a full security analysis to prove uncondi-
tional security is beyond the scope of this paper. The source
of a high-dimensional entangled state is easier to construct
than the sources of previous entanglement-based QSS
schemes. In addition, the recipients of our scheme do not
have to select one from two nonorthogonal measurement
bases. These characteristics make the configuration very
simple and the presented scheme experimentally feasible.

The structure of this paper is as follows. An overview of
the proposed scheme is provided in Sec. IL. In Secs. III and
IV, we discuss security against eavesdropping by an outsider
and cheating attempts by one of the recipients, respectively.
In Sec. V we discuss the obtained results and describe a
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FIG. 1. (Color online) Schematic of the proposed QSS

system.

possible modification of the proposed protocol. We conclude
the paper in Sec. VI.

II. PROPOSED SCHEME

Figure 1 shows the configuration of our proposed scheme,
which is based on a simple Franson interferometer setup
[14]. Charlie generates packets of high-dimensional time-bin
entangled states spanned by N time slots, each of which is
followed by two vacant time slots. The state of a packet
(with the following vacant slots) is expressed as

N

1 .
@)= =2 [+ 0 X N+ DN+ 1);+0
VIV k=1

X|N +2)|N +2);, (1)

where the expression |k), represents a state in which there is
a photon in the kth time slot in a mode x, signal (s) or idler
(i). ¢y is the phase at the kth time slot and is modulated
randomly by {0, 7}. The dimension N is randomly changed
packet by packet. The signal and idler photons are separated
and sent to Alice and Bob, respectively. Alice and Bob put
the photons into 1-bit delayed interferometers whose two
outputs are connected to photon counters. A state |k), is con-
verted as follows by a 1-bit delayed interferometer:

k7a>x -

1
) — S kb) o+ |k + La) +k+1,b)). (2)

In the expression |k,y),, k shows the time slot where there is
a photon, y is the output port (a or b) of the delayed inter-
ferometer, and x denotes signal (s) or idler (s). By plugging
Eq. (2) into Eq. (1), we can obtain the state at the output of
the interferometers, which is shown by

1 ) .
|D) — —= eN|1,a)|1,a);, - ¢'®1|1,a)|1,b),
4+
N
— e 1,b)|1,a); + "41|1,b) | 1,b); + D {(e 1 + i)
k=2
X |k,a) |k, a); + (%1 = e'¥)|k,a) |k, b);

+ (e!P=1 — &%) |k, b) |k, a); + (e!P=1 + &%)k, b) |k, b);}
+ PN+ 1,a) [N+ 1,a); + ¢'?N + 1,a) N + 1,b),
+ PN+ 1,b)|N + 1,a);

+ N+ 1,b) N+ 1,b);+ -+ |, (3)

where only terms that contribute to coincidence are shown.
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Thus, quantum interference is observed in the time slots
from 2 to N, which we call “signal slots” hereafter. When
¢y= 1, Alice and Bob’s outcomes observed in the kth sig-
nal slot are positively correlated. Anticorrelation is observed
when ¢;=¢p,_ 7. Thus, we can change the sign of the cor-
relation for each time slot by modulating differential phase
A= b— ¢y by {0, 71} for each k. By contrast, the result of
the coincidence in the 1st or (N+1)th slots is completely
random. We call these slots “error slots.” Alice and Bob do
not observe any count in the (N+2)th slot. As described in
Sec. IV the (N+2)th slot is used to detect cheating attempts
by participants, so we call this slot a “detection slot.” Our
QSS depends on the fact that the sign of the correlation in a
signal slot is determined only by summarizing the outcomes
of both Alice and Bob.

Using this characteristic, we can realize a QSS with the
following procedure. For simplicity, we do not consider the
vacant slots. The procedure for detecting cheating using the
count rate in the detection slots is described in Sec. IV.

(i) Charlie generates entangled photon pairs whose state is
given by Eq. (1), with ¢, modulated by {0, 7}. He separates
signal and idler photons and sends them to Alice and Bob.

(ii) Alice and Bob input the received photons into their
interferometers and detect the photons with photon counters
connected to two output ports of the interferometers. Alice
and Bob record the time instances in which they observed
clicks and which detectors clicked for each time instance.

(iii) Alice and Bob inform Charlie of the time instances in
which they observed clicks via classical communication.
They do not disclose the detectors that clicked.

(iv) Charlie makes a key sequence using his modulation
data in signal slots. Charlie encodes a message using this key
and sends it to Alice and Bob.

(v) Charlie discloses the positions of the signal, error and
detection slots to Alice and Bob.

(vi) Alice and Bob discover the key only when they in-
vestigate the sign of the correlation in the signal slots by
combining their information.

We can generate the high-dimensional entangled state
shown by Eq. (1) by using spontaneous parametric down-
conversion (SPDC) [15,16] or spontaneous four-wave mix-
ing (SFWM) [17-20] with a modulated pump. An example
of such an entanglement source is shown in Fig. 2, in which
SFWM is used to generate time-bin entangled photon pairs.
A coherent pulse train from a pump pulse source is launched
into a phase modulator, which modulates the phase of each
pulse by {0, 7/2}. Then on-off modulation is applied to the
pulse train to insert two-sequential vacant slots randomly.
Thus we can generate N-sequential pump pulses with
{0, 7/2} differential phase modulation, followed by two va-
cant slots. These pump pulses are input into a nonlinear me-
dium, in which entangled photon pairs are generated through
the SFWM process with a degenerated pump. The relation-
ship between the phases of pump ¢, signal ¢, and idler ¢; is
given by

2¢p:¢s+¢i' (4)

With the above condition satisfied and if we set the pump
power relatively small so that the average number of photon
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FIG. 2. (Color online) High-
dimensional time-bin entangle-
ment source with relative-phase

Pump > PM » IM

pairs per slot becomes <1, the obtained state can be approxi-
mated as a high-dimensional entangled photon pair whose
relative phase is modulated by {0, 7} as in Eq. (1).

With these types of sources, the distribution of the number
of photon pairs per packet becomes Poissonian. This implies
that it is possible for two or more photons to be available in
a packet, which opens the possibility for an eavesdropping
strategy such as a BS attack. However, such an attack cannot
be effective as long as the average number of photon pairs
per pulse is sufficiently small, as we show in the next sec-
tion.

The previous QSS schemes based on entanglement use
both the sign of correlation and the outcome of a phase-
difference measurement of each photon (i.e., which detector
clicked at the recipients’ sites) [2,3]. In contrast, our scheme
uses only the sign of correlation, which makes our approach
much simpler than previous schemes. Moreover, recipients
do not require equipment for selecting two nonorthogonal
measurement bases as in [2,3]. This is not a trivial issue in
terms of implementation, because such equipment usually
reduces the key distribution distance. For example, the use of
active components such as a phase modulator for basis se-
lection induces additional loss, which reduces the loss budget
for transmission. Despite its simplicity, our scheme is secure
against eavesdropping from outside and cheating attempts by
one of the recipients, as described in the next two sections.

III. EAVESDROPPING BY AN OUTSIDER

In this section we analyze the security of our QSS scheme
against possible eavesdropping from outside the party. An
eavesdropper (Eve) can undertake attacks that are similar to
those against QKD systems, such as an IR attack or a BS
attack. In the following, we consider these two types of at-
tack.

A. IR attack

Eve captures both photons from Charlie and undertakes
coincidence measurements using similar interferometers to
those of Alice and Bob to obtain the relative phase A,
= ¢— ¢_,. However, she can obtain only partial information
about the relative phases of high-dimensional time-bin en-
tangled states, because the average number of photon pairs
per pulse is smaller than one.

Then, at the time instances where Eve obtained Ay, she
prepares substitute photons in which the relative phase infor-
mation that she obtained is encoded and sends them to Alice
and Bob through lossless lines. Eve has two choices of sub-
stitute photons: entangled photon pairs or pairs of single pho-
tons with classical correlation.

modulation. PM: phase modulator.

IM: intensity modulator. NL: non-
linear medium for spontaneous
four-wave mixing.

First, we consider the case in which Eve prepares en-
tangled photon pairs. With her obtained relative phase infor-
mation A¢,, she generates the following entangled photon
pair, splits them into signal and idler, and sends one to Alice
and the other to Bob:

1 )
|q)e> = \TE(U‘ - l>¥|k - 1>i + elA¢k|k>s|k>i)' (5)

When the above photon pair passes the interferometers of
Alice and Bob, whose function is given by Eq. (2), the state
is converted into

1
|®,) — Eﬂk —La)k—1,a);- k= 1,a) k- 1,b),
V

— k= 1,b)Jk—1,a);+ |k—1,b) k- 1,b);

+ (1 + ™) |k, a) |k, a); + (1 — e %) |k,a) |k, b);

+ (1 = %)k, by |k,a); + (1 + %) |k, b) |k, b),e™ %
X|k+ 1,a) |k + 1,a); + e Pk + 1,a) |k + 1,b); + "> %
X|k+ 1,b) |k + 1,a); + e %k + 1,b) Jk + 1,b);

4o }’ (6)

where only terms that contribute to coincidences are shown.
The above equation indicates that Alice and Bob possibly
observe coincidences in either of the k-1, k, and (k+1)th
slots. If they observe coincidences in the kth time slot, their
measurement result correlates with Charlie’s phase modula-
tion data, which means that the eavesdropping is successful.
However, when they observe a coincidence in the (k+1)th
slots, their outcomes are uncorrelated, so error occurs with a
50% probability. From the probability amplitude of Eq. (6),
an error occurs with 1/4 probability for a photon pair resent
by Eve.

Next, we consider the case in which Eve uses classical
correlation. She prepares two single photons. Each photon is
made into a two-slot time-bin qubit whose relative phase is
modulated based on the relative phase A, that she obtained
in her measurement. The joint state of the two photons is
expressed as

1 . .
|D,) = 5(|k = Dy + e k) (k= 1)+ e P54k)p),  (7)

where ¢4,= g, when Ag=0 and ¢y;= Py +7 when A,
= . With this condition, Eve changes ¢,; and ¢y, randomly
by {0, 7r}. Eve inputs these two photons into Alice and Bob’s
interferometers. After these photons pass through the inter-
ferometers, the whole state changes to
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where noncoincident terms are not shown for simplicity.
When Alice and Bob observe coincidences in the kth time
slot, the result is correlated to Charlie’s modulation data as in
the previous case, which means the eavesdropping is suc-
cessful. However, the coincidences obtained in the (k+1)th
slot induce errors with 50% probability. Using the probabil-
ity amplitude of Eq. (8), the error probability is calculated to
be 1/6. This means that using two single photons with clas-
sical correlation is the better strategy for Eve. In either case,
the IR attack by Eve can be detected by monitoring errors
with some test bits.

B. BS attack

As stated in the previous section, if we use an entangle-
ment source based on a parametric process pumped by a
coherent source, the distribution of the number of photon
pairs becomes Poissonian. This makes it possible for Eve to
obtain information on the keys using a BS attack, without
inducing errors. Here we show that a BS attack is ineffective
against our scheme with a Poissonian photon-pair source, if
the average number of photon pairs per slot is fewer than 1.

We assume that the fiber transmittance between Charlie
and Alice and that between Charlie and Bob are both a and
the average number of photon pairs per slot is u. Eve re-
places the fibers with her lossless lines. She then splits Char-
lie’s signal and idler photon output into two paths with a
beam splitter. Eve sends one beam with an average photon
number of ua per pulse to both Alice and Bob through her
lossless fiber so that they do not notice any eavesdropping
from changes in the count rates. Eve keeps the other beams
of signal and idler photons with an average photon number
of u(l1-a) in her quantum memory. Once Alice and Bob
have disclosed the time instances in which they observed
clicks, Eve puts her photons into interferometers that are
identical to Alice and Bob’s and observes the coincidences,
hoping that she obtains coincidences at the same time in-
stances in which Alice and Bob observed coincidences. The
probability of Eve obtaining a coincidence at a desired time
instance is (1 —a)? [21], which is close to 3 when a is
small. Therefore, in terms of the total sifted keys of n; bits,
Eve has full information on at most % ung; bits. This suggests
that Eve can obtain only a fraction of the information if w
<1, and so Alice, Bob and Charlie can ensure that Eve’s
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mutual information is negligible by privacy amplification
[22].

Thus, our QSS scheme is robust against attacks by an
outside eavesdropper, even with a Poissonian photon-pair
source. From the above arguments, it is clear that the robust-
ness comes from the fact that Eve cannot reconstruct the
whole wave function of a relative-phase modulated high-
dimensional time-bin entanglement by an IR attack or a BS
attack.

IV. DISHONEST BOB
A. Bob’s strategy

In a QSS system, the sender of a secret key is a fair
person as regards all recipients and does not have a prefer-
ence for any individual, because dividing the secret key
among the recipients is the purpose of the sender. Although
an outside takeover of Charlie is a threat, this attack can be
prevented by introducing an initial authentification procedure
among the participants as in a QKD [23]. However, each
recipient may, if he or she has a chance, take advantage of
the others and try to obtain full information on the key by
himself or herself. Therefore, preventing cheating attempts
by recipients is an essential function for a QSS system. In the
following, we assume that Bob is dishonest and is trying to
obtain full information on the key without being noticed by
Alice and Charlie using an IR-attack-based strategy.

“Vacant slots” play a crucial role in the detection of dis-
honest Bob. First, we show that a cheating attempt by one of
the recipients can constitute a very strong attack against a
QSS protocol using {0, 7}-modulated high-dimensional en-
tanglement without vacant slots.

Bob intercepts both photons output by Charlie and inserts
them into his interferometers for coincidence measurement.
As a result, he obtains partial information about the relative
phases of the high-dimensional time-bin entanglement. Then,
Bob prepares a time-bin qubit using his measurement data,
which is expressed by

1 )
) = = (k= 1)+ e'?ak)), )
V2
where ¢ =A¢d,—pp and ¢y is a value randomly chosen
from {0, 7}. Bob sends the above state to Alice through a

lossless line. The state is converted to the following state by
Alice’s interferometer:

k,a) + (1 — e'Pak)

1 .
) — 2\_'5{|k_ La) = k= 1,b) + (1 + ¢x)

X|k,b) + 4|k + 1,a) + e'®aklk + 1,b)}. (10)

If Alice observes clicks in the kth time slot, the result corre-
lates with Bob and Charlie’s, so Bob’s attack is successful.
On the other hand, her result is uncorrelated if the click
occurs in the (k= 1)th slots. However, unlike an IR attack by
an outsider, Bob can declare clicks only at the time instances
for which he has information, and so he can avoid inducing
errors. As a result, Bob can obtain full information about the
key without being noticed by Alice or Charlie. Thus, dishon-
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est Bob can determine the time instances where coincidences
occur, which makes cheating by a key recipient a serious
threat to this protocol, if we do not introduce the vacant slots
which we describe in the next section.

B. Detection of dishonest Bob

We consider a case in which Charlie sends states with
vacant slots shown by Eq. (1). As we have already stated,
Alice observes no count in the detection slot if there is no
eavesdropping and both Alice and Bob are honest. If dishon-
est Bob measures both photons using two interferometers,
the state observed by Bob is shown by Eq. (3). He observes
coincidences in the error slot with a probability of 1/(2N),
and the results obtained in these coincidence events have no
correlation with Charlie’s modulation data. However, he can-
not distinguish if a coincidence is obtained in signal or error
slots, so he inevitably resends a substitute photon to Alice
based on his measurement results, which are possibly uncor-
related to Charlie’s data. Here, we assume that Bob observed
a coincidence in the (N+1)th error slot. Then, Bob believes
that he observed the state shown by

1 .
—5(|N>X|N>,- +e 8N+ 1) N+ 1)),
V

where Ag, is the “phase difference” observed in Bob’s co-
incidence measurement and is actually a random value of
{0, 7r}. Consequently, Bob generates the following state and
sends it to Alice:

1) = %(IM F N+ 1))

Here, ¢4,=A¢,— dp, and ¢y, is a value randomly chosen
from {0, 7r}. If this state passes through Alice’s interferom-
eter, the state is converted to

1 . )
[y — 2\—6{|N,a> — [N,b) + (1 + €/%4¢)|[N + 1,a) + (1 — e'%4c)

X|N+1,b) + e'®4¢|N + 2,a) + /4[N + 2,b)}.  (11)

This equation shows that Alice observes clicks in the detec-
tion slots with a probability of 1/4. Thus, counts in the de-
tection slots imply cheating by the other participant, so Alice
and Charlie stop the communication.

Alice and Charlie also detect cheating by Bob if he re-
sends a photon based on a coincidence measurement in the
first slot. In this case, an erroneous count occurs in the de-
tection slot of the previous packet.

This detection method is based on the count rate mea-
sured by a single participant, not on the coincidence, which
is why we can detect cheating by a participant who can de-
termine the time instances of coincidence events.

To reduce the probability of inducing counts in the detec-
tion slots, Bob can make an attack based on sequential coin-
cidence events. If he observes n sequential coincidences, he
resends a time-bin qubit spanned by n+1 slots to Alice. In
this case too, there is a finite probability that Bob observes
sequential coincidences that include one in the first or the
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(N+1)th error slots as the first or last coincidences in the
sequence, respectively. Here, we assume that Bob observed x
sequential coincidences with the (N+1)th slot as the last
event. Then, he considers that he observed the following en-
tanglement:

1 S
: (E ePNHN + 1 = k) IN+ 1 —k);
yn+ 1\ 2

+e'%N+ 1) [N+ l)i) ,

where ¢, is the “phase” that Bob thinks he observed in the
coincidence in the (N+1)th error slot and that is actually a
random value of {0, 7}. Therefore, he creates the following
state and sends it to Alice:

1 n .
[y = #( NN + 1 — k) + €'%|N + 1>>.

Vi + 1\ k=1
(12)

Here, ¢y, ,_, is the phase that correlates with Bob’s measure-
ment outcome in a signal slot. The above state is converted
to the following state by Alice’s interferometer:

1

) — ——= ei‘/’ﬂ”+lf'l|N+ 1 -n,a)- e"‘l’ll\/+lfn|N+ 1-n,b)
2\yn+1
n-2
+ E {(ei¢N+l—n+k + ei¢N+2—n+k)|N+ 2—-n+ k’a>
k=0

+ (ei‘b/,wl—wk — gi"b/’\/+2—n+k)|N+ 2—-n+ k’b>}

+ (N + e'%)|N + 1,a) + (e — e'%)|N + 1,b)
+e' %N +2,a)+ !N +2,b) |. (13)

Thus, Alice observes clicks in the detection slot with a prob-

ability of m, so cheating by Bob is disclosed. A similar

analysis can be undertaken for a case where Bob observes n
sequential coincidences with the first slot of a packet as the
first event of the sequential coincidences.

C. Calculation

If the detectors are ideal ones with no dark count, Alice
and Charlie can always detect dishonest Bob by increasing
the measurement time infinitely. However, in a realistic ex-
perimental situation, the ability to detect dishonest Bob is
limited by the finite dark count rates of the detectors. In
order to detect cheating, the count rate in the detection slot
should be larger than the dark count rate in the presence of
dishonest Bob. Here, we estimate the maximum key distri-
bution distance over which dishonest Bob is detectable, as-
suming realistic dark count rates, and assuming that Charlie
is equipped with an entanglement source whose photon-pair
number distribution is Poissonian.

We consider the state after the interferometer given by Eq.
(3) and assume that the probability that a slot is a signal slot
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is §; then, the probabilities that a slot is an error slot, p,, or a
detection slot, p,, are expressed by

2
pezg(l_S)s (14)

pd%(l -5). (15)

If we ignore the first and last slots of the whole session,
the mark ratio (the probability that a slot is not a vacant slot)
at the output of Charlie, M, is expressed as

pe 1
M=S+—=—-(25+1). 16
5 3( ) (16)

When the transmittance between Charlie and Alice or Bob is
a and the average number of photon pairs per pulse w is
small enough to allow us to disregard accidental coinci-
dences, the shared key rate between Alice and Bob
(=coincidence rate), R, is given by [21]

1
Rk:E,uSaz. (17)

Let us consider a case in which dishonest Bob resends a
state based on a single coincidence event. The coincidence
rates in a signal slot, R, and an error slot, R,, are expressed
as Rszé,u and Re:i,u, respectively [21]. The coincidence
rate per slot observed by dishonest Bob is given by

Rcain=R5S+RePe' (18)

If the following condition is satisfied, Alice can detect dis-
honest Bob from the reduction in the count rate:

Rcoin <Mlu’a (19)

Here, a shows the transmittance between Alice and Charlie,
including the quantum efficiencies of Alice’s detectors. With
Egs. (16), (18), and (19), the minimum transmittance for
which Alice can detect dishonest Bob from the count rate
decrease is expressed as

@y =0.5. (20)

Thus, if « is smaller than 0.5, it is impossible to construct a
QSS system that is secure against dishonest Bob without
employing the method described above.

When a<e«,,;,, Bob randomly chooses Mua events per
slot from the coincidences he observes with a rate of R,,;,,
creates substitute photons, and sends them to Alice. The
probability that Bob happens to choose a coincidence in an
error slot and resends a photon, y, is expressed by

_ Repe _ -5
" RS+R,p, 25+1°

y (21)

As we have already stated, when a resent photon is created
based on the coincidence in an error slot, a photon is de-
tected in a detection slot with a probability of 1/4. There-
fore, the count rate in a detection slot is expressed as
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M upay
7

If the dark count rate of Alice’s detector is d, the following
condition must be satisfied to detect cheating:

M uay -

4 d. (22)

Thus, the threshold value of the transmittance above at
which dishonest Bob can be detected is expressed as

_12d
(=)

When « is smaller than both «,,;, and ¢,;,, Alice cannot detect
dishonest Bob. When we assume d=1072, n=0.1, and S
=0.5, a,,=-26 dB gives the minimum transmittance with
which detect dishonest Bob is detectable.

If Bob observes sequential coincidences and resends a
state that is constructed using his measurement results, he
may be able to reduce the probability of causing erroneous
counts in the detection slots. So we now consider a case in
which Bob resends a state spanned by n+1 slots only when
he observes n sequential coincidence counts.

We assume that the total number of slots in the whole
session is N,;. When the packet dimensions are larger than n
and the probability of observing a coincidence in a signal
slot R, is small, N, the total number of n sequential coinci-
dences in signal slots in the whole session is approximated
by

(23)

, Sp'
Ns = R;SNall = 7Nall' (24)
Similarly, N,—namely, the total number of n sequential co-
incidences, which includes n—1 signal slots and a error slot
as the first or last event—is approximated by

n

n— Pelt
NezReR; ]peNalI= :

5. Zy,Nall- (25)

Then, the n-sequential coincidence rate observed by dishon-
est Bob, which is defined as the number of n-sequential co-
incidences normalized by the number of slots in the whole
session, is expressed as

_N;+N,

coin —

R

=R'S+R.R"'p,. (26)
all

As in the single-coincidence case, Bob should satisfy the
condition expressed by Eq. (19), so as not to be detected by
the reduction in the count rate at Alice’s site. Using Eq. (26),
the minimum transmittance that violates this condition, «,,;,,
is given by

n—1

i

min = o .

a (27)
If the transmittance is smaller than «,,,, Bob can disguise
Alice’s count rate by using resent states generated using
n-sequential coincidence counts.
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FIG. 3. Threshold transmittance as a function of the number of
sequential coincidences n. Squares show the transmittance given by
Eq. (27), while circles show the boundary given by Eq. (29). When
the transmittance is smaller than both of these values, dishonest
Bob can deceive Alice without being noticed.

When a<e,,, is satisfied, Bob randomly chooses
n-sequential events from all the coincidence events, con-
structs the states using those events, and sends them to Alice.
Here, he has to keep Alice’s count rate at M ua. The prob-
ability that Bob happens to choose an n-sequential coinci-
dence that includes an error slot is the same as Eq. (21).
When Bob sends a state that is constructed using an
n-sequential coincidence with an error slot, the probability
that Alice detects a photon in a detection slot is given by

2(++1)‘ In order to detect dishonest Bob, the count rate at the

detection slot should be larger than the dark count rate. This
condition is expressed as

M puay -
———=(. 28
2(n+1) (28)

Using the above equation, the threshold value of the trans-
mittance at which Alice can detect dishonest Bob is given by

B 6d(n+1)

Xy = /»L(l _ S) . (29)

The circles in Fig. 3 show ay,, for each n. Here, S, u, and
d are assumed to be 0.5, 0.1, and 1072, respectively. The
transmittance threshold given by Eq. (27) is shown with
squares in Fig. 3. If the transmittance is below both curves,
Bob can cheat Alice. With the above parameter values, a
sequential attack with n=2 gives the minimum transmittance
for security, =-24 dB. When the detector quantum effi-
ciency and out-coupling loss of the entanglement source are
10% and 4 dB, respectively, the maximum transmission loss
between Charlie and Alice or Bob is 10 dB. This means that
a secure QSS system can be constructed over 100 km
(50 km X 2) of optical fiber with a loss of 0.2 dB/km.

This scheme uses the count rate in the detection slots to
detect cheating by the key recipients. This cheat-detection
method is uncommon in most of the conventional QKD or
QSS systems, in which error rate monitoring is the way to
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detect eavesdropping and cheating. Therefore, a more de-
tailed security analysis, including the derivation of the pri-
vacy amplification factor that takes account of this cheat-
detection method, is very important in terms of evaluating
the performance of a QSS system based on the proposed
scheme.

V. DISCUSSION
A. Analogy with differential phase shift QKD

In previously reported QSS schemes using two-photon
entanglement [3,4], entanglement sources generate four non-
orthogonal Bell states and the recipients use two nonorthogo-
nal measurement bases. Therefore, these schemes can be
considered to be two-photon versions of BB84 QKD [24]. In
contrast, our proposed scheme can be regarded as a two-
photon version of differential-phase-shift (DPS) QKD
[25,26]. In a DPS QKD system, Alice randomly modulates
the phase of a weak coherent pulse train by {0, 71} for each
pulse and sends it to Bob with an average photon number of
<1. The state sent by Alice is expressed as

1 N
) = =2 ek, (30)
VN &

where ¢, ={0, 7}. Bob measures the phase difference of each
consecutive pulse, A= ¢y_;— ¢, using second-order inter-
ferometry obtained with a 1-bit delay interferometer. The
security of the DPS-QKD is based on the fact that Eve can
obtain only partial information on the relative phases in Eq.
(30). On the other hand, the QSS scheme measures the rela-
tive phase of each consecutive product state shown in Eq. (1)
using fourth-order interferometry. Thus, we can expand the
concept of DPS QKD to two-photon states and construct a
simpler QSS system that requires only two-value phase
modulation.

B. Modified scheme

The essential point as regards detecting dishonest Bob is
that the two recipients do not have the information on the
time instances of the error slots. Therefore, the same function
can be implemented by randomly changing the time intervals
of the packets, while fixing the dimension of the packets. In
this case, we use the same state as Eq. (1) with a fixed N and
insert random numbers of vacant time slots between packets.
Then, the theory described above can be applied to this
modified scheme. However, the scheme with randomized
packet dimensions obviously utilizes time slots efficiency, so
a larger key rate is expected.

VI. CONCLUSION

We have proposed a QSS scheme based on time-bin en-
tanglement whose relative phases and dimension are modu-
lated. A sender can change the signs of correlation of the two
recipients by modulating the relative phase with {0,},
which can be used as a shared key. This protocol is secure
against an IR attack and a BS attack from outside because of
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the nonorthogonality of the high-dimensional time-bin en-
tanglement. A cheating attempt based on an IR attack by one
of the recipients can be detected by randomly changing the
dimension of entanglement and inserting two vacant slots
between each packet of entangled states. Because recipients
cannot know the time instances of the error slots, cheating by
a recipient induces an erroneous count in a detection slot, by
which the other recipient can detect the existence of cheat-
ing. We analyzed the security of the proposed protocol based
on specific attacks, and so an unconditional security analysis

PHYSICAL REVIEW A 74, 012315 (2006)

is an important future consideration. This scheme does not
require a three-particle entangled state or basis selection
mechanism at a recipients’ site and thus has better experi-
mental feasibility.
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