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We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type
noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant
probability. We obtain the evolution equation for a quantum walker moving on two-dimensional �2D� lattices
subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric
case, when the probability of breaking links in one direction is different from the probability in the perpen-
dicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direc-
tion, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially
increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can
increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from
a decoherent 2D walk to a coherent 1D walk.
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I. INTRODUCTION

In a seminal paper, Aharanov, Davidovich, and Zagury �1�
introduced the discrete-time quantum walk model, which has
new features when compared to the classical random walk.
In particular, the quantum walk spreads quadratically faster
than the classical one. An alternative model was proposed by
Farhi and Gutmann �2�, which is called the continuous-time
quantum walk. Many authors have used these models to pro-
pose new quantum algorithms based on quantum walks �2,3�.

In this paper we focus our attention on quantum walks in
two-dimensional �2D� lattices. Reference �4� was one of the
first to analyze 2D quantum walks. The authors concluded
that the entanglement has a negative influence on the rate of
spread. Tregenna et al. �5� pointed out that this conclusion is
not true in general, because it depends on the initial condi-
tion. They analyzed the full range of possible coin initial
states of quantum walks starting at the origin and concluded
that there are ten types of nonequivalent coins. The Had-
amard, Fourier, and Grover coins are of different types, the
Grover coin being the one that produces the maximum
spreading rate.

Any attempt to implement quantum walks in some physi-
cal setting faces decoherence problems. It is crucial to under-
stand what kind of quantum walks are more resistant to de-
coherence. In Ref. �6� a careful analysis using nonunitary
quantum operations on 1D lattices, cycles, and hypercubes
was performed. Reference �4� briefly analyzed decoherence
effects on 2D lattices.

The decoherence produced by broken links in 1D lattices
was analyzed in Ref. �7�. Broken-link-type decoherence is a
unitary noise produced by random disruption of the links that
connect neighboring sites of the lattice. This kind of noise
may be relevant in implementations based on Ising spin-1 /2

chains in solid-state substrates �8�. In this paper we general-
ize the analysis of Ref. �7� and obtain the generic evolution
equation for lattices of any dimension that may be subject to
this broken-link-type decoherence. Such an equation is im-
portant when analyzing quantum walks subject to many
types of boundary conditions.

The main goal of the present work is to analyze the de-
coherence in quantum walks in 2D lattices. We stress that
some results obtained in this case cannot be obtained in the
1D quantum walk case. More precisely, it is known that
quantum coherence is disturbed by the influence of random
events, which are usually modeled by some nonunitary dis-
turbances, such as random measurements �6�, or unitary dis-
turbances, such as broken links �7�. These events are charac-
terized by a rate defined in terms of a probability parameter
p. The decoherence time varies as 1 / p, meaning that for
t�1/ p the classical behavior emerges. Equivalently, we can
say that if one increases p, the classical behavior emerges
sooner. In this paper we show that this general analysis does
not apply straightforwardly for nonsymmetric 2D walks. We
will show that when we consider the case in which the prob-
ability of breaking links in one direction is different from the
probability in the other direction, it is possible to increase the
correlation time through an increase of one of these prob-
abilities.

We have organized the paper as follows. In Sec. II we
review the effect of broken links on quantum walks in 1D
lattices. The main results of quantum walks in 2D lattices are
reviewed in Sec. III. In Sec. IV we derive the evolution
equation for 2D quantum walks with broken links. In Sec. V
we present a detailed numerical analysis of the decoherence
produced by broken links using Hadamard, Fourier, and
Grover coins, and in the last section we present our conclu-
sions.

II. BROKEN LINKS IN 1D QUANTUM WALKS

A coined quantum walk on an infinite line has a Hilbert
space H2 � H�, where H2 is the coin space and H� is the*Electronic address: portugal@lncc.br
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line position space. The coin consists of one qubit with basis
��j� , j� �0,1��. The basis for H� is ��m�, m integer�. The
generic state of the discrete quantum walker on the infinite
line is

���t�� = 	
j=0

1

	
m=−�

�

Aj;m�t��j��m� . �1�

The evolution operator for one step of the walk is U=S � �C
� I� where

C = 	
j,k=0

1

Cjk�j�
k� �2�

is the coin operator, I is the identity matrix, and S is the shift
operator given by

S�j��m� = �j��m + �− 1� j� . �3�

As seen from this last equation, if j=0 the walker moves one
step to the right and if j=1 the walker moves to the left,
leaving the coin state unchanged. Applying the evolution op-
erator on state �1� we obtain

Aj;m�t + 1� = 	
k=0

1

CjkAk;m−�− 1�j�t� . �4�

Let us now analyze the evolution of the quantum walker in
the case that, at time t, site m has one or both of the links
connecting it to its neighboring sites broken �7�. We define
the function

L�j ;m� = ��− 1� j if link to site m + �− 1� j is closed,

0 if link to site m + �− 1� j is open,
�

�5�

where j is either 0 or 1 for the link either to the right or left
of site m, respectively. Figure 1 displays all possible cases.
Note that if L�j ;m�=0 then L(1− j ;m+ �−1� j)=0.

To modify Eq. �4� in order to include the possibility of
broken links, we use the following argument. Suppose that
the link to the right of site m is broken, the argument being
similar in the other direction. The probability flux from site
m to site m+1 must then be diverted to site m. To calculate
this flux we focus our attention on site m+1 and calculate
A0;m+1�t+1� in terms of Aj;m�t� assuming that the link is not
broken. This result must be assigned to A1;m�t+1�. The for-
mula for A0;m�t+1� does not change. Therefore, site m �in-

stead of m+1� must appear in both sides of the equation for
A1;m�t+1�. Note also that there is a change in the line of the
coin operator because A1;m�t+1� uses the line j=0 of Cjk.
The argument does not apply to A1;m+1�t+1� because it re-
ceives the flux from site m+2 �see �7� for more details�. The
above argument shows that the indices j and m− �−1� j on the
right-hand side of Eq. �4� must be modified yielding

A1−j;m�t + 1� = 	
k=0

1

Cj+L�j;m�,kAk;m+L�j;m��t� . �6�

The authors of Ref. �7� have analyzed the effects that broken
links produce on the quantum walk on a line. They assumed
that links between neighboring sites are randomly broken
with probability p per unit of time, and concluded that the
evolution becomes decoherent after a characteristic time that
scales as 1 / p.

III. QUANTUM WALKS IN A 2D LATTICE

A coined quantum walk on an infinite two-dimensional
lattice has a Hilbert space H4 � H�, where H4 is the coin
space and H� is the lattice space. The coin consists of two
qubits with basis {�j ,k� , j ,k� �0,1�}. We consider that the
links are either along the main or along the secondary diago-
nals of the lattice. Thus, the basis for H� is ��m ,n� , m ,n
integers� such that m+n is even.

The generic state of the quantum walker is

���t�� = 	
j,k=0

1

	
m,n=−�

�

Aj,k;m,n�t��j,k��m,n� . �7�

The evolution operator for the one step of the walk is U=S
� �C � I�, where

C = 	
j,k=0

1

	
j�,k�=0

1

Cj,k;j�,k��j,k�
j�,k�� �8�

is the coin operator, I is the identity matrix, and S is the shift
operator given by

S�j,k��m,n� = �j,k��m + �− 1� j,n + �− 1�k� . �9�

The walker moves along the main diagonal if the value of the
coin is �0,0� or �1,1�; and along the secondary diagonal if the
value of the coin is �0,1� or �1,0�. Note that S does not en-
tangle the first qubit of the coin with direction n nor the
second qubit with direction m. Only the combined action of
the coin and shift operators can produce such entanglement.

Applying the evolution operator on state �7� we obtain

Aj,k;m,n�t + 1� = 	
j�,k�=0

1

Cj,k;j�,k�Aj�,k�;m−�− 1�j,n−�− 1�k�t� .

�10�

The probability distribution for the walker at position �m ,n�
at time t is

Pm,n�t� = 	
j,k=0

1

�Aj,k;m,n�t�� . �11�

FIG. 1. Possible cases of broken links at site m and the corre-
sponding values of L�j ;m�.
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Figure 2 shows the probability distribution for the Had-
amard coin �H4=H � H�, where H=1/2� 1

1
1

−1
�, i.e.,

H4 =
1

2�
1 1 1 1

1 − 1 1 − 1

1 1 − 1 − 1

1 − 1 − 1 1
� , �12�

after 100 steps, taking as initial state

���0�� =
1

2
��0� − i�1����0� + i�1���0,0� , �13�

which produces a symmetric walk. The Hadamard coin does
not entangle the coin qubits and the shift operator does not
entangle the two directions. The result is the Hadamard walk
in the 2D lattice.

Figure 3 shows the probability distribution for the Fourier
coin,

F4 =
1

2�
1 1 1 1

1 i − 1 − i

1 − 1 1 − 1

1 − i − 1 i
� , �14�

after 100 steps, taking the initial state

���0�� =
1

2��00� +
1 − i
2

�01� + �10� −
1 − i
2

�11���0,0� .

�15�

Note that the density plot reveals details that are hardly seen
in the 3D plot. The walk is symmetric in the following sense:
if we take any line passing through the origin, the distribu-
tion is the same in both directions. This is equivalent to
saying that the plot is invariant under a rotation of �. The
initial state �15� was chosen to guarantee a maximum of
spreading when the walk starts at the origin �5�. This is the
most interesting situation in decoherence analysis.

FIG. 2. The probability distribution of the Hadamard walk after
100 iterations using the initial state �13�.

FIG. 3. The probability distribution of the Fourier walk after
100 iterations using the initial state �15�.
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In Fig. 4 we show the probability distribution for the
Grover coin,

G4 =
1

2�
− 1 1 1 1

1 − 1 1 1

1 1 − 1 1

1 1 1 − 1
� , �16�

after 100 steps, taking the initial state

���0�� =
1

2
��0� − �1����0� − �1���0,0� . �17�

The density plot illustrates the remarkable properties of the
Grover coin for the initial state �17�. The walk is highly
symmetric, since it is apparently invariant under a rotation of
� /2. The walk is delocalized, having a rather empty central
region of about 1 /3 of the reachable radius which has an
almost zero probability distribution.

Other relevant references regarding 2D and higher-
dimensional quantum walks are �9,10�.

IV. BROKEN LINKS IN 2D QUANTUM WALKS

The argument used in Sec. II to derive the equation for the
evolution of the amplitudes �6� in the one-dimensional case
can be easily generalized to the case of two-dimensional
walks with broken links. Two functions are now required to
specify the broken links, one for each direction,

L1�j,k;m,n� = ��− 1� j if link to site m + �− 1� j ,

n + �− 1�k is closed,

0 if the link is open,
�

�18�

L2�j,k;m,n� = ��− 1�k if link to site m + �− 1� j ,

n + �− 1�k is closed,

0 if the link is open,
�

�19�

where j ,k� �0,1�. The equation that generalizes �10� is

A1−j,1−k;m,n�t + 1� = 	
j�,k�=0

1

Cj+L1�j,k;m,n�,k+L2�j,k;m,n�;j�,k�

�Aj�,k�;m+L1�j,k;m,n�,n+L2�j,k;m,n��t� .

�20�

We easily see that the above equation reduces to �10� if there
are no broken links. When implementing this equation, one
must impose that L1(1− j ,1−k ;m+ �−1� j ,n+ �−1�k)=0 if
L1�j ,k ;m ,n�=0, and similarly with link L2.

The evolution equation for quantum walks in
n-dimensional lattices is a generalization of Eqs. �18�–�20�.
In this case one needs to use n link functions defined analo-
gously to Eqs. �18� and �19�. Equation �20� must be modified
accordingly, adding each link function to its corresponding
index. With these equations in hand, it is possible not only to
analyze broken-link-type decoherences in n-dimensional lat-
tices, but also to analyze the decoherence-free walks in lat-
tices with reflecting boundary conditions. In fact, one can
choose a variety of lattice topologies by permanently break-
ing the relevant links.

V. RESULTS AND DISCUSSION

Now we analyze numerically the decoherence effects of
broken links in the 2D walk described in the previous sec-
tions. We give more attention to results that differ from those
known in the 1D case.

Figure 5�a� shows the decoherence effects in the Grover
walk when t�1/ p, where p is the probability of breaking the
links, in the case p=0.01, t=100. Both quantum and classical
behaviors are present, but the classical one starts to take over
from the quantum behavior. Compare to Fig. 4, for p=0,
which is delocalized at the origin. The standard deviation of
the probability distribution in Fig. 5�a� is still larger than in
the classical case. The situation changes dramatically when
t�1/ p, as illustrated in Fig. 5�b� for p=0.1 and t=100. In
this case the classical behavior is fully developed. It is easy

FIG. 4. The probability distribution of the Grover walk after 100
iterations using the initial state �17�.
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to show that the standard deviation grows, in this case, as t.
The study of the transition from the quantum to the clas-

sical behavior is made easier by plotting the evolution of the
standard deviation ���. Figure 6 shows � for the Grover walk
for many values of p in a log-log scale. The continuous lines
represent the quantum and classical standard deviations
when there are no broken links �p=0�. The quantum curve
for p=0 has inclination 1 for t�2. When p�0, all curves
have a similar behavior: they have a slope 1 for t� td, which
gradually decreases to 1/2 for t� td, where td is the decoher-
ence time, which is usually approximated by 1/ p, but which
we discuss below.

The decoherence time can be estimated in the following
way. For small values of the evolution time t, the number of
broken links inside the area accessible to the walker is still
small. This number increases with time, as the boundary of
the accessible region expands. As the Hadamard walk spans
an area 2t2 at time t, the cumulative number of broken links
after a time T is

	
t=0

T

2t2p =
1

3
T�T + 1��2T + 1�p .

It is natural to approximate td by the time at which the cu-
mulative number of broken links equals the total number of
links in the accessible area of the walker, which is 2T2. Then
we get td�3/ p, for p�1.

There are several novel results in the case of 2D walks
when compared to 1D quantum walks. First of all, while all
1D walks starting at the origin can be obtained from the
Hadamard walk �11–13�, 2D walks have many nonequivalent
coins. In fact, the standard deviations of the Hadamard, Fou-
rier, and Grover walks are different, when the walker starts at
the origin with initial states �13�, �15�, and �17�, respectively,
which give the maximum spreading rates for each case. We
still have, in all cases, �=	t, but the values of 	 vary from
coin to coin. Numerically we find, in the case p=0, 	H
=0.77, 	F=0.80, and 	G=0.85, respectively. We notice that
the Grover walk leads to the largest diffusion rate among all
the coins considered �5�.

The diffusion coefficient is defined by

D =
1

2
lim
t→�

��2

�t
. �21�

Figures 7�a� and 7�b� show that the coins have different sen-
sitivity to decoherence. When p=0, D=� since �2 has a

FIG. 5. Decoherence of the Grover walk at t=100 with initial
state �17�. �a� Probability distribution for p=0.01. The classical be-
havior starts to dominate over the quantum behavior at t�1/ p. �b�
Probability distribution for p=0.1. The classical behavior has
emerged since t�1/ p.

FIG. 6. Evolution of the standard deviation of the Grover walk
with broken links for an initial state �17�, in the cases p=0.01, 0.1,
0.25, and 0.5. The continuous lines are the quantum and classical
walks with no broken links.
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quadratic increase. When p�0, D is finite as, when t� td, �2

has a linear increase. The diffusion coefficient D measures
half of the inclination of the asymptotic line in a �2 vs t
log-log plot. From Fig. 7�b� we conclude that the Hadamard
coin leads to a quantum walk more resistant to decoherence
than the Grover coin, and also that the Grover coin is more
resistant than the Fourier. The difference between the Fourier
and Grover walkers with broken links is small when com-
pared to the Hadamard case. When p is very close to 1 the
coins are similar. This is because, in this case, the noise is so
intense that the diffusion rate is even below that for a clas-
sical random walk. Certainly this case has little, if any, prac-
tical interest. We remark that the preceding analysis uses the
initial states that produce the largest diffusion rate for each
coin, and not the same initial state for all cases.

From the plot of Fig. 7�a�, it is also possible to estimate
the noise level for which the diffusion rate of the walk equals

the classical diffusion rate with no broken links, i.e., D=1.
We found the approximate values pH=0.41 �Hadamard�, pF
=0.34 �Fourier�, and pG=0.25 �Grover�. For values of p
above pH , pG , pG, the frequency of broken links is so high
that the walker spreads more slowly than in a classical ran-
dom walk with no broken links. Note also that pH is very
close to the corresponding value for the 1D walk found in
Ref. �7�. This was expected since a 2D Hadamard walk cor-
responds to two independent 1D Hadamard walks. This
analysis does not mean that for p greater than the above
values, there are no quantum correlations. Such correlations
persist as long as t
 td for all values of p, although one
should also note that the decoherence time td becomes quite
small when p approaches 1.

Thus far we have described the decoherence produced by
broken links with equal probabilities for both directions. It
will be interesting to study the nonsymmetric case, that is,
when the probability of breaking links along parallels to the
main diagonal �p0� is different from the probability in the
perpendicular direction �p1�. One would expect that the de-
coherence always increases when either of the probability
parameters associated with broken links along the two diago-
nals increases. However, in the nonsymmetric case, a quite
remarkable situation takes place. Let us consider the diffu-
sion coefficient in the case where there are no broken links
along the main diagonal direction, p0=0, as a function of p1.
This is illustrated, for the three different coins considered, in
Fig. 8. We note that D has a minimum value for, approxi-
mately, p1=0.72 �Hadamard�, 0.47 �Fourier�, and 0.35
�Grover�, and thus it increases when p1 approaches 1. This
result should be compared to that of Fig. 7 for p0= p1, in
which case the diffusion coefficient goes to 0 as p0 and p1 go
simultaneously to 1.

FIG. 7. The diffusion coefficient D for quantum walkers moving
on a lattice with a broken link probability parameter p, as a function
of the coin operator employed. �a� D as function of p. �b� D as
function of �1− p� / p

FIG. 8. Diffusion coefficient as a function of p1 for p0=0 �no
broken links along parallels to the main diagonal�. The minimum
value of the diffusion coefficient �maximum decoherence� is ob-
tained, in all cases, for a value of p1
1. See text for additional
details.
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Figures 9 and 10 help understand what is physically tak-
ing place. The case when p0=0 and p1�1 is similar to a 1D
quantum walker that has a probability 1 /2 to move along the
main diagonal �in either direction� and 1/2 to keep still. This
walk is described by a shift operator of the form

S = �00�
00� � 	
m=−�

�

�m + 1�
m� + �01�
01�

� 	
m=−�

�

�m�
m� + �10�
10� � 	
m=−�

�

�m�
m� + �11�
11�

� 	
m=−�

�

�m − 1�
m� . �22�

This variation of the 1D quantum walker was studied in Ref.
�14�. The probability distribution for the walk using the shift
operator �22� and the Grover coin �16� is depicted in Fig. 11.

Note that the qualitative behavior of this walker is very simi-
lar to the one shown in the left panel of Fig. 9. Analyses
performed with Hadamard and Fourier coins have resulted in
similar matches.

For p1�0.35, the walker partially spreads along the sec-
ondary diagonal direction while losing coherence, as can be
observed in Fig. 10. The relation td�1/ p does not apply in
the nonsymmetric case since we have two probabilities to
consider. Figure 10 shows that the decoherence time along
the secondary diagonal is smaller than along the main diag-
onal. Correlations still persist along the main, but are com-
pletely lost along the secondary diagonal. As a first approxi-
mation, one could associate a decoherence time with each
direction: td

�0��1/ p0 and td
�1��1/ p1.

VI. CONCLUSIONS

We have analyzed the decoherence produced by randomly
breaking links in a 2D lattice. We have used the Hadamard,

FIG. 9. Nonsymmetric Grover walk for p0=0 and p1=0.99, at
time t=100, for the initial state �17�. The large value of p1 forces
the walker to stay very close to the main diagonal.

FIG. 10. Similar to Fig. 9 for p1=0.35. The walker partially
spreads more along the secondary diagonal, losing its coherence
faster than in the previous case.
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Fourier, and Grover coins, taking as initial condition the one
that leads to a maximum rate of spread. We have found that
the Hadamard walk is more resistant to this type of decoher-
ences than the Grover walk, which, in turn, is more resistant
than the Fourier walk. We have also obtained the evolution
equation for quantum walks in n-dimensional lattices with
broken links.

These extensions to higher-dimensional lattices open the
way for several studies. We have seen how the difference in
breaking probability along two orthogonal directions lead to
a transition first from a coherent 2D walk to a decoherent 2D
walk, and then to a coherent 1D one. Such studies may be
easily carried over to three dimensions.

The treatment presented in this work allows also the study
of the evolution of quantum walkers on lattice regions of

arbitrary shape, through the procedure of permanently break-
ing the appropriate links in order to define its boundary. A
possible application of this method is to study the transmis-
sion of quantum walkers through open billiards �15�, or in a
region where the corresponding classical motion would be
chaotic. Other applications that could be considered are the
problem of quantum percolation, and the propagation of the
walkers in inhomogeneous regions, such as the interface of
two regions with different conductivities. Work along these
lines is in progress.

ACKNOWLEDGMENTS

We thank G. Abal for useful discussions. This work was
funded by FAPERJ and CNPq.

�1� Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,
1687 �1993�.

�2� E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 �1998�.
�3� N. Shenvi, J. Kempe, and K. BirgittaWhaley, Phys. Rev. A 67,

052307 �2003�.
�4� T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C.

Sanders, J. Phys. A 35, 2745 �2002�.
�5� B. Tregenna, W. Flanagan, R. Maile, and V. Kendon, New J.

Phys. 5, 83.1 �2003�.
�6� V. Kendon and B. Tregenna, Phys. Rev. A 67, 042315 �2003�.
�7� A. Romanelli, R. Siri, G. Abal, A. Auyuanet, and R. Donan-

gelo, Physica A 347C, 137 �2005�.
�8� G. P. Berman, D. I. Kamenev, R. B. Kassman, C. Pineda, and

V. I. Tsifrinovich, Int. J. Quantum Inf. 1, 51 �2003�.
�9� N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A 69, 052323

�2004�.
�10� G. Grimmett, S. Janson, and P. F. Scudo, Phys. Rev. E 69,

026119 �2004�.
�11� A. Nayak and A. Vishwanath, e-print quant-ph/0010117.
�12� N. Konno, Quantum Inf. Process. 1, 345 �2002�.
�13� N. Konno, J. Supercomput. 57, 1179 �2005�.
�14� S. E. Venegas-Andraca, J. L. Ball, K. Burnett, and S. Bose,

New J. Phys. 7, 221 �2005�.
�15� K.-F. Berggren, A. F. Sadreev, and A. A. Starikov, Phys. Rev.

E 66, 016218 �2002�.

FIG. 11. Probability distribu-
tion of the 1D quantum walk
with shift operator �22� using
Grover coin and initial condition
�������0�, where �−�= ��0�
− �1�� /2.

OLIVEIRA, PORTUGAL, AND DONANGELO PHYSICAL REVIEW A 74, 012312 �2006�

012312-8


