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We show that general Einstein-Podolsky-Rosen-type �EPR-type� entanglement of continuous variables with
arbitrary eigenvalues for bosons can be yielded. For bosons of nonzero resting mass EPR-type entangled state
can be achieved by the use of atomic beam splitters in particles of a position eigenstate and n−1 momentum
eigenstates. For light field in which resting mass of the photon is zero, approximate EPR-type entanglement
can be experimentally generated when we apply optical beam splitters to one position-squeezed coherence state
and n−1 momentum-squeezed coherence states, this approximate version tends to perfect EPR entanglement in
the limit of infinite squeezing.
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I. INTRODUCTION

Quantum entanglement has been identified as a basic re-
source in achieving tasks of quantum communication and
quantum computation �1�. After the first experiments �2� on
quantum teleportation using two-mode squeezed states of
light �3,4� as well as those �5–7� dealing with entanglement
in atomic ensembles �8,9�, a significant amount of work has
been devoted to develop a quantum information theory of
continuous-variable �CV� systems �10�. Photons are consid-
ered to have possess abundant capacity to create various
types of entanglement including the discrete, the continuous
variable, and the combination of both. Various schemes of
producing CV multipartite entanglement using light field are
proposed recently �11–18�, in van Loock and Braunstein’s
method in Ref. �11�, Einstein-Podolsky-Rosen �EPR�-type
CV multipartite entanglement is generated from n squeezed
modes of the field and combined by appropriately balanced
beam splitters �BSs�. However, in their schemes they use
vacuum modes �momentum-squeezed vacuum modes and
position-squeezed vacuum modes� and generate CV multi-
partite entangled state which tends toward a Greenberger-
Horne-Zeilinger �GHZ� state in the limit of infinite squeez-
ing. This state is an eigenstate with total momentum zero and
relative positions xi−xj =0 �i , j=1,2 , . . . ,n�. In this paper, we
show that general EPR-type CV multipartite entanglement
can be yielded by the use of optical BSs and momentum-
squeezed arbitrary momentum eigenmodes and position-
squeezed arbitrary position eigenmode, this entangled state is
an eigenstate with total position �center-of-mass position� �
and relative momenta P1− Pi= pi�i=2,3 , . . . ,n�, the eigen-
values � and pi can be arbitrary real numbers. The approxi-
mate version of this state is experimentally attainable by the
use of momentum-squeezed coherence states and position-
squeezed coherence state and balanced optical BSs, it tends
toward the general perfect EPR-type entangled state in the
limit of infinite squeezing.

On the other hand, atomic BSs, the counterparts of optical
BSs, have been experimentally realized. Some of the BSs use
the momentum transfer, which occurs during a resonant
atom-laser interaction �19–23�, deviations of some 10 mil-
liradians angle have been achieved in the experiments.
Larger angles have been obtained with many-orders Bragg

diffraction or with very slow atoms �24–27�. Magnetic inter-
actions lead also to the realization of large angle BSs—for
example, by using a Y-shaped current carrying wire �28� or a
concave corrugated magnetic reflector �29�. These methods
reach to nonzero magnetic momentum atomic levels. In Ref.
�30�, a cold-atom BS using a far off-resonant atom-laser in-
teraction is reported, which reaches the millimeter range.
Such a BS is applicable to all atomic species and offers
broader flexibility. Moreover, BS for guided atoms has also
been designed by Cassettari et al. �31�, which enable robust
beam splitting and can be integrated into surface-mounted
atom optical devices at the mesoscopic scale. In this paper,
we show that EPR-type CV multipartite mass-related en-
tanglement for boson whose resting mass is nonzero can be
realized by the use of atomic BSs.

II. EPR-TYPE CV ENTANGLEMENT FOR BOSON
OF FINITE MASS

For boson of finite mass �the resting mass of particle is
nonzero�, let x̂c.m.=�i=1

n �ix̂i be n-partite’s center-of-mass
�c.m.� coordinates, where �i=mi /M is each particle’s re-
duced mass and M =�i=1

n mi is the total mass of n particles.
We see that it is permutable with mass-weighted relative mo-
menta, i.e., �p̂1 /�1− p̂j /� j , x̂c.m.�=0 �j=2,3 , . . . ,n�, where
p̂j is the momentum of particle j, so they have common
eigenstate. We find that in n-mode Fock space the common
eigenvector �� , p2 , . . . , pn� of operators x̂c.m. and p̂1 /�1
− p̂j /� j �j=2,3 , . . . ,n� with eigenvalues �, p2 , . . . , pn �real
numbers� reads
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where �=�i=1
n �i

2, �0¯0� is n-mode vacuum state.
Using the technique of integration within an ordered
product �IWOP� of operators �32� and the normal product
form of the n-mode vacuum state �0¯0��0¯0 �
¬exp�−�i=1

n âi
†âi�:, we can prove that the states �� , p2 , . . . , pn�

span a complete and orthogonal set, i.e.,
� . . .�−�

� d�dp2 . . .dpn �� , p2 , . . . , pn��� , p2 , . . . , pn � =1 and
�� , p2 , . . . , pn ��� , p2� , . . . , pn��=���−�����p2− p2��¯��pn− pn��.

By making Fourier integration of �� , p2 , . . . , pn� over d�
and the comparison with the expression of the momentum
eigenstate, we find the Schmidt decomposition of
�� , p2 , . . . , pn� can be expressed as follows:
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where ��1p�1, ��i�p− pi��i �i=2,3 , . . . ,n� are eigenstates of
momentum operators with eigenvalue �1p ,�i�p− pi�. Obvi-
ously, this is an EPR-type maximal entangled state of CVs.

Now we show that this state can be achieved for boson by
the use of atomic BSs. Applying the atomic BS operations

B̂n−1,n�	n−1�� ¯ � B̂2,3�	2�B̂1,2�	1� to a position eigenstate
�x�1 in particle 1 and n−1 momentum eigenstates �yj� j
�j=2,3 , . . . ,n�, in particles 2 through n yields the entangled
state
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where 	 j =sin−1 � j

��i=j
n �i

2 �j=1,2 , . . . ,n−1�, the operator

B̂j,k�	 j� which describes the operations of atomic BS on par-

ticles j and k reads B̂j,k�	 j�=exp� 	 j
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†e−i
��. The

relations between parameters � , p2 , . . . , pn and x ,y2 , . . . ,yn
obey identities
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Thus we obtain the EPR-type CV entanglement for boson of
nonzero mass by the use of atomic BSs, in the following, we
show that EPR-type CV entanglement for light can also be
obtained by using squeezed coherence states and balanced
optical BSs.

III. EPR-TYPE CV ENTANGLEMENT FOR LIGHT FIELD

For light field, the resting mass of photon is zero. A single
frequency mode of the electric field �for a single polariza-
tion� reads

Êk�r�,t� = E0�âke
i�k�·r�−�kt� + âk

†e−i�k�·r�−�kt�� , �5�

where E0 is a constant which contains all the dimensional
prefactors. We can rewrite the mode as

Êk�r�,t� = �2E0�x̂k cos��kt − k� · r�� + p̂k sin��kt − k� · r��� .

�6�

where the position and momentum operators x̂k= �1/�2��âk

+ âk
†�, p̂k= �1/�2i��âk− âk

†� are a conjugate pair of quadratures
which represent the in-phase and out-of-phase components
of the electric-field amplitude of the single mode k, respec-
tively. We note that, for n-mode system, the operators x̂
��i=1

n x̂i and p̂1− p̂j �j=2,3 , . . . ,n� are permutable with each
other, the common eigenvector ��p2p3 . . . pn� of them with
eigenvalues � , p2 , . . . , pn �real numbers� reads
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âi
† +

i�2

n

��
j=2

n

pj��
i=1

n

âi
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It also makes up a complete and orthogonal set. The Schmidt
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decomposition of ��p2p3 . . . pn� can be expressed as follows:
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where �p�1, �p− pi�i �i=2,3 , . . . ,n� are eigenstates of momen-
tum operators with eigenvalues p , p− pi.

From �8� we see that the state is an EPR-type CV maxi-
mal entangled state for light field.

We now investigate if this state can be realistically
achieved experimentally. Applying the optical BS operations

B̂n−1,n�	n−1�� ¯ � B̂2,3�	2�B̂1,2�	1� to a position eigenstate
in mode 1 and n−1 momentum eigenstates in modes 2
through n, i.e., applying them to �x�1 �y2�2¯ �yn�n, the outgo-
ing state reads
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Thus the entangled state ��p2¯pn� is generated from n
eigenmodes of positions and momentum and balanced opti-
cal BSs. Unfortunately, it is an unphysical and unnormaliz-
able state for light field, since the momentum wave function
for the state ��p2¯pn� is

�p1�,p2�, . . . ,pn�� = �pn�� ¯ �p2���p1���p2 ¯ pn�

=
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�where �pj�� is momentum eigenstate of mode j� which is �
function and is not square integrable. However, the approxi-
mate version of this state is achievable experimentally. Not-
ing that the position-squeezed coherence state reads �33�
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= sech1/2 r exp�−
���2

2
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where D��� is the displacement operator and S�r�
=exp� r

2 �a2−a†2�� is the position squeeze operator with
squeeze parameter r. Let �=x /�2, then

�x,r� = D�x/�2�S�r��0�

= sech1/2 r exp�− �tanh r + 1�
x2

4
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For infinite squeezing r→ � , tanh r→1, then
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which is just the position eigenstate with the eigenvalue x.
Similarly, the momentum-squeezed coherence state is
D���S��r� �0�, here D��� is the displacement operator and
S��r�=exp�− r

2 �a2−a†2�� is the momentum squeeze operator.
Let �= ip /�2, we have
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For infinite squeezing r→�, tanh r→1, then
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which is just the momentum eigenstate with the eigenvalue
p. Thus, applying the above “n beam splitter” to one
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position-squeezed coherence state with squeezing parameter
r1 and n−1 momentum-squeezed coherence states with
squeezing parameter r2 �er1 ��n−1�er2� yields the approxi-
mate version of the state ��p2¯pn�, this approximate state is
experimentally feasible with current technology. Perfect
EPR-type entangled state is achieved for infinite squeezing
in the position-squeezed mode r1→� and n−1 momentum-
squeezed modes r2→�.

As an example, we show an application of the above en-
tangled state in quantum teleportation. We now try to figure
out a protocal so that an unknown quantum state can be
teleported to the receiver. We take the approximate two-

mode EPR entangled state ��p2�12= B̂1,2� �
4

� �x ,r�1 � �p ,r�2
��=�2x, p2=�2p� as quantum channel. Let Alice and Bob
share modes 1 and 2 of ��p2�12, respectively. Supposing Al-
ice wants to teleport state ��3 to Bob, then the total initial
state is ��p2�12 � ��3. Alice makes a measurement with the
projection basis being ���p2��13 13���p2��, the projection yields

13���p2� ��p2�12 � ��3. Thus the state of mode 2 becomes

�Û ��2 in the limit of infinite squeezing, where � is a com-

plex number, unitary operator Û=e−iP̂2��+���eiX̂2�p2−p2��. Alice
then informs Bob of the measurement outcomes via the clas-
sical channel, after receiving the classical information, Bob

performs the unitary transformation Û−1. In this way Bob has
his mode in the state as the state to be teleported with the
fidelity F=1. For finite squeezing the state ��3 cannot be
teleported faithfully, the fidelity of the teleportation is similar
to the results in Ref. �11�.

IV. CONCLUDING REMARK

We have considered EPR-type entangled states of CV for
boson, these states whose eigenvalues are arbitrary are dif-
ferent from the multipartite EPR entangled states introduced
in Ref. �11�, the latter whose eigenvalues are zero is GHZ
state and is obtained by applying BSs to the zero-momentum
and zero-position eigenstates, its physical approximate ver-
sion is yielded from the squeezed vacuum modes. We show
that general EPR-type entanglement of CVs with arbitrary
eigenvalues for boson can be yielded by the use of BSs. For
nonzero resting mass boson, EPR-type entangled state can be
achieved by using atomic BSs in particles of one position
eigenstate and n−1 momentum eigenstates. For light field,
perfect EPR-type entangled state which is the common
eigenstate of total position x̂ ��i=1

n x̂i and relative momenta
p̂1− p̂j, �j=2,3 , . . . ,n� can be yielded by applying optical
BSs to eigenstates of position and momenta operators, how-
ever, it is unphysical. Fortunately the approximate version of
this state can be experimentally generated when we apply
optical BSs to one position-squeezed coherence state and n
−1 momentum-squeezed coherence states, it tends to perfect
EPR entanglement for infinite squeezing.
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