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We study geometrical aspects of entanglement, with the Hilbert–Schmidt norm defining the metric on the set
of density matrices. We focus first on the simplest case of two two-level systems and show that a “relativistic”
formulation leads to a complete analysis of the question of separability. Our approach is based on Schmidt
decomposition of density matrices for a composite system and nonunitary transformations to a standard form.
The positivity of the density matrices is crucial for the method to work. A similar approach works to some
extent in higher dimensions, but is a less powerful tool. We further present a numerical method for examining
separability and illustrate the method by a numerical study of bound entanglement in a composite system of
two three-level systems.
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I. INTRODUCTION

Entanglement is considered to be one of the main signa-
tures of quantum mechanics, and in recent years the study of
different aspects of entanglement has received much atten-
tion. One approach has been to study the formal, geometrical
characterization of entangled states as opposed to nonen-
tangled or separable states �1–3�. In such a geometrical ap-
proach the Hilbert–Schmidt metric defines in many ways the
natural metric on the space of physical states. This metric
follows quite naturally from the Hilbert space norm, when
the quantum description is extended from pure to mixed
states, and it is a Euclidean metric on the set of density
matrices. For a composite quantum system the separable
states form a convex subset of the full convex set of density
matrices, and one of the aims of the geometrical approach is
to give a complete specification of this set and thereby of the
nonseparable or entangled states.

The purpose of this paper is to examine some questions
related to the geometrical description of entanglement. We
focus primarily on the simplest composite systems consisting
of two two-level systems �2�2 system� or two three-level
systems �3�3 system�, but examine also some questions rel-
evant for higher dimensions. In the case of two two-level
systems the separable states can be fully identified by use of
the Peres criterion �4�. This criterion states that every sepa-
rable density matrix is mapped into a positive semidefinite
matrix by partial transposition, i.e., by a transposition rela-
tive to one of the subsystems. Since also Hermiticity and
trace normalization is preserved under this operation, the
partial transpose of a separable density matrix is a new den-
sity matrix.

A nonseparable density matrix, on the other hand, may or
may not satisfy Peres’ condition. This means that, in general,
Peres’ condition is necessary but not sufficient for separabil-
ity. However, for the special case of a 2�2 system as well as
for a 2�3 system the connection is stronger, and the Peres
condition is both necessary and sufficient for a density ma-
trix to be separable �5�. To identify the separable density
matrices, and thereby the entangled states, is therefore in

these cases relatively simple. In higher dimensions, in par-
ticular for the 3�3 system, that is not the case. Peres’ con-
dition is therefore not sufficient for separability, and the con-
vex subset consisting of all the density matrices that satisfy
this condition is larger than the set of separable matrices.
This is part of the reason that the identification of the set of
separable states in higher dimensions is a hard problem �6�.

In the present paper we first give, in Sec. II, a brief intro-
duction to the geometry of density matrices and separable
states. As a next step, in Sec. III we focus on the geometry of
the two-level system and discuss the natural extension of the
Euclidean three-dimensional Hilbert–Schmidt metric to a
four-dimensional indefinite Lorentz metric �7,8�. This indefi-
nite metric is useful for the discussion of entanglement in the
2�2 system, where Lorentz transformations can be used to
transform any density matrix to a diagonal standard form in
a way which preserves separability and the Peres condition
�Sec. IV�. By using this standard form it is straightforward to
demonstrate the known fact that any matrix that satisfies the
Peres condition is also separable.

The transformation to the diagonal standard form is based
on an extension of the Schmidt decomposition to the matrix
space with indefinite metric. For general matrices such a de-
composition cannot be done, but for density matrices it is
possible due to the positivity condition. We show in Sec. V
that the Schmidt decomposition in this form can be per-
formed not only for the 2�2 system, but for bipartite sys-
tems of arbitrary dimensions. However, only for the 2�2
system the decomposition can be used to bring the matrices
to a diagonal form where separability can be easily demon-
strated. In higher dimensions the Schmidt decomposition
gives only a partial simplification. This indicates that to
study separability in higher dimensions one eventually has to
rely on the use of numerical methods �9–13�.

In Sec. VI we discuss a new numerical method to deter-
mine separability �14�, and use the method to study entangle-
ment in the 3�3 system. The method is based on a numeri-
cal estimation of the Hilbert–Schmidt distance from any
chosen density matrix to the closest separable one. We focus
particularly on states that are nonseparable but still satisfy
the Peres condition. These are states that one usually associ-
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ates with bound entanglement. A particular example of such
states is the one-parameter set discussed by P. Horodecki
�15� and extended by Bruss and Peres �16�. We study nu-
merically the density matrices in the neighborhood of one
particular Horodecki state and provide a map of the states in
a two-dimensional subspace.

II. THE GEOMETRY OF DENSITY MATRICES

A. The convex set of density matrices

A density matrix � of a quantum system has the following
properties:

�† = � Hermiticity,

� � 0 positivity,

Tr � = 1 normalization. �1�

The matrices that satisfy these conditions form a convex set,
and can be written in the form

� = �
k

pk��k���k� �2�

with ��k� as Hilbert space unit vectors and

pk � 0, �
k

pk = 1. �3�

The coefficient pk, for given k, can be interpreted as the
probability that the quantum system is in the pure state ��k�.
This interpretation depends, however, on the representation
�2�, which is by no means unique. In particular, the vectors
��k� may be chosen to be orthonormal, then they are eigen-
vectors of � with eigenvalues pk, and Eq. �2� is called the
spectral representation of �.

The pure states, represented by the one-dimensional pro-
jections ������, are the extremal points of the convex set of
density matrices. That is, they generate all other density ma-
trices, corresponding to mixed states, by convex combina-
tions of the form �2�, but cannot themselves be expressed as
nontrivial convex combinations of other density matrices.

The Hermitian matrices form a real vector space with a
natural scalar product, Tr�AB�, which is bilinear in the two
matrices A and B and is positive definite. From this scalar
product a Euclidean metric is derived which is called the
Hilbert–Schmidt �or Frobenius� metric on the matrix space,

ds2 =
1

2
Tr��d��2� . �4�

The scalar product between pure state density matrices �1
= ������ and �2= ������ is

Tr��1�2� = �������2. �5�

For an infinitesimal displacement �d�� on the unit sphere in
Hilbert space the displacement in the matrix space is

d� = �d����� + ����d�� �6�

and the Hilbert–Schmidt metric is

ds2 = �d��d�� − ����d���2, �7�

where we have used that Tr�d��= �� �d��+ �d� ���=0. This
may be interpreted as a metric on the complex projective
space, called the Fubini–Study metric. It is derived from the
Hilbert space metric and is a natural measure of distance
between pure quantum states, in fact, ds is the infinitesimal
angle between rays �one-dimensional subspaces� in Hilbert
space. Since the Hilbert–Schmidt metric on density matrices
is a direct extension of the Hilbert space metric, it is a natural
metric for all, both pure and mixed, quantum states.

A complete set of basis vectors 	Ja
, in the space of Her-
mitian matrices, can be chosen to satisfy the normalization
condition

Tr�JaJb� = �ab. �8�

For n�n matrices the dimension of the matrix space, and the
number of basis vectors, is n2. One basis vector, J0, can be
chosen to be proportional to the identity I, then the other
basis vectors are traceless matrices. A general density matrix
can be expanded in the given basis as

� = �
a

�aJa, �9�

where the coefficients �a are real, and the trace normalization
of � fixes the value of �0. With the chosen normalization of
J0 we have �0=1/�n.

Due to the normalization, the density matrices are re-
stricted to a hyperplane of dimension n2−1, shifted in the
direction of J0 relative to a plane through the origin. The set
of density matrices is further restricted by the positivity con-
dition, so it forms a closed, convex set centered around the
point �0=J0 /�n. This point corresponds to the maximally
mixed state, which has the same probability ����0 ���=1/n
for any pure state ���. The geometry is schematically shown
in Fig. 1, where the set of density matrices is pictured as the
interior of a circle. One should note that the normalization
condition in a sense is trivial and can always be corrected for
by a simple scale factor. In the discussion to follow we will
find it sometimes convenient to give up this constraint. The

FIG. 1. �Color online� A schematic representation of the set of
density matrices in the vector space of Hermitian matrices. The
positive matrices form a cone about the axis defined by the unit
matrix, and the normalization condition restricts the density matri-
ces to a convex subset, here represented by the shaded circle.
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quantum states can then be viewed as rays in the matrix
space, and the positivity condition restricts these to a convex
sector �the cone in Fig. 1�.

B. Unitary transformations

The Hermitian matrices Ja can be viewed as generators of
unitary transformations,

U = exp�i�
a

	aJa �10�

with real coefficients 	a, which act on the density matrices in
the following way:

� → �̃ = U�U†. �11�

If � is represented as in Eq. �2�, then we see that

�̃ = �
k

pk��̃k���̃k� �12�

where ��̃k�=U ��k�. Thus the matrix transformation �
→U�U† is induced by the vector transformation ���
→U ���. An immediate consequence of Eq. �12� is that the
transformed density matrix U�U† is positive.

Such unitary transformations respect both the trace and
positivity conditions and therefore leave the set of density
matrices invariant. Also the von Neumann entropy

S = − Tr�� ln �� �13�

is unchanged, which means that the degree of mixing, as
measured by the entropy, does not change.

Since the dimension of the set of density matrices grows
quadratically with the Hilbert space dimension n the geom-
etry rapidly gets difficult to visualize as n increases. How-
ever, the high degree of symmetry under unitary transforma-
tions simplifies the picture. The unitary transformations
define an SU�n� subgroup of the rotations in the n2−1 di-
mensional matrix space, and all density matrices can be ob-
tained from the diagonal ones by these transformations. In
this sense the geometry of the set of density matrices is de-
termined by the geometry of the set of diagonal density ma-
trices. The diagonal matrices form a convex set with a maxi-
mal set of n commuting pure states as extremal points.
Geometrically, this set is a regular hyperpyramid, a simplex,
of dimension n−1 with the pure states as corners. The geo-
metrical object corresponding to the full set of density ma-
trices is generated from this by the SU�n� transformations.

In Fig. 2 the set of diagonal density matrices is illustrated
for n=2, 3, and 4, where in the first case the hyperpyramid
has collapsed to a line segment, for n=3 it is an equilateral
triangle and for n=4 it is a tetrahedron. For n=2, the SU�2�
transformations generate from the line segment the three-
dimensional Bloch sphere of density matrices. This case is
special in the sense that the pure states form the complete
surface of the set of density matrices. This does not happen
in higher dimensions. In fact, the dimension of the set of
pure states is 2n−2, the dimension of SU�n� / �U�1��SU�n
−1��, because one given pure state has a U�1��SU�n−1�
invariance group. This dimension grows linearly with n,

while the dimension of the surface, n2−2, grows quadrati-
cally.

The faces of the hyperpyramid of dimension n−1 are hy-
perpyramids of dimension n−2, corresponding to density
matrices of the subspace orthogonal to the pure state of the
opposite corner. Similarly, the hyperpyramid of dimension
n−2 is bounded by hyperpyramids of dimension n−3, etc.
This hierarchy is present also in the full set of density ma-
trices, generated from the diagonal ones by SU�n� transfor-
mations. Thus, to each extremal point �pure state� the bound-
ary surface opposite to it is a flat face corresponding to the
set of density matrices of one lower dimension. In this way
the boundary surface of the set of density matrices contains a
hierarchy of sets of density matrices of lower dimensions.

The boundary of the set of density matrices is character-
ized by at least one of the eigenvalues of the density matrices
being zero, since outside the boundary the positivity condi-
tion is broken. This means that at the boundary the density
matrices satisfy the condition det �=0, which is an algebraic
equation for the coordinates of the boundary points. When n
is not too large the equation can be solved numerically. This
has been done in Fig. 6 where a two-dimensional section of
the set of density matrices is shown. One should note that
there will be solutions to the equation det �=0 also outside
the set of density matrices. The boundary of the set of den-
sity matrices can be identified as the closed surface, defined
by det �=0, that encloses the maximally mixed state and is
closest to this point.

C. More general transformations

We shall later make use of the complex extension of the
transformations �10� by allowing 	a to be complex. This
means that the transformation group is extended from SU�n�
to SL�n ,C� �the normalization condition det U=1, or 	0=0,
is trivial�. Transformations of the form �̃=V�V† do not re-
spect the trace condition Tr �=1 if V is nonunitary, but they
do respect the positivity condition because they are still vec-

tor transformations of the form �12�, with ��̃k�=V ��k�. This
means that they leave the sector of non-normalized density
matrices invariant. They no longer keep the entropy un-
changed, however. Thus the larger group SL�n ,C� connects a
larger set of density matrices than the restricted group SU�n�.

One further generalization is possible. In fact, even if we

FIG. 2. Geometric representation of the diagonal density matri-
ces for the three cases of Hilbert space dimension 2, 3, and 4. For
general dimension n they define a hyperpyramid of dimension n
−1.
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allow V to be antilinear, the transformation �̃=V�V† still

preserves positivity because Eq. �12� still holds with ��̃k�
=V ��k�. This point needs some elaboration.

An operator V is antilinear if

V�a��� + b���� = a*V��� + b*V��� �14�

for any vectors ���, ��� and complex numbers a, b. Let 	�i�

be a set of orthonormal basis vectors, let �i= �i ���, and write
�V�� for the vector V ���. Then

�V�� = V�
i

�i�i� = �
i,j

Vji�i
*�j� �15�

with Vji= �j�V � i�. The Hermitian conjugate V† is defined in a
basis independent way by the identity

���V†�� � ���V�� = �
i,j

� j
*Vji�i

* �16�

or equivalently,

�V†�� = V†��� = �
i,j

� j
*Vji�i� . �17�

By definition, V is antiunitary if V†=V−1.
Familiar relations valid for linear operators are not always

valid for antilinear operators. For example, when V is anti-
linear and �V��=V ���, it is no longer true that �V��= ���V†.
This relation cannot hold, simply because �V�� is a linear
functional on the Hilbert space, whereas ���V† is an antilin-
ear functional. What is nevertheless true is that V ������V†

= �V���V��. In fact, both of these operators are linear, and
they act on the vector ���=� j� j � j� as follows:

V������V†��� = V��
i,j

� j
*Vji�i

*���
= �

i,j
�iVji

* � jV���

= �V���V���� . �18�

As a consequence of this identity the form �12� is valid for
the antiunitary transformations, and the positivity is thus pre-
served.

The transposition of matrices, �→�T, obviously preserves
positivity, since it preserves the set of eigenvalues. This is
not an SU�n� transformation of the form �11�, as one can
easily check. However, transposition of a Hermitian matrix is
the same as complex conjugation of the matrix, and if we
introduce the complex conjugation operator K, which is an-
tilinear and antiunitary, we may write

�T = K�K†. �19�

Note that transposition is a basis dependent operation. The
complex conjugation operator K is also basis dependent, it is
defined to be antilinear and to leave the basis vectors invari-
ant, K � i�= �i�. We see that K†=K=K−1.

One may ask the general question, which are the transfor-
mations that preserve positivity of Hermitian matrices. If we
consider an invertible linear transformation on the real vector
space of matrices, then it has to be a one-to-one mapping of

the extremal points of the convex set of positive matrices
onto the extremal points. In other words, it is a one-to-one
mapping of one-dimensional projections onto one-
dimensional projections. In yet other words, it is an invert-
ible vector transformation ���→V ���, defined up to a phase
factor, or more generally an arbitrary nonzero complex fac-
tor, for each pure state ���. One can show that these complex
factors can be chosen in such a way that V becomes either
linear or antilinear, and that the matrix transformation is �
→V�V†. However, we will not go into details about this
point here.

D. Geometry and separability

We consider next a composite system with two sub-
systems A and B, of dimensions nA and nB, respectively. By
definition, the separable states of the system are described
by density matrices that can be written in the form

� = �
k

pk�k
A

� �k
B, �20�

where �k
A and �k

B are density matrices of the two subsystems
and pk is a probability distribution over the set of product
density matrices labeled by k. The separable states form a
convex subset of the set of all density matrices of the com-
posite system, with the pure product states ������, where
���= ��� � �
�, as extremal points. Our interest is to study the
geometry of this set, and thereby the geometry of the set of
entangled states, defined as the complement of the set of
separable states within the full set of density matrices.

The Peres criterion �4� gives a necessary condition for a
density matrix to be separable. Let us introduce orthonormal
basis vectors �i�A in HA and �j�B in HB, as well as the product
vectors

�ij� = �i�A � �j�B. �21�

We write the matrix elements of the density matrix � as

�ij;kl = �ij���kl� . �22�

The partial transposition with respect to the B system is de-
fined as the transformation

� → �P: �ij;kl
P � �il;kj . �23�

This operation preserves the trace, but not necessarily the
positivity of �. However, for separable states one can see
from the expansion �20� that it preserves positivity, because
it is just a transposition of the density matrices �k

B of the
subsystem B.

Thus the Peres criterion states that preservation of posi-
tivity under a partial transposition is a necessary condition
for a density matrix � to be separable. Conversely, if the
partial transpose �P is not positive definite, it follows that �
is nonseparable or entangled. The opposite is not true: if �P

is positive, the density matrix � is not necessarily separable.
It should be emphasized that the Peres condition, i.e.,

positivity of both � and �P, is independent of the choice of
basis vectors �i�A and �j�B. In fact, a change of basis may
result in another definition of the partial transpose �P, which
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differs from the first one by a unitary transformation, but this
does not change the eigenvalue spectrum of �P. The condi-
tion is also the same if transposition is defined with respect
to subsystem A rather than B. This is obvious, since partial
transposition with respect to the A subsystem is just the com-
bined transformation �→ ��T�P.

Let us consider the Peres condition from a geometrical
point of view. We first consider the transposition of matrices,
�→�T, and note that it leaves the Hilbert–Schmidt metric
invariant. Being its own inverse, transposition is an inversion
in the space of density matrices, or a rotation if the number
of inverted directions, n�n−1� /2 in an n�n Hermitian ma-
trix, is even. Since � and �T have the same set of eigenval-
ues, transposition preserves positivity and maps the set of
density matrices onto itself. Thus the set of density matrices
D is invariant under transposition as well as under unitary
transformations.

Similarly, a partial transposition �→�P preserves the met-
ric and therefore also corresponds to an inversion or rotation
in the space of matrices. On the other hand, it does not pre-
serve the eigenvalues and therefore in general does not pre-
serve positivity. This means that the set of density matrices,
D, is not invariant under partial transposition, but is mapped
into an inverted or rotated copy DP. These two sets will
partly overlap, in particular, they will overlap in a neighbor-
hood around the maximally mixed state, since this particular
state is invariant under partial transposition. We note that,
even though partial transposition is basis dependent, the set
of transposed matrices DP does not depend on the chosen
basis. Nor does it depend on whether partial transposition is
defined with respect to subsystem A or B.

To sum up the situation, we consider the following three
convex sets. D is the full set of density matrices of the com-
posite system, while P=D�DP is the subset of density ma-
trices that satisfy the Peres condition, and S is the set of
separable density matrices. In general we then have the fol-
lowing inclusions:

S � P � D . �24�

The Peres criterion is useful thanks to the remarkable fact
that partial transposition does not preserve positivity. This
fact is indeed remarkable for the following reason. We have
seen that any linear or antilinear vector transformation ���
→V ��� will preserve the positivity of Hermitian matrices by
the transformation �→V�V†. It would seem that V= IA � KB,
a complex conjugation on subsystem B, would be a vector
transformation such that �P=V�V†, and hence that partial
transposition would preserve positivity. What is wrong with
this argument is that there exists no such operator as IA
� KB. To see why, choose a complex number c with �c � =1,
and consider the transformation of a product vector ���
= ��� � �
�,

�IA � KB���� = �IA � KB���c���� � �c*�
���

= c2���� � �K�
��� . �25�

The arbitrary phase factor c2 invalidates the attempted defi-
nition.

The boundary of the congruent �or reflected� image DP of
D is determined by the condition det �P=0 in the same way
as the boundary of the set of density matrices D is deter-
mined by det �=0. As a consequence, to determine whether a
density matrix � belongs to the set P is not a hard problem.
One simply checks whether the determinants of �̂ and �̂P are
both positive for every �̂ on the line segment between � and
the maximally mixed state �0. However, to check whether a
density matrix is separable and thus belongs to the subset S
is in general not easy, even though the definition �20� of
separability has a simple form. The exceptional cases are the
systems of Hilbert space dimensions 2�2, 2�3, or 3�2,
where S=P.

E. Schmidt decomposition and transformation
to a standard form

A general density matrix of the composite system can be
expanded as

� = �
a=0

nA
2−1

�
b=0

nB
2−1

�abJa
A

� Jb
B, �26�

where the coefficients �ab are real, and Ja
A and Jb

B are ortho-
normal basis vectors of the two subsystems. We may use our
convention that J0

A= IA /�nA and J0
B= IB /�nB, and that Jk

A and
Jk

B with k�0 are generators of SU�nA� and SU�nB�.
A Schmidt decomposition is a diagonalization of the

above expansion. By a suitable choice of basis vectors Ĵa
A and

Ĵb
B, depending on �, we may always write

� = �
a=0

nA
2−1

�̂aĴa
A

� Ĵa
B �27�

assuming that nA�nB. There exist many different such diag-
onal representations of a given �, in fact it is possible to
impose various extra conditions on the new basis vectors. It
is usual to impose an orthonormality condition, that the new
basis vectors should be orthonormal with respect to some
positive definite scalar product. Then the Schmidt decompo-
sition of � is the same as the singular value decomposition
�17� of the nA

2 �nB
2 matrix �ab. Below, we will introduce a

Schmidt decomposition based on other types of extra condi-
tions.

The usefulness of the representation �27� is limited by the
fact that we expand in basis vectors depending on �. How-
ever, we may make a transformation of the form

� → �̃ = V�V† �28�

where V=VA � VB is composed of transformations VA
�SL�nA ,C� and VB�SL�nB ,C� that act independently on the

two subsystems and transform the basis vectors Ĵa
A and Ĵb

B

into VAĴa
AVA

† and VBĴb
BVB

† . A transformation of this form ob-
viously preserves the set S of separable states, since a sum of
the form �20� is transformed into a sum of the same form. It
also preserves the set P of density matrices satisfying the
Peres condition. In fact, it preserves the positivity not only of
�, but also of the partial transpose �P, since

GEOMETRICAL ASPECTS OF ENTANGLEMENT PHYSICAL REVIEW A 74, 012313 �2006�

012313-5



��̃�P = �VA � VB
*��P�VA � VB

*�†. �29�

Here VB
* is the complex conjugate of VB. What is not pre-

served by the transformation is the trace, but this can easily
be corrected by introducing a normalization factor. Such
transformations have been considered, e.g., by Cen et al.
�18� and by Osterloh and Siewert �19� in the case of pure
states.

As we will later show, it is possible to choose the trans-
formation V=VA � VB in such a way that the transformed and
normalized density matrix �̃ can be brought into the special
form

�̃ =
1

nAnB
�I + �

k=1

nA
2−1

�̃kJ̃k
A

� J̃k
B , �30�

with J̃k
A and J̃k

B as new sets of traceless orthonormal basis
vectors. We have some freedom in choosing VA and VB be-
cause the form �30� is preserved by unitary transformations
of the form U=UA � UB.

In the case nA=nB=2 we may choose VA and VB so that J̃k
A

and J̃k
B are fixed sets of basis vectors, independent of the

density matrix �. In particular, we may use the standard Pauli
matrices as basis vectors. In this way we define a special
form of the density matrices �̃, which we refer to as the
standard form. Any density matrix can be brought into this
form by a transformation that preserves separability and the
Peres condition. All matrices of the resulting standard form
commute and can be simultaneously diagonalized. This
makes it easy to prove the equality S=P, and thereby solve
the separability problem. Although this result is well-known,
the proof given here is simpler than the original proof.

The decomposition �30� is generally valid, but when ei-
ther nA, nB, or both are larger than 2, it is impossible to

choose both J̃k
A and J̃k

B to be independent of �. Simply by
counting the number of parameters one easily demonstrates
that this cannot be done in higher dimensions. Thus the prod-
uct transformations VA � VB are specified by 2nA

2 +2nB
2 −4 pa-

rameters, while the number of parameters in Eq. �30� is nA
2

−1, when the generators J̃k
A and J̃k

B are fixed. This gives a
total number of parameters 3nA

2 +2nB
2 −5, when nA�nB, com-

pared to the number of parameters of the general density
matrix, which is nA

2nB
2 −1. Only for nA=nB=2 do these num-

bers match.
The mismatch in the number of parameters shows that the

independent transformations VA and VB performed on the
two subsystems are less efficient in simplifying the form of
the density matrices in higher dimensions. In particular, it is
impossible to transform all density matrices to a standard
form of commuting matrices. Thus the question of separabil-
ity is no longer trivially solved. Nevertheless, we consider
the Schmidt decomposition to be interesting and important, if
only because the number of dimensions in the problem is
reduced. We expect this to be useful, even if, at the end,
separability can only be determined by numerical methods.

III. THE TWO-LEVEL SYSTEM

The density matrices of a two-level system describe the
states of a qubit and represent a simple, but important, spe-
cial case. It is well-known that the normalized density matri-
ces, expressed in terms of the Pauli matrices �
= ��1 ,�2 ,�3� as

� =
1

2
�I + r · �� , �31�

can geometrically be pictured as the interior of a three-
dimensional unit sphere, the Bloch sphere, with each point
identified by a vector r. The two-level case is special in that
the pure states form the complete surface �r � =1 of the set of
density matrices. The diagonal 2�2 matrices, in any chosen
basis, correspond to a line segment through the origin with
the two pure basis states as end points.

The two-level system is special also in the sense that the
Euclidean metric of the three dimensional space of density
matrices can be extended in a natural way to an indefinite
metric in four dimensions. The extension is analogous to the
extension from the three-dimensional Euclidean metric to the
four-dimensional Lorentz metric in special relativity. Since it
is useful for the discussion of entanglement in the two qubit
system, we shall briefly discuss it here.

We write the density matrix in relativistic notation as

� =
1

2
x�, �32�

where �0 is the identity matrix I. The trace normalization
condition is that Tr �=x0=1. We may relax this condition
and retain only the positivity condition on �, which means
that x0 is positive and dominates the vector part r of the
four-vector x, as expressed by the covariant condition

4 det � = �x0�2 − �r�2 = xx = g�xx� � 0. �33�

In other words, the four-vector x is restricted by the posi-
tivity condition to be either a timelike vector inside the for-
ward light cone, or a lightlike vector on the forward light
cone. The lightlike vectors correspond to pure states, and the
timelike vectors to mixed states. As already discussed, all
points on a given line through the origin represent the same
normalized density matrix �see Fig. 3�.

Positivity is conserved by matrix transformations of the
form

� → �̃ = V�V† =
1

2
L

� x��. �34�

If we restrict V to be linear �not antilinear�, invertible, and
normalized by det V=1, then it belongs to the group
SL�2,C�, and L is a continuous Lorentz transformation �con-
tinuous in the sense that it can be obtained as a product of
small transformations�. Thus preservation of positivity by the
SL�2,C� transformations corresponds to preservation of the
forward light cone by the continuous Lorentz transforma-
tions.
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In order to compare the indefinite Lorentz metric to the
Euclidean scalar product Tr�AB� introduced earlier, we intro-
duce the operation of space inversion,

� = �I,�� → �̄ � �I,− �� . �35�

It is obtained as a combination of matrix transposition, or
equivalently complex conjugation, which for the standard
Pauli matrices inverts the sign of �y =�2, and a rotation of �
about the y axis. Thus for a general Hermitian 2�2 matrix A
it acts as

A → Ā = RATR† �36�

where

R = �0 − 1

1 0
 . �37�

We may also write AT=KAK†, where K=K† is complex con-
jugation.

The Lorentz metric is now expressed by

Tr��̄��� = 2g� �38�

and the Lorentz invariant scalar product between two Her-
mitian matrices A=a� and B=b� is

Tr�ĀB� = 2ab. �39�

The invariance of the scalar product �38� can be seen directly
from the transformation properties under SL�2,C� transfor-
mations,

A → A� = VAV† Þ Ā → Ā� = V†−1ĀV−1. �40�

Thus A and Ā transform under contragredient representations
of SL�2,C�.

The Lorentz transformed Pauli matrices

�̃ = V�V† = L
� ��, V � SL�2,C� �41�

satisfy the same metric condition �38� as the standard Pauli
matrices �. Conversely, any set of matrices �̃ satisfying

relations of the form �38� are related to the Pauli matrices by
a Lorentz transformation, which need not, however, be re-
stricted to the continuous part of the Lorentz group, but may
include space inversion or time reversal, or both.

It is clear from the relativistic representation that any den-
sity matrix can be reached from the maximally mixed state
�0= I /2 by a transformation corresponding to a boost. The
Lorentz boosts generate from �0 a three-dimensional hyper-
bolic surface �a “mass shell”� where xx=1. This surface
will intersect any timelike line once and only once. Thus any
mixed state is obtained from �0 by a unique boost. However,
the pure states, corresponding to lightlike vectors, can only
be reached asymptotically, when the boost velocity ap-
proaches the speed of light, here set equal to 1. The form of
the SL�2,C� transformation corresponding to a pure boost is

V��� = exp�1

2
� · � , �42�

where the three-dimensional real vector � is the boost param-
eter, called rapidity. Since the boost matrices are Hermitian,
a density matrix defined by a boost of the maximally mixed
state will have the form

� = N���V���2 = N����cosh �I + sinh ��̂ · ��, �̂ =
�

�
,

�43�

where N��� is a normalization factor determined by the trace
normalization condition. The normalized density matrix is

� =
1

2
�I + tanh ��̂ · �� . �44�

Thus the boost parameter � gives a representation which
is an alternative to the Bloch sphere representation. The re-
lation between the parameters r and � is that

r = tanh ��̂ , �45�

which means that r can be identified as the velocity of the
boost, in the relativistic picture, with �r � =1 corresponding to
the speed of light. We note that the positivity condition gives
no restriction on �, and the extremal points, i.e., the pure
states, are points at infinity in the � variable.

IV. ENTANGLEMENT IN THE 2Ã2 SYSTEM

We consider now in some detail entanglement between
two two-level systems. We will show that with the use of
nonunitary transformations the density matrices can be writ-
ten in a standardized Schmidt decomposed form. In this form
the question of separability is easily determined and the
equality of the two sets P and S is readily demonstrated.

A. Schmidt decomposition by Lorentz transformations

We consider transformations V=VA � VB composed of
SL�2,C� transformations acting independently on the two
subsystems, and therefore respecting the product form �20�
of the separable matrices. We will show that by means of

FIG. 3. �Color online� A relativistic view of the density matrices
of a two-level system. The positive Hermitian matrices are repre-
sented by the forward light cone and a density matrix � by a time-
like or lightlike ray �red line�. The standard normalization Tr �
=x0=1 breaks relativistic invariance �green horizontal line�, but
may be replaced by the relativistically invariant normalization
det �=xx /4=1/4 �green hyperbola�.
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such transformations any density matrix of the composite
system can be transformed to the form

�̃ =
1

4
�I + �

k=1

3

dk�k � �k , �46�

which we refer to as the standard form. Note that the real
coefficients dk must be allowed to take both positive and
negative values.

We start by writing a general density matrix in the form

� = c�� � ��. �47�

The transformation V=VA � VB produces independent Lor-
entz transformation LA and LB on the two subsystems,

� → �̃ = V�V† = c̃�� � �� �48�

with

c̃� = LA�
 LB�

� c��. �49�

The Schmidt decomposition consists in choosing LA and LB
in such a way that c̃� becomes diagonal. We will show that
this is always possible when � is strictly positive.

Note that the standard Schmidt decomposition, also called
the singular value decomposition, involves a compact group
of rotations, leaving invariant a positive definite scalar prod-
uct. The present case is different because it involves a non-
compact group of Lorentz-transformations, leaving invariant
an indefinite scalar product.

The positivity condition on � plays an essential part in the
proof. It states that

������� � 0, �50�

where ��� is an arbitrary state vector. Let us consider a den-
sity matrix � which is strictly positive so that Eq. �50� is
satisfied with � and not only with �, and let us restrict ���
to be of product form, ���= ��� � �
�. With � expressed by
Eq. �47�, the positivity condition then implies

c�mn� � 0 �51�

with

m = �������, n� = �
����
� . �52�

These two four-vectors are on the forward light cone, in fact,
it is easy to show that

mm = nn = 0, m0 = n0 = 1. �53�

We note that by varying the state vectors ��� and �
� all
directions on the light cone can be reached. The inequality
�51� holds for forward timelike vectors as well, because any
such vector may be written as a linear combination of two
forward lightlike vectors, with positive coefficients. We may
actually write a stronger inequality

c�mn� � C � 0 �54�

valid for all timelike or lightlike vectors m and n with m0
=n0=1. In fact, this inequality holds because the set of such
pairs of four-vectors �m ,n� is compact.

Now define the function

f�m,n� =
c�mn�

�m�m�n�n�

. �55�

It is constant for m and n lying on two fixed, one-
dimensional rays inside the forward light cone. It goes to
infinity when either m or n becomes lightlike, because

f�m,n� �
Cm0n0

�m�m�n�n�

. �56�

Using again a compactness argument, we conclude that there
exist four-vectors m̄ and n̄ such that f�m̄ , n̄� is minimal. We
may now choose the Lorentz transformations LA and LB such
that

LA
0 = m̄, LB

0 = n̄ �57�

assuming the normalization conditions m̄m̄= n̄n̄=1. This
defines LA and LB uniquely up to arbitrary three-dimensional
rotations. Define

f̃�m,n� =
c̃�mn�

�m�m�n�n�

. �58�

Since f̃�m ,n�= f�m̃ , ñ�, with m̃=LA
� m� and ñ=LB

� n�, it

follows that f̃�m ,n� has a minimum at m=n= �1,0 ,0 ,0�. The
condition for an extremum at m=n= �1,0 ,0 ,0� is that c̃0k

= c̃k0=0 for k=1,2 ,3, so that

�̃ = c̃00I + �
k=1

3

�
l=1

3

c̃kl�k � �l. �59�

The coefficient c̃00 is the minimum value of f�m ,n�, and
hence positive.

The last term of Eq. �59� can be diagonalized by a stan-
dard Schmidt decomposition, and by a further normalization
�̃ can be brought into the form �30�. Finally, a unitary trans-
formation �̃→U�̃U† of the product form U=UA � UB may
be performed, where the unitary matrices UA and UB may be

chosen so that UAJ̃k
AUA

† = ±�k and UBJ̃k
BUB

† = ±�k. This is al-
ways possible because SU�2� transformations generate the
full three-dimensional rotation group, excluding inversions.
In this way we obtain the standard form �46�.

Note that the standard form �46� of a given density matrix
� is not unique because there exists a discrete subgroup of 24
unitary transformations that transform one matrix of this
form into other matrices of the same form. This group in-
cludes all permutations of the three basis vectors �k � �k, as
well as simultaneous reversals of any two of the basis vec-
tors. It is the full symmetry group of a regular tetrahedron. If
we want to make the standard form unique we may, for ex-
ample, impose the conditions d1�d2� �d3�, allowing both
positive and negative values of d3.

B. Density matrices in the standard form

The density matrices of the standard form �46� define a
convex subset of lower dimension than the full set of density
matrices. It is a three-dimensional section of the 15-
dimensional set of density matrices, consisting of commuting
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�simultaneously diagonalizable� matrices. The eigenvalues,
as functions of the parameters dk of Eq. �46�, are

�1,2 =
1

4
�1 ± �d1 − d2� + d3�, �3,4 =

1

4
�1 ± �d1 + d2� − d3� .

�60�

The pure states �with eigenvalues 1 ,0 ,0 ,0� that are the ex-
tremal points of the convex set of commuting matrices are
specified by the conditions

�d1� = �d2� = �d3� = 1, d1d2d3 = − 1. �61�

There are four such states, corresponding to the four corners
of the tetrahedron of diagonal density matrices, and these are
readily identified as four orthogonal Bell states �maximally
entangled pure states�.

We now consider the action of the partial transposition on
the tetrahedron of diagonal density matrices. It preserves the
standard form and transforms the coefficients as d1→d1 ,d2
→−d2 ,d3→d3. Thus it produces a mirror image of the tet-
rahedron, by a reflection in the d2 direction �see Fig. 4�. The
density matrices of standard form belonging to the set P, i.e.,
satisfying the Peres condition that they remain positive after
the partial transposition, form an octahedron which is the
intersection of the two tetrahedra.

We will now show that for the density matrices of stan-
dard form the Peres condition is both necessary and suffi-
cient for separability. What we have to show is that all the
density matrices of the octahedron are separable. Since, in
general, the separable matrices form a convex set, it is suf-
ficient to show that the corners of the octahedron correspond
to separable states.

The density matrices of the octahedron satisfy a single
inequality

�d1� + �d2� + �d3� � 1 �62�

and its six corners are �d1 ,d2 ,d3�
= �±1,0 ,0� , �0, ±1,0� , �0,0 , ±1�, corresponding to the mid-

points of the six edges of each of the two tetrahedra. The
corners are separable by the identities

1

4
�I ± �k � �k� =

1

8
��I + �k� � �I ± �k� + �I − �k� � �I � �k�� .

�63�

This completes our proof that the Peres condition is both
necessary and sufficient for separability of density matrices
on the standard form. Furthermore, since any �nonsingular�
density matrix can be obtained from a density matrix of stan-
dard form by a transformation that preserves both separabil-
ity and the Peres condition, this reproduces the known result
that for the 2�2 system the set of density matrices that
remain positive after a partial transposition is identical to the
set of separable density matrices.

With this we conclude the discussion of the two-qubit
system. The main point has been to show the usefulness of
applying the nonunitary Lorentz transformations in the dis-
cussion of separability. Also in higher dimensions such trans-
formations can be applied in the form of SL�n ,C� transfor-
mations, although not in precisely the same form as with
two-level systems.

V. HIGHER DIMENSIONS

The relativistic formulation is specific for the two-level
system, but some elements can be generalized to higher di-
mensions. We consider first a single system with Hilbert
space dimension n. Again, if the trace condition is relaxed,
the symmetry group SU�n� of the set of density matrices is
extended to SL�n ,C�. The Hilbert–Schmidt metric is not in-
variant under this larger group, but the determinant is invari-
ant for any n. However, it is only for n=2 that the determi-
nant is quadratic and can be interpreted as defining an
invariant indefinite metric.

The generalization to n�2 of the Lorentz boosts are the
Hermitian matrices

V = V†, det V = 1 �64�

and expressed in terms of the SU�n� generators J they have
the form

V = exp�� · J� �65�

with real group parameters �. Here J and � are n2−1 dimen-
sional vectors. Any strictly positive density matrix � �with
det ��0� can be factorized in terms of Hermitian matrices
�65� as

� = NV2 = N exp�2� · J� �66�

with the normalization factor

N =
1

Tr exp�2� · J�
= �det ��1/n. �67�

Thus in the same way as for n=2, any strictly positive den-
sity matrix can be generated from the maximally mixed state
by an SL�n ,C� transformation of the form �65�. The bound-
ary matrices, however, which satisfy det �=0, cannot be ex-

FIG. 4. �Color online� Geometric representation of the diagonal
matrices spanned by orthogonal Bell states of the 2�2 system. The
density matrices form a tetrahedron �green, its edges are diagonals
of the faces of a cube� while the matrices obtained from this by a
partial transposition define a mirror image �blue, its edges are the
opposite diagonals�. The separable states are defined by the inter-
section between the two tetrahedra and form an octahedron �in the
center�.
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pressed in this way, they can be reached by Hermitian trans-
formations only asymptotically, as �� � →�. In this limit N
→0, and therefore Tr V2→� for the non-normalized density
matrix V2.

Schmidt decomposition

We now consider a composite system, consisting of two
subsystems of dimension nA and nB, and assume � to be a
strictly positive density matrix on the Hilbert space H=HA
� HB of the composite system. The general expansion of � in
terms of the SU�n� generators is given by Eq. �26�. Our
objective is to show that by a transformation of the form
�28�, with VA�SL�nA ,C� and VB�SL�nB ,C�, followed by
normalization, the density matrix can be transformed to the
simpler form �30�.

Let DA and DB be the sets of density matrices of the two
subsystems A and B. The Cartesian product DA�DB, con-
sisting of all product density matrices �A � �B with normal-
ization Tr �A=Tr �B=1, is a compact set of matrices on the
full Hilbert space H. For the given density matrix � we de-
fine the following function of �A and �B, which does not
depend on the normalizations of �A and �B,

f��A,�B� =
Tr����A � �B��

�det �A�1/nA�det �B�1/nB
. �68�

This function is well-defined on the interior of DA�DB,
where det �A�0 and det �B�0. Because � is assumed to be
strictly positive, we have the strict inequality

Tr����A � �B�� � 0 �69�

and since DA�DB is compact, we have an even stronger
inequality on DA�DB,

Tr����A � �B�� � C � 0 �70�

with a lower bound C depending on �. It follows that f
→� on the boundary of DA�DB, where either det �A=0 or
det �B=0. It follows further that f has a positive minimum on
the interior of DA�DB, with the minimum value attained for
at least one product density matrix �A � �B with det �A�0
and det �B�0. For �A and �B we may use the representation
�66�, written as

�A = TA
†TA, �B = TB

†TB �71�

ignoring normalization factors. The matrices TA�SL�nA ,C�
and TB�SL�nB ,C� may be chosen to be Hermitian, but they
need not be, since they may be multiplied from the left by
arbitrary unitary matrices. We further write T=TA � TB, so
that

�A � �B = T†T . �72�

Now define a transformed density matrix

�̃ = T�T† �73�

and define

f̃��A,�B� =
Tr��̃��A � �B��

�det �A�1/nA�det �B�1/nB
= f�TA

†�ATA,TB
†�BTB� .

�74�

This transformed function f̃ has a minimum for

�A � �B = �T†�−1�A � �BT−1 = IA � IB = I . �75�

Since f̃ is stationary under infinitesimal variations about the
minimum, it follows that

Tr��̃���A � �B�� = 0 �76�

for all infinitesimal variations

���A � �B� = ��A � IB + IA � ��B �77�

subject to the constraints det�IA+��A�=det�IB+��B�=1, or
equivalently,

Tr���A� = Tr���B� = 0. �78�

The variations satisfying the constraints are the general linear
combinations of the SU generators,

��A = �
i

�ci
AJi

A, ��B = �
j

�cj
BJj

B. �79�

It follows that

Tr��̃Ji
A

� IB� = Tr��̃IA � Jj
B� = 0 �80�

for all SU�nA� generators Ji
A and all SU�nB� generators Jj

B.
This means that the terms proportional to Ji

A
� IB and IA

� Jj
B vanish in the expansion for �̃, which therefore has the

form

�̃ =
1

nAnB
�I + �

k=1

nA
2−1

�
l=1

nB
2−1

�klJk
A

� Jl
B . �81�

In order to write �̃ in the Schmidt decomposed form �30�, we
have to make a change of basis, from the fixed basis sets Ji

A

and Jj
B to other orthonormal SU generators J̃i

A and J̃j
B depend-

ing on �̃. This final Schmidt decomposition involves a stan-
dard singular value decomposition of the matrix �kl by or-
thogonal transformations. We may make further unitary
transformations U=UA � UB, but as already pointed out, this
is in general not sufficient to obtain a standard form indepen-
dent of �.

VI. NUMERICAL APPROACH TO THE STUDY
OF SEPARABILITY

In higher dimensions the Peres condition is not sufficient
to identify the separable states. In other words, there exist
entangled states that remain positive after a partial transpo-
sition. This is known not only from general theoretical con-
siderations �5�, but also from explicit examples �15�. States
of this type have been referred to as having bound entangle-
ment. However, whereas it is a fairly simple task to check the
Peres condition, it is in general difficult to identify the sepa-
rable states �6�.
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In this section we discuss a general numerical method for
identifying separability, previously introduced in �14�. It is
based on an iterative scheme for calculating the closest sepa-
rable state and the distance to it, given an arbitrary density
matrix �test state�. The method can be used to test single
density matrices for separability or to make a systematic
search to identify the boundary of the set of separable den-
sity matrices. After giving an outline of the method we show
how to apply the method in a numerical study of bound
entanglement in a 3�3 system.

A. Outline of the method

Assume a test state � has been chosen. This may typically
be close to the boundary of the set of states that satisfy the
Peres condition. Let �s be a separable state, an approxima-
tion in the iterative scheme to the closest separable state. We
may start, for example, with �s= I /n, the maximally mixed
state, or with any pure product state. The direction from �s to
� is denoted �=�−�s. In order to improve the estimate �s we
look for a pure product state �p that maximizes the scalar
product

s = Tr���p − �s��� �82�

or equivalently, maximizes s�=Tr��p�� �see Fig. 5�. If s�0,
then it is possible to find a closer separable state �s� by mix-
ing in the product state �p. This search for closer separable
states is iterated, either until no pure product state �p can be
found such that s�0, which means that �s is already the
unique separable state closest to �, or until some other con-
vergence criterion is satisfied.

There are two separate mathematical subproblems that
have to be solved numerically in this scheme. The first prob-
lem is to find the pure product state maximizing the scalar
product s�. The second problem is the so-called quadratic
programming problem: given a finite number of pure product
states, to find the convex combination of these which is clos-
est to the given state �. Our approach to these two problems
is described briefly below. We refer to Ref. �14� for more
details.

To approach the first subproblem, note that a pure product
state �p has matrix elements of the form

�ij��p�kl� = �i
 j�k
*
l

*, �83�

where �i ��i�2=� j �
 j�2=1. We want to find complex coeffi-
cients �i and 
 j that maximize

s� = Tr��p�� = �
i,j,k,l

�i
*
 j

*�ij;kl�k
l. �84�

The following iteration scheme turns out in practice to be an
efficient numerical method. It may not necessarily give a
global maximum, but at least it gives a useful local maxi-
mum that may depend on a randomly chosen starting point.

The method is based on the observation that the maxi-
mum value of s� is actually the maximal eigenvalue  in the
two linked eigenvalue problems

�
k

Aik�k = �i, �
l

Bjl
l = 
 j , �85�

where

Aik = �
j,l


 j
*�ij;kl
l, Bjl = �

i,k
�i

*�ij;kl�k. �86�

Thus we may start with any arbitrary unit vector �
�
=� j
 j � j�B�HB and compute the Hermitian matrix A. We
compute the unit vector ���=�i�i � i�A�HA as an eigenvector
of A with maximal eigenvalue, and we use it to compute the
Hermitian matrix B. Next, we compute a new unit vector �
�
as an eigenvector of B with maximal eigenvalue, and we
iterate the whole procedure.

This iteration scheme is guaranteed to produce a nonde-
creasing sequence of function values s�, which must con-
verge to a maximum value . This is at least a local maxi-
mum, and there corresponds to it at least one product vector
��� � �
� and product density matrix �p= ������ � � � ��
��
 � �.

The above construction of �p implies, if s�0, that there
exist separable states

�s� = �1 − ���s + ��p �87�

with 0���1, closer to � than �s is. However, it turns out to
be very inefficient to search only along the line segment
from �s to �p for a better approximation to �. It is much more
efficient to append the new �p to a list of product states �pk
found in previous iterations, and then minimize

F = Tr�� − �
k

�k�pk2
�88�

which is a quadratic function of coefficients �k�0 with
�k�k=1. We solve this quadratic programming problem by
an adaptation of the conjugate gradient method, and we
throw away a given product matrix �pk if and only if the
corresponding coefficient �k becomes zero when F is mini-
mized. In practice, this means that we may construct alto-
gether several hundred or even several thousand product
states, but only a limited number of those, typically less than
100 in the cases we have studied, are actually included in the
final approximation �s.

FIG. 5. �Color online� Schematic illustration of the method of
finding the separable state closest to a test matrix �. The matrix �s

represents the best approximation to the closest separable state at a
given iteration step, while �p is the product matrix that maximizes
the scalar product with the matrix �=�−�s. This matrix is used to
improve �s at the next iteration step. The shaded area S in the figure
illustrates a section through the set of separable density matrices.
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B. Bound entanglement in the 3Ã3 system

For the 3�3 system �composed of two three-level sys-
tems� there are explicit examples of entangled states that
remain positive under a partial transposition. This was first
discussed by Horodecki �15� and then an extended set of
states was found by Bruss and Peres �16�. We apply the
method outlined above to density matrices limited to a two-
dimensional planar section of the full set. The section is cho-
sen to contain one of the Horodecki states and a Bell state in
addition to the maximally mixed state, and the method is
used to identify the boundary of the separable states in this
two-dimensional plane.

Since the separable states S are contained in the set P of
states that remain positive under partial transposition, we
start the search for the boundary of S with a series of states
located at the boundary of P. This boundary is found by
solving the algebraic equations det �=0 and det �P=0. For
each chosen state we find the distance to the closest sepa-
rable state and change the test state � on a straight line be-
tween this point and the maximally mixed state, in a step of
length equal to the evaluated distance. In a small number of
steps the intersection of the straight line and the boundary of
the separable states is found within a small error, typically
chosen to be 10−6. �The distance from the maximally mixed
state to the pure states in this case is d=2/3.�

In Fig. 6 we show a plot of the results of the calculations.
The numerically determined points on the border of the set
of separable states S are indicated by black dots, while the
border of the set of states P that satisfy Peres’ condition,
determined by solving the algebraic equations, is shown as
lines which cross at the position of the Horodecki state. One
should note that the states with bound entanglement in the
corner of the set P cover a rather small area.

VII. CONCLUSIONS

To summarize, we have in this paper focused on some
basic questions concerning the geometry of separability. The
simplest case of 2�2 matrices has been used to demonstrate
the usefulness of relaxing the normalization requirement
Tr �=1. Thus if this condition is replaced by det �=1, a rela-
tivistic description with a Minkowski metric can be used,
where all �nonpure� states can be connected by Lorentz
transformations. For a composite system consisting of two
two-level systems, independent Lorentz transformations per-
formed on the two subsystems can be used to diagonalize an
arbitrary density matrix in a way that respects separability.
We have used this diagonalization to demonstrate the known
fact that the Peres condition and the separability condition
are equivalent in this case.

Although the diagonalization with Lorentz transforma-
tions is restricted to the composite 2�2 system, we have
shown that the generalized form of the Schmidt decomposi-
tion used in this diagonalization can be extended to higher

dimensions. The decomposition involves the use of nonuni-
tary SL�n ,C� transformations for the two subsystems. Al-
though a full diagonalization is not obtained in this way, we
suggest that the Schmidt decomposed form may be of inter-
est in the study of separability and bound entanglement.

A third part of the paper has been focused on the use of a
numerical method to study separability. This method exploits
the fact that the set of separable states is convex, and is based
on an iterative scheme to find the closest separable state for
arbitrary density matrices. We have demonstrated the use of
this method in a numerical study of bound entanglement in
the case of a 3�3 system. A further study of separability
with this method is under way.
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FIG. 6. �Color online� The boundary of the set of separable
states in a two-dimensional section, as determined numerically. S
denotes the set of separable states, B the states with bound entangle-
ment, and E the entangled states violating the Peres condition. The
straight line from lower left to upper right �in blue� is determined by
the algebraic equation det �=0 and gives the boundary of the full
set of density matrices. The two curves from upper left to lower
right �in red� are determined by the equation det �P=0, in particular,
the red straight line gives the boundary of the set of states that
satisfy the Peres condition. The black dots are the numerically de-
termined points on the boundary of the set of separable states. The
coordinate values in the plot are a factor of �2 too large according
to the definition of distance in the text.
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