
Reversible quantum measurement with arbitrary spins

Hiroaki Terashima1,2 and Masahito Ueda1,2

1Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
2CREST, Japan Science and Technology Corporation (JST), Saitama 332-0012, Japan

�Received 27 June 2005; revised manuscript received 24 February 2006; published 17 July 2006�

We propose a physically reversible quantum measurement of an arbitrary spin-s system using a spin-j probe
via an Ising interaction. In the case of a spin-1 /2 system �s=1/2�, we explicitly construct a reversing mea-
surement and evaluate the degree of reversibility in terms of fidelity. The recovery of the measured state is
pronounced when the probe has a high spin �j�1/2�, because the fidelity changes drastically during the
reversible measurement and the reversing measurement. We also show that the reversing measurement scheme
for a spin-1 /2 system can serve as an experimentally feasible approximate reversing measurement for a
high-spin system �s�1/2�. If the interaction is sufficiently weak, the reversing measurement can recover a cat
state almost deterministically in spite of there being a large fidelity change.
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I. INTRODUCTION

Quantum measurements are widely believed to have in-
trinsic irreversibility, since they play different roles with re-
spect to the past and future of the measured system �1�. With
respect to the past, a quantum measurement verifies the pre-
dicted probabilities for possible outcomes. With respect to
the future, a measurement brings about a new quantum state
via nonunitary state reduction. However, as shown in Ref.
�2�, a quantum measurement is not necessarily irreversible. A
quantum measurement is said to be logically reversible �2,3�
if the premeasurement state can be calculated from the post-
measurement state and the outcome of the measurement.
This means that all the information about the premeasure-
ment state is preserved during the measurement. A quantum
measurement is said to be physically reversible �3,4� if the
premeasurement state can be recovered from the postmea-
surement state by means of a second measurement, referred
to as a reversing measurement, with a nonzero probability. In
this case, not only is the information about the system pre-
served during the measurement process, but the original state
can be restored by means of a physical process.

Some measurements are known to be logically reversible
�2,5,6�. Royer �6� proposed a physically reversible quantum
measurement of a spin-1 /2 system using a spin-1 /2 probe in
an attempt to completely determine the unknown quantum
state of a single system �see, however, erratum of Ref. �6��.
In the context of quantum computation �7�, the reversing
measurement has been discussed for reducing the qubit over-
head in quantum error correction �8� and for improving the
probability of successful nonunitary gate operation in a non-
unitary quantum circuit �9�. As an important step toward the
experimental realization of a reversible measurement, a pho-
todetection scheme that satisfies a necessary condition for
logical reversibility �“sensitivity to vacuum fluctuations”�
has recently been demonstrated �10� using a stimulated para-
metric down-conversion process.

In this paper, we propose a scheme for making a physi-
cally reversible quantum measurement that is experimentally
feasible in view of recent advances in experimental tech-
niques �11,12�. Our model consists of two arbitrary spin sys-
tems �a measured system and a probe system� interacting via
an Ising Hamiltonian. Since spin can describe diverse physi-

cal systems �e.g., the real spin of particles, collective two-
level systems, Cooper pairs, interferometers, and Josephson
junctions�, our model can be used to implement both physi-
cally reversible measurements and reversing measurements
in such diverse systems. We explicitly construct a reversing
measurement for our model, in which quantitative analysis is
performed in terms of fidelity �7�. When the probe system
has a high spin, the fidelity changes drastically in both the
reversible measurement and the reversing measurement. The
high-spin probe thus makes the recovery of the measured
state more pronounced than for the spin-1 /2 model, though
at the cost of decreasing the probability of successful recov-
ery.

To clarify what kind of irreversibility is at issue, we here
review a projective measurement �13�, which is often used to

describe measurement processes in quantum theory. Let Ô be
a measured observable, whose eigenstate with eigenvalue m

is denoted by �m�. The observable Ô can then be decomposed

as �mmP̂m, where P̂m is the projector �m��m�. From the com-

pleteness condition, the projectors 	P̂m
 satisfy

�
m

P̂m = Î , �1�

with Î being the identity operator. Suppose that the measured
system is initially in a state ���. The projective measurement

with respect to 	P̂m
 yields an outcome m with probability

pm = ���P̂m��� �2�

and then causes a state reduction of the measured system to

��m� =
1

�pm

P̂m��� . �3�

Clearly, the projective measurement is irreversible in the
sense that we cannot recover the premeasurement state ���
from the postmeasurement state ��m�, unless we a priori
know the former state. This is because the information about

the states orthogonal to P̂m is completely lost during the
measurement. One might think that any quantum measure-
ment has this type of irreversibility, since quantum measure-
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ment entails a nonunitary state reduction associated with
information readout. However, there exist quantum measure-
ments that are logically reversible in spite of nonunitary state
reduction �2,5,6�.

To formulate the conditions for logical reversibility, we
adopt a general formulation of quantum measurement �7,14�,
in which a quantum measurement is described by a set of

measurement operators 	M̂m
 that satisfies

�
m

M̂m
† M̂m = Î . �4�

If the measured system is in a state ���, the general measure-

ment with respect to 	M̂m
 yields an outcome m with prob-
ability

pm = ���M̂m
† M̂m��� �5�

and then causes a state reduction of the measured system to

��m� =
1

�pm

M̂m��� . �6�

Note that this state change depends on the outcome m. The
general measurement can be simulated by a projective mea-
surement with the help of a measurement probe, even though
the projective measurement is a special case of the general

measurement �M̂m= P̂m�. The necessary and sufficient condi-

tion for logical reversibility is M̂m ����0 for any ��� in the
Hilbert space �3�. In other words, the measurement must re-
spond to any input state so that no possibility of the premea-
surement state is excluded by any outcome of the measure-
ment. For example, the usual photon counting �15� is
logically irreversible because the detection of a photon ex-
cludes the possibility that the premeasurement state is the
vacuum state. On the other hand, the necessary and sufficient

condition for physical reversibility is that M̂m has a bounded
left inverse �3,4�. Thus physical reversibility implies logical
reversibility, but not vice versa. An important special case is
that of a finite-dimensional Hilbert space, where physical
reversibility is equivalent to logical reversibility. However, in
an infinite-dimensional Hilbert space, there exist logically
reversible yet physically irreversible measurements �3� such
as quantum counting �2�.

A different type of reversibility is discussed in Refs.
�16,17�. A quantum measurement is said to be unitarily re-
versible if the premeasurement state can be recovered by a
reversing unitary operation on the postmeasurement state. In
this case, although successful reversal occurs with unit prob-
ability owing to the unitarity, it is essential that the premea-
surement state lie within a certain subspace of the entire
Hilbert space. Since the subspace is chosen so that the prob-
ability of each measurement outcome is the same for all
states in the subspace, no information about the premeasure-
ment state can be obtained from the unitarily reversible
quantum measurement �17�.

This paper is organized as follows. Section II formulates a
physically reversible quantum measurement of a spin-s sys-
tem using a spin-j probe. Section III explicitly constructs the
reversing measurement for the case of a measured system

with s=1/2, focusing on the effect of a high-spin probe �j
�1/2�. Section IV describes two approximate schemes of
the reversing measurement for the case of measured systems
with s�1/2: one in which the measured system is initially in
a two-dimensional subspace and the other in which the inter-
action is sufficiently weak. Section V discusses a possible
experimental situation using an ensemble of atoms as a mea-
sured system and two-mode photons as a probe system. Sec-
tion VI summarizes our results. Throughout this paper, we
refer to the measured system and the probe system simply as
system and probe, respectively.

II. REVERSIBLE SPIN MEASUREMENT

First, we formulate a quantum measurement of a spin-s

system described by spin operators 	Ŝx , Ŝy , Ŝz
. These opera-
tors obey the commutation relations

�Ŝi, Ŝj� = i�ijk � Ŝk, �7�

where the indices i , j ,k denote x ,y ,z and �ijk is the Levi-
Civita symbol. The Hilbert space of this system is spanned

by the eigenstates of Ŝz,

Ŝz���q = � � ���q, �8�

where �=s ,s−1, . . . ,−s+1,−s. Using these states, the state
to be measured is written as

���q = �
�

c����q, �9�

with the normalization condition

�
�

�c��2 = 1. �10�

It should be emphasized that the coefficients 	c�
 are un-
known, since it is assumed that we have no a priori infor-
mation about the measured state ���q. The measured system
is assumed to be in a pure state as in Eq. �9�; a mixed initial
state of the system makes no difference in constructing a
reversing measurement.

To measure the spin state of the system, we introduce a
probe with spin j. The probe is described by spin operators

	Ĵx , Ĵy , Ĵz
 satisfying the commutation relations

�Ĵi, Ĵj� = i�ijk � Ĵk. �11�

The Hilbert space of this system is also spanned by the

eigenstates of Ĵz,

Ĵz�m�p = m � �m�p, �12�

where m= j , j−1, . . . ,−j+1,−j.
We prepare the probe in a state

��,��p = exp�−
i

�
Ĵz�exp�−

i

�
Ĵy��j�p

= �
m

e−im�dmj
�j�����m�p, �13�

where d
m�m
�j� ��� is defined by �18�
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dm�m
�j� ��� � p�m��exp�−

i

�
Ĵy��m�p

= �
0	k	j+m

m−m�	k	j−m�

��j + m� ! �j − m� ! �j + m�� ! �j − m��!
�j + m − k� ! k ! �j − k − m�� ! �k − m + m��!

�− 1�k−m+m��cos
�

2
2j−2k+m−m��sin

�

2
2k−m+m�

. �14�

We assume that the interaction between the system and the
probe is of an Ising type,

H = 
ĴzŜz, �15�

where 
 is a real constant. This ĴzŜz-type interaction has
direct relevance to experimental situations in Refs.
�11,19–22�. The interaction between the system and probe
gives rise to a unitary transformation,

Ûi = exp�−
2ig

�2 ĴzŜz , �16�

on the combined system, where g�
t� /2 is the effective
strength of the interaction.

After the interaction, the unitary operator

Ûp = exp�−
i

�
Ĵy

�

2
 �17�

is applied to the probe. The state of the whole system then
becomes

ÛpÛi��,��p���q = �
m�,�

am��
�j� ��,��c��m��p���q, �18�

where a
m��

�j� �� ,�� is given by

am��
�j� ��,�� � �

m

e−im�2g�+��dmj
�j����dm�m

�j� ��

2


=
1

2 j� �2j�!
�j + m�� ! �j − m��!

� �e−�i/2��2g�+��cos
�

2
+ e�i/2��2g�+��sin

�

2
 j−m�

� �e−�i/2��2g�+��cos
�

2
− e�i/2��2g�+��sin

�

2
 j+m�

.

�19�

Note that �a
m��

�j� �� ,���2 is a binomial distribution as a function
of m� �see Fig. 1�:

�am��
�j� ��,���2 =

�2j�!
�j + m�� ! �j − m��!

� �1 + ���,��
2

� j−m��1 − ���,��
2

� j+m�
,

�20�

where

���,�� � sin � cos�2g� + �� . �21�

We thus obtain the normalization condition

�
m�

�am��
�j� ��,���2 = 1. �22�

The mean and variance of this distribution are given by

����,�� � �
m�

m��am��
�j� ��,���2 = − j���,�� �23�

and

����,�� � �
m�

�m� − ����,���2�am��
�j� ��,���2

= j�1 − ���,��2

2
� , �24�

respectively. The central limit theorem states that as j in-
creases, the binomial distribution becomes close to a normal
distribution with the mean and variance unaltered. Thus, for
large j, we can approximate the distribution as

FIG. 1. �a
m��

�j� �� ,���2 as a function of m� ��= ±1/2, j=10, g
=0.25, �=� /6, �=� /6�.
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�am��
�j� ��,���2 �

1
�2�����,��

exp�−
�m� − ����,���2

2����,�� � .

�25�

We finally perform a projective measurement on the probe

variable Ĵz /� and obtain the measurement outcome m �=j , j
−1, . . . ,−j+1,−j�. Alternatively, we can perform the projec-

tive measurement of −Ĵx /� without the unitary operator Ûp
in Eq. �17�. Since the probability for outcome m is

pm = �
�

�am�
�j� ��,���2�c��2, �26�

we can obtain information about the initial state �9� of the
system from this measurement through the dependence of pm

on c�. However, if �am�
�j� �� ,���2 does not depend on �, the

probability pm does not depend on c� because of the normal-
ization condition �10�. Therefore, to obtain information about
the measured state, the initial probe state �� ,��p and the
strength of the interaction g must satisfy

sin � � 0,

sin g � 0,

sin��2s − 1�g + �� � 0, �27�

according to Eq. �20�, where the last condition is required if
s=1/2 or if s�1/2 and cos g=0. From Eqs. �10� and �22�, it
is easy to see that the total probability is

�
m

pm = 1. �28�

Using Eq. �23�, the expected value of m is given by

m̄ � �
m

mpm = − j�
�

���,���c��2. �29�

The measurement process causes a nonunitary state reduc-
tion of the measured system. Corresponding to the outcome
m, the state of the system becomes

��m�q =
1

�pm
�
�

am�
�j� ��,��c����q �30�

and its fidelity with the premeasurement state decreases to

Fm = �q����m�q� =
1

�pm
��

�

am�
�j� ��,���c��2� . �31�

We can describe this measurement process by a set of
measurement operators, as in the general quantum measure-

ment �7,14�. Let T̂m�� ,�� be the measurement operator for
outcome m. Since the probability �26� and postmeasurement
state �30� are expressed as

pm = q���T̂m
† ��,��T̂m��,�����q, �32�

��m�q =
1

�pm

T̂m��,�����q, �33�

the explicit form of T̂m�� ,�� is given by

T̂m��,�� = �
�

am�
�j� ��,�����qq��� . �34�

From Eq. �22�, we can confirm that

�
m

T̂m
† ��,��T̂m��,�� = Î . �35�

This measurement does not disturb the eigenstates of Ŝz ow-
ing to the commutation relation

�Ŝz,T̂m��,��� = 0. �36�

The measurement 	T̂m�� ,��
 is logically reversible �2,3�
if T̂m�� ,�� ���q�0 for any ���q or, equivalently, if
am�

�j� �� ,���0 for any �. This condition requires the initial
probe state �� ,��p and the strength of the interaction g to
satisfy

sin � � ± 1 or cos�2g� + �� � ± 1 �37�

for �=s ,s−1, . . . ,−s+1,−s. When these conditions are sat-

isfied, the measurement 	T̂m�� ,��
 is physically reversible as

well, since T̂m�� ,�� has a bounded left inverse. This implies
that there exists another measurement that can recover the
unknown premeasurement state �9� from the postmeasure-
ment state �30� with a nonzero probability. We explicitly
construct such reversing measurements in the following sec-

tions. Note, however, that the measurement 	T̂m�� ,��
 is not
unitarily reversible �16,17� if condition �27� is satisfied. This
is because we have obtained some information about the
measured state from the measurement outcome via the prob-
ability that depends on the measured state �17�. Therefore,
there is no unitary operation that can recover the premeasure-
ment state from the postmeasurement state.

III. REVERSING MEASUREMENT ON A SPIN-1/2
SYSTEM „s=1/2…

A. Scheme

We consider a reversing measurement of a physically re-

versible measurement 	T̂m�� ,��
 for the case of a measured
system with s=1/2, where the measurement operator

T̂m�� ,�� is in the basis 	�1/2�q , �−1/2�q
 represented by a
diagonal 2�2 matrix as

q����T̂m��,�����q = �am,1/2
�j� ��,�� 0

0 am,−1/2
�j� ��,��

 . �38�

Suppose that a second measurement 	T̂m��−� ,�−��
 is
performed on the postmeasurement state �30� and that an
outcome m� �=j , j−1, . . . ,−j+1,−j� is obtained, as illus-
trated in Fig. 2. Using
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am��
�j� �� − �,� − �� = e−im��a−m�,−�

�j� ��,�� , �39�

the measurement operator T̂m���−� ,�−�� is represented by

q����T̂m��� − �,� − �����q

= e−im���a−m�,−1/2
�j� ��,�� 0

0 a−m�,1/2
�j� ��,��

 . �40�

The state of the system thus becomes

��mm��q =
e−im��

�pmm�
�

�=±1/2
a−m�,−�

�j� ��,��am�
�j� ��,��c����q,

�41�

where

pmm� = �
�=±1/2

�a−m�,−�
�j� ��,��am�

�j� ��,���2�c��2 �42�

is the joint probability of obtaining the outcomes m for the
first measurement and m� for the second measurement. The
expected values of m and m� are given by

m̄ = �
m,m�

mpmm� = − j�1/2��,���c1/2�2 + −1/2��,���c−1/2�2� ,

�43�

m�¯ = �
m,m�

m�pmm� = + j�−1/2��,���c1/2�2 + 1/2��,���c−1/2�2� ,

�44�

respectively. Therefore, as a function of m and m�, the joint
probability pmm� has two peaks at

�m,m�� = „− j±1/2��,��, + j�1/2��,��… , �45�

where the heights of the peaks depend on the values of �c1/2�2
and �c−1/2�2.

An interesting case of recovery of the measured state
occurs when the outcome of the second measurement is
the negative of the first one �i.e., m�=−m�. Since
am,−�

�j� �� ,��am�
�j� �� ,�� does not depend on � �=±1/2�, the fi-

nal state �41� with m�=−m is identical to the original state
�9� except for an overall phase factor,

��m,−m�q = ei
 �
�=±1/2

c����q, �46�

where

ei
 � eim�
am,−1/2

�j� ��,��am,1/2
�j� ��,��

�am,−1/2
�j� ��,��am,1/2

�j� ��,���
. �47�

Therefore, the second measurement 	T̂m��−� ,�−��
 is a

reversing measurement of the first measurement 	T̂m�� ,��
.
Here, the state recovery results from the identity

T̂−m�� − �,� − ��T̂m��,�� = �eim�am,−1/2
�j� ��,��am,1/2

�j� ��,���Î ,

�48�

which implies that T̂−m��−� ,�−�� is proportional to the

inverse of T̂m�� ,��. The total probability of state recovery is
given by

q � �
m

pm,−m = �
m

�am,−1/2
�j� ��,��am,1/2

�j� ��,���2. �49�

This is the overlap between the binomial distributions
�am,1/2

�j� �� ,���2 and �am,−1/2
�j� �� ,���2 �see Fig. 1�. The measured

state can be recovered with high probability when these dis-
tributions overlap closely, although the case of complete
overlap does not satisfy the condition �27�. Note that when
recovery occurs, we cannot obtain any information about the
original state �9� from the measurement outcomes m and −m,
since the joint probability pm,−m does not depend on c�.

If m��−m, we can still expect that the original state is
almost recovered as long as m� is close to −m. The extent to
which the state of the system is recovered can be evaluated
in terms of the fidelity between the original state �9� and the
final state �41�,

Fmm� = �q����mm��q�

=
1

�pmm�
� �

�=±1/2
a−m�,−�

�j� ��,��am�
�j� ��,���c��2�

= 	�c1/2�4�e+��,���m�+m + �c−1/2�4�e−��,���m�+m

+ 2�c1/2�2�c−1/2�2�e+��,��e−��,���m�+m/2

�cos��m� + m�f��,���
1/2

� 	�c1/2�2�e+��,���m�+m + �c−1/2�2�e−��,���m�+m
−1/2,

�50�

where

e±��,�� � �1 − ±1/2��,��
1 + ±1/2��,�� , �51�

f��,�� � arg�1 − sin2 ��cos2 � + sin2 g�

+ i sin 2� cos � sin g� , �52�

and arg�¯� represents the argument of the complex number
in the brackets. By definition, we obtain Fm,−m=1 as a result
of the recovery �46�. It is interesting that the fidelity Fmm�
depends on m�+m but not on j or on m�−m. Expanding the

FIG. 2. Transitions of the measured state by successive mea-

surements 	T̂m�� ,��
 and 	T̂m��−� ,�−��
. The first measurement
on the state ���q yields an outcome m �=j , j−1, . . . ,−j+1,−j� with
probability pm, causing a state reduction to ��m�q. The second mea-
surement on ��m�q then yields an outcome m� with conditional
probability pmm� / pm, causing a state reduction to ��mm��q.
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fidelity Fmm� to the second order in m�+m, we obtain

Fmm� � 1 −
1

5
�c1/2�2�c−1/2�2� m� + m

�m��,��
2

� 1 −
1

20
� m� + m

�m��,��
2

, �53�

where �m�� ,�� is defined by

�m��,�� ��8

5
��ln

e+��,��
e−��,��

2

+ 4f��,��2�−1/2

. �54�

The equality is satisfied when �c1/2�2= �c−1/2�2=1/2. If the out-
comes m and m� satisfy

�m� + m� 	 �m��,�� , �55�

the fidelity is greater than 0.95. In this case, we can say that
more than 95% of the information about the measured state
is recovered. The total probability of this approximate recov-
ery is defined by

q� = �
m,m�

Fmm��0.95

pmm�, �56�

which depends weakly on c�.
As an example, we consider the case where �c1/2�2

= �c−1/2�2=1/2, j=10, g=0.25, �=� /6, and �=� /6. This is
the worst case for which the lower bound in Eq. �54� is
achieved. Figure 3 shows the probability �26� and the fidelity

�31� of the first measurement 	T̂m�� /6 ,� /6�
 as functions of
the outcome m. The average fidelity after the first measure-
ment is �mpmFm=0.57. To recover the fidelity lost by the

first measurement, the second measurement 	T̂m�5� /6 ,
5� /6�
 is performed. Figure 4 shows the probability �42� as
a function of the outcomes m for the first measurement and
m� for the second measurement. The two peaks �45� of the
joint probability merge into a single peak located on the line
of recovery �m�=−m�, since 1/2�� ,�� and −1/2�� ,�� are
close to each other. This indicates that the highly probable
events are concentrated near the line of recovery. In fact, the
total probability of recovery, Eq. �49�, becomes large due to
the large overlap of �am,1/2

�j� �� ,���2 and �am,−1/2
�j� �� ,���2. In this

example, we obtain q=0.13. The more tolerable is the error
in terms of the fidelity, the larger is the probability of recov-
ery. Figure 5 shows the fidelity �50� after the second mea-
surement as a function of the outcomes m and m�. The aver-
age fidelity after the second measurement is �mm�pmm�Fmm�
=0.93.The fidelity is larger than 0.95 provided that �m�+m� is
less than �m�� ,��=2.3 defined by Eq. �54�. The total prob-
ability of approximate recovery, Eq. �56�, is q�=0.57.

B. Information gain versus fidelity loss

As noted in the preceding subsection, we cannot obtain
any information about the measured state if a successful re-
covery occurs by a reversing measurement. In other words,
successful recovery obliterates the information obtained by
the first measurement. Therefore, one might think that it is
not worthwhile performing a reversing measurement. How-
ever, when the recovery is only partially successful, the re-
versing measurement can improve the fidelity together with
providing further information. We show this here by a simple
situation.

Suppose that the state of the system is known to be either
�a�q or �b�q with equal probability, p�a�= p�b�=1/2, where
we choose the two states as

�a�q = cos
�

2
�1/2�q + sin

�

2
�− 1/2�q, �57�

�b�q = − sin
�

2
�1/2�q + cos

�

2
�− 1/2�q, �58�

with � being a real constant �0���� /2�. The Shannon
entropy associated with the system is initially given by

FIG. 3. Probability pm and fidelity Fm of the first measurement
as functions of the outcome m ��c1/2�2= �c−1/2�2=1/2, j=10, g
=0.25, �=� /6, �=� /6�.

FIG. 4. Joint probability pmm� of the first and second measure-
ments as a function of the outcomes m and m� ��c1/2�2= �c−1/2�2
=1/2, j=10, g=0.25, �=� /6, �=� /6�.

FIG. 5. Fidelity Fmm� after the second measurement as a func-
tion of the outcomes m and m� ��c1/2�2= �c−1/2�2=1/2, j=10, g
=0.25, �=� /6, �=� /6�. Fmm� depends only on m�+m with
Fm,−m=1.
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H0 = − p�a�log2p�a� − p�b�log2p�b� = 1, �59�

which is a measure of the lack of information about the sys-

tem. We then perform the measurement 	T̂m�� ,��
 in an at-
tempt to obtain information about the system. If the input
state of the system is �a�q, the measurement yields an out-
come m with probability p�m �a� and the postmeasurement
state is given by �am�q whose fidelity to �a�q is F�m ,a�. Here
the probability p�m �a�, the postmeasurement state �am�q, and
the fidelity F�m ,a� can be evaluated according to Eqs. �26�,
�30�, and �31�. Similarly, if the input state of the system is
�b�q, the corresponding probability, the postmeasurement
state, and the fidelity are given by p�m �b�, �bm�q, and
F�m ,b�, respectively. The total probability for outcome m is
p�m�= p�m �a�p�a�+ p�m �b�p�b�. Suppose that we obtain the
outcome m. Then Bayes’ rule tells us that the probability that
the input state is �a�q �or �b�q� is given by p�a �m�
= p�m �a�p�a� / p�m� �or p�b �m�= p�m �b�p�b� / p�m��. The Sh-
annon entropy after the measurement with outcome m be-
comes

H�m� = − p�a�m�log2p�a�m� − p�b�m�log2p�b�m� . �60�

This means that the amount of information obtained from the
outcome m is

I�m� = H0 − H�m� . �61�

The average fidelity for a given outcome m is given by

F�m� = F�m,a�p�a�m� + F�m,b�p�b�m� . �62�

Figure 6 shows the probability for outcome p�m�, the infor-
mation gain I�m�, and the fidelity F�m� as functions of m for
j=10, g=0.25, �=� /6, �=� /6, and �=� /6. We find that an
outcome that is realized with a high probability gives less
information than one with a low probability.

After obtaining the outcome m for the measurement

	T̂m�� ,��
, we perform the reversing measurement 	T̂m��
−� ,�−��
 to recover the measured state. Let m� be the out-
come of the reversing measurement. If the input state of the

system is �a�q before the first measurement 	T̂m�� ,��
, the
joint probability for a pair of outcomes �m ,m�� is given by
p�m ,m� �a� and the corresponding postmeasurement state is
�amm��q whose fidelity to �a�q is F�m ,m� ,a�. We can calculate
the probability p�m ,m� �a�, the postmeasurement state
�amm��q, and the fidelity F�m ,m� ,a� according to Eqs. �42�,
�41�, and �50�. Similarly, if the input state of the system is
�b�q, the joint probability, the postmeasurement state, and the
fidelity can be calculated to give p�m ,m� �b�, �bmm��q, and
F�m ,m� ,b�, respectively. The total joint probability for a pair
of outcomes �m ,m�� is p�m ,m��= p�m ,m� �a�p�a�
+ p�m ,m� �b�p�b�. From the two outcomes �m ,m��, we know
that the input state is �a�q with probability p�a �m ,m��
= p�m ,m� �a�p�a� / p�m ,m�� and is �b�q with probability
p�b �m ,m��= p�m ,m� �b�p�b� / p�m ,m��. The Shannon en-
tropy after the two measurements with outcomes �m ,m�� be-
comes

H�m,m�� = − p�a�m,m��log2p�a�m,m��

− p�b�m,m��log2p�b�m,m�� . �63�

The amount of obtained information is given by

I�m,m�� = H0 − H�m,m�� , �64�

and the fidelity becomes

F�m,m�� = F�m,m�,a�p�a�m,m�� + F�m,m�,b�p�b�m,m�� .

�65�

When the two outcomes satisfy m�=−m, recovery is
achieved by the reversing measurement, F�m ,−m ,a�=F�m ,
−m ,b�=1. We cannot then obtain any information about the
system because p�m ,−m �a�= p�m ,−m �b�—i.e., I�m ,−m�=0
�note, however, that I�m��0�. However, if m��−m, we
might expect a partial recovery should be achieved with
some information loss. To check this, we consider the expec-
tation value of the information to be obtained by performing
the reversing measurement, given the outcome m of the first
measurement with information I�m�. Since the conditional
probability of obtaining outcome m� for the reversing mea-
surement is p�m� �m�= p�m ,m�� / p�m�, the expectation value
of the information is given by

I��m� = �
m�

p�m��m�I�m,m�� , �66�

while the expectation value of the fidelity is given by

F��m� = �
m�

p�m��m�F�m,m�� . �67�

The expectation value of the information gain I��m� and that
of the fidelity F��m� are shown in Fig. 6 as functions of m for
j=10, g=0.25, �=� /6, �=� /6, and �=� /6. Note that
F��m��F�m� and I��m�� I�m� for several outcomes. This
implies that the reversing measurement can achieve both a
partial recovery of the quantum state and further information
gain rather than information loss. The same statement
holds true after the average over m is taken, that is, the

FIG. 6. Probability p�m� of obtaining outcome m for the first
measurement and the corresponding information gain I�m� and fi-
delity F�m�, with j=10, g=0.25, �=� /6, �=� /6, and �=� /6.
Also shown are the expected information gain I��m� and expected
fidelity F��m� after the reversing measurement, given that the out-
come of the first measurement is m.
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reversing measurement can achieve both �mp�m�F��m�
��mp�m�F�m� and �mp�m�I��m���mp�m�I�m�.

C. Effect of probe spin

We discuss here the effect of a high-spin probe �j�1/2�.
In this case, the recovery of the measured state emerges more
clearly because of the large change in the fidelity during the
measurements. To simplify the calculations, we consider here
the average squared fidelity after the first measurement,
given by

�
m

pmFm
2 = �c1/2�4 + �c−1/2�4 + 2�c1/2�2�c−1/2�2h��� jcos�jk���� ,

�68�

with

h��� � 1 − sin2 � sin2 g , �69�

k��� � 2 arg�cos g − i sin g cos �� . �70�

Figure 7 shows the average squared fidelity as a function of
j, exhibiting a damped oscillation with period 2� / �k����. The
oscillation results from arg�am�

�j� �� ,���, which changes the
relative phase between the states �1/2�q and �−1/2�q. When
the probe has a high spin �j�1/2�, a large fidelity can be
lost as a result of the first measurement. In particular, the
fidelity loss becomes maximal at j�� / �k����. Nevertheless,
such a large fidelity loss can be recovered as a result of the
second measurement, as discussed in the preceding subsec-
tion.

Of course, as a trade-off, the total probability of recovery,
Eq. �49�, becomes small, as shown in Fig. 7. For large j, the
central limit theorem �25� gives an exponential decay of the
probability of recovery,

q �
1

�2�jv��,��
exp�−

j�1/2��,�� − −1/2��,���2

2v��,�� � ,

�71�

where

v��,�� � 1 −
1

2
�1/2��,��2 + −1/2��,��2� . �72�

This decay results from the fact that as j increases, the two
peaks �45� of the joint probability split away from the line of
recovery �m�=−m� and therefore the probability on the line
decreases exponentially. Similarly, the total probability of
approximate recovery, Eq. �56�, also decreases exponentially
as j increases, since the increase of j cannot expand the
width �54� for approximate recovery. Due to the decrease in
the probability of recovery, the average squared fidelity after
the second measurement also decreases as

�
m,m�

pmm�Fmm�
2 = �c1/2�4 + �c−1/2�4 + 2�c1/2�2�c−1/2�2h���2j .

�73�

This fidelity does not oscillate, unlike the case in Eq. �68�,
because the change in the relative phase during the first mea-
surement is on average canceled by that during the second
measurement.

D. Quantum fluctuation of probe spin

So far, the spin j of the probe has been assumed to be a
definite value. However, some physical systems are de-
scribed by indefinite spin. For example, a two-mode laser is
regarded as a spin system with indefinite spin because of
quantum fluctuations in the number of photons �see Sec. V�.
We here show that even when the spin of the probe is af-

fected by quantum fluctuations, the measurement 	T̂m��
−� ,�−��
 remains a reversing measurement of the mea-

surement 	T̂m�� ,��
.
When the probe spin j fluctuates quantum mechanically,

the initial probe state �13� is replaced with

��,��p = exp�−
i

�
Ĵz�exp�−

i

�
Ĵy��

j

bj�j�p, �74�

where j=0,1 /2 ,1 ,3 /2 , . . . and the coefficients 	bj
 satisfy
the normalization condition � j �bj�2=1. Note that a measure-
ment yielding an outcome m �=0, ±1/2 , ±1 , ±3/2 , . . . �
eliminates probe states with j� �m � , �m � +1, �m � +2, . . ., since

�
j

�
m=−j

j

= �
m

�
j��m�

�, �75�

where the prime indicates summation over j such that j
− �m� is a non-negative integer. The measurement operators
�38� and �40� are thus replaced with

q����T̂m��,�����q = �
j��m�

�bj�am,1/2
�j� ��,�� 0

0 am,−1/2
�j� ��,��


�76�

and

FIG. 7. Average squared fidelity after the first measure-
ment �mpmFm

2 and total probability of recovery q as functions of
j ��c1/2�2= �c−1/2�2=1/2, j=10, g=0.25, �=� /6, �=� /6�. Although
the strength of the interaction g is much smaller ��10−8� in the real
situation discussed in Sec. V, it can be enhanced by a cavity-assisted
interaction or by collective enhancement via large j and s.
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q����T̂m��� − �,� − �����q

= e−im�� �
j��m��

�bj�a−m�,−1/2
�j� ��,�� 0

0 a−m�,1/2
�j� ��,��

 ,

�77�

respectively. It is easy to see that T̂−m��−� ,�−��T̂m�� ,�� is
proportional to the identity operator,

T̂−m�� − �,� − ��T̂m��,��

= �eim� �
j��m�

� �
j���m�

�bjbj�am,−1/2
�j� ��,��am,1/2

�j�� ��,���Î .

�78�

Consequently, the measurement 	T̂m��−� ,�−��
 is still a

reversing measurement of the measurement 	T̂m�� ,��
 in the
presence of quantum fluctuations. In contrast, the measure-

ment 	T̂m��−� ,�−��
 is no longer a reversing measurement

of the measurement 	T̂m�� ,��
 if the probe spin is affected
by classical fluctuations that replace the probe state �13� with
a mixed state.

This tolerance for quantum fluctuation of the probe spin is

emphasized when we consider the measurement 	T̂m��−� ,
−��
. This is another reversing measurement of the measure-

ment 	T̂m�� ,��
, since

am��
�j� �� − �,− �� = �− 1� j+m�am�,−�

�j� ��,�� �79�

holds, rather than Eq. �39�. The measured state is recovered
if the outcome of the second measurement is the same as that
of the first �m�=m�. As long as the spin j of the probe has a
definite value, this reversing measurement is equivalent to

the measurement 	T̂m��−� ,�−��
. However, when the
probe spin is affected by quantum fluctuation, the measure-

ment 	T̂m��−� ,−��
 is no longer a reversing measurement

of the measurement 	T̂m�� ,��
 due to the j-dependent factor

�−1� j+m� in Eq. �79�.

IV. REVERSING MEASUREMENT ON A HIGH-SPIN
SYSTEM „s�1/2…

We next consider a reversing measurement of a physically

reversible measurement 	T̂m�� ,��
 for the case of measured
systems with s�1/2. Provided that the condition �37� is sat-
isfied, the physical reversibility implies the existence of a
reversing measurement �3,4�. More specifically, for a first
measurement with outcome m, we consider a second mea-

surement 	R̂0
�m� , R̂1

�m�
 with two possible outcomes—say, 0
and 1—such that

R̂0
�m� = �m �

�=−s

s

�am�
�j� ��,���−1���qq��� , �80�

R̂1
�m� = �Î − R̂0

�m�†R̂0
�m�, �81�

where �m is a nonzero constant. If this measurement yields
the outcome 0, the original state of the system is restored
because

R̂0
�m�T̂m��,�� = �mÎ , �82�

as seen from Eq. �34�. Unfortunately, the physical implemen-
tation of this measurement is not obvious. Instead, we con-
sider an approximate reversing measurement that has a clear

physical implementation using the measurement 	T̂m��
−� ,�−��
. Unlike the case of s=1/2, the measurement

	T̂m��−� ,�−��
 is not an exact reversing measurement,

since T̂−m��−� ,�−�� is not proportional to the inverse of

T̂m�� ,��. Contrary to Eq. �48�, we have

T̂−m�� − �,� − ��T̂m��,���” Î . �83�

Nevertheless, there are two physical situations in which the

measurement 	T̂m��−� ,�−��
 serves approximately as a re-
versing measurement for the original measurement

	T̂m�� ,��
: �i� the measured state can be confined to a two-
dimensional subspace or �ii� the interaction between the sys-
tem and probe is sufficiently weak. In this section, we de-
scribe these approximate schemes for the reversing
measurement.

A. Two-dimensional subspace model

We assume that the initial state of the measured system
with spin s is in a two-dimensional subspace spanned by
	��̃� , �−�̃�
, where �̃� is any one of the nonzero eigenvalues

of Ŝz. That is, we know a priori that

���q = �
�=±�̃

c����q, �84�

instead of the general state �9�. Since the measurement op-
erator is diagonal, as in Eq. �34�, the state of the system
remains in this subspace after the measurement. The mea-

surement operators T̂m�� ,�� and T̂m���−� ,�−�� are thus
represented by 2�2 matrices within this subspace. These
matrices are identical to those in the s=1/2 case �see Eqs.
�38� and �40�� with the strength of the interaction given by

g� = 2g�̃ . �85�

Consequently, the measurement 	T̂m��−� ,�−��
 is a re-

versing measurement of the measurement 	T̂m�� ,��
 when
the initial state of the system is confined to the two-
dimensional subspace.

The analysis of fidelity in this model is the same as that in
the case where s=1/2 in the preceding section, provided that
the renormalized strength of the interaction �85� is used. The
remaining problem is preparing the system in the two-
dimensional subspace. In order to prepare the state �84�, we
here use the scheme in Ref. �21�, which was originally pro-
posed to realize a squeezed spin state �23�. The system is first
prepared in the state
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����q = exp�−
i

�
Ŝz�exp�−

i

�
Ŝy

�

2
�s�q = �

�

c�� ���q,

�86�

where

c�� � e−i��d�s
�s���

2
 = e−i�� 1

2s� �2s�!
�s + �� ! �s − ��!

. �87�

This is a coherent spin state �24� and is an eigenstate of the

spin component Ŝ�= Ŝxcos �+ Ŝysin � with eigenvalue s�.

Performing the measurement 	T̂m�� /2 ,0�
 on this state
yields an outcome m with probability

pm� = �
�

�am�
�j� ��

2
,0�2

�c�� �2 �88�

and then causes state reduction to

��m� �q =
1

�pm�
�
�

am�
�j� ��

2
,0c�� ���q. �89�

The spin distribution of this state �m�����q�� ��m� �q�2 is
given by

�m��� =
1

pm�
�am�

�j� ��

2
,0�2

�c�� �2

= � 1

pm�

�2j�!
�j + m� ! �j − m�!�� 1

22s

�2s�!
�s + �� ! �s − ��!�

� �cos2�g��� j−m�sin2�g��� j+m. �90�

Clearly, this distribution satisfies �m�0�=0 �if j�−m� and
�m���=�m�−��, and is damped by the second binomial factor
for large ���. These facts imply that when j�−m, the spin
distribution has a pair of highest peaks at �= ± �̃m �see Fig.
8�, where �̃m is evaluated as

�̃m �
1

g
arctan� j + m

j − m
�91�

if g�� /2�gs. The state �89� can thus be approximated as

��m� �q �
1
�2

�e−i�̃m���̃m�q + �− 1� j+mei�̃m��− �̃m�q� , �92�

where the relative phase is determined from the identity
am,−�

�j� �� /2 ,0�= �−1� j+mam�
�j� �� /2 ,0�. According to Eq. �90�,

this is a good approximation for large j. Finally, by perform-

ing a further measurement 	T̂m��� ,���
 on this state, we can
prepare a state in the form of

���q = �
�=±�̃m

c����q, �93�

where the coefficients depend on the angles ��� ,��� and the
outcome.

B. Weak-interaction model

We next consider another physical situation for the ap-

proximate reversing measurement 	T̂m��−� ,�−��
. We as-
sume that the interaction is so weak that the measurement
operators can be expanded in powers of g. We then obtain

T̂−m�� − �,� − ��T̂m��,�� � �eim�am,0
�j� ��,��2�Î + O�g2� .

�94�

This means that the measurement 	T̂m��−� ,�−��
 is a re-

versing measurement of the measurement 	T̂m�� ,��
 to an
accuracy of the order of g.

As shown below, the second-order term, which is ne-
glected in Eq. �94�, does not affect the fidelity up to the order

of g3. For the two successive measurements 	T̂m�� ,��
 and

	T̂m��−� ,�−��
, we define the joint probability, the final
state, and the fidelity, as in the case of s=1/2, by

pmm� = �
�

�a−m�,−�
�j� ��,��am�

�j� ��,���2�c��2, �95�

��mm��q =
e−im��

�pmm�
�
�

a−m�,−�
�j� ��,��am�

�j� ��,��c����q, �96�

and

Fmm� =
1

�pmm�
��

�

a−m�,−�
�j� ��,��am�

�j� ��,���c��2� , �97�

respectively, using the relation �39�. Expanding the fidelity
up to the second order in g, we obtain

Fmm� � 1 −
1

20
��2¯ − ��̄�2

s2 �� m� + m

�m̃��,��
2

� 1 −
1

20
� m� + m

�m̃��,��
2

, �98�

where

�̄ � �
�

��c��2, �2¯ � �
�

�2�c��2, �99�

FIG. 8. Initial spin distribution �c�� �2 and final spin distribution
�m��� as functions of � �j=s=10, g=0.25, m=5�. �m��� has a pair
of highest peaks at �= ±4 �the other peaks are too small to be seen
on the scale of this figure�. The probability pm� in Eq. �88� is calcu-
lated to be 0.016.
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�m̃��,�� �
1

2�10s
��1 − sin2 � cos2 �

�g sin ��
 . �100�

Consequently, we find that when the two outcomes cancel
each other �m�=−m�, the information about the original state
is restored to within the accuracy of g3, because Fm,−m�1

+O�g4�. The measurement 	T̂m��−� ,�−��
 is thus a revers-

ing measurement of the measurement 	T̂m�� ,��
 if the
fourth-order term in g can be neglected. Evaluating the
fourth-order term, we obtain the condition for the strength of
the interaction as

g4 �
1

s4j2�1 − �sin � cos ��
�2 sin �

2

. �101�

As in the case of s=1/2, we define the total probability of
approximate recovery by

q� = �
m,m�

Fmm��0.95

pmm�, �102�

where a sufficient condition for Fmm��0.95 is given by

�m� + m� 	 �m̃��,�� . �103�

As an example, we consider the case where j=50, s=10,
g=0.01, �=� /12, and �=� /4. The measured system is as-
sumed to be in a coherent spin state

���q = �Sx = s � �q = exp�−
i

�
Ŝy

�

2
�s�q, �104�

which is the eigenstate of Ŝx with eigenvalue s�. Figure 9
shows the probability �26� and the fidelity �31� of the first

measurement 	T̂m�� /12,� /4�
 as functions of the outcome
m. The average fidelity after the first measurement is

�mpmFm=0.089. The second measurement 	T̂m�11� /12,
3� /4�
 is then performed. Figure 10 shows the probability
�95� as a function of the outcomes m for the first measure-
ment and m� for the second measurement. Figure 11 shows
the fidelity �97� after the second measurement as a function
of the outcomes m and m�. Although the fidelity Fmm� may

depend on j and on m�−m if s�1/2, it approximately de-
pends only on m�+m �see Eq. �98��, owing to the weak-
interaction condition �101�. The average fidelity after the
second measurement is �mm�pmm�Fmm�=0.997. The width
�100� and the total probability of approximate recovery �102�
are given by �m̃�� ,��=6.0 and q�=0.999 92, respectively.
Surprisingly, the measured state can be recovered almost de-
terministically, though a large portion of the fidelity is lost
upon the first measurement, as shown in Fig. 9. This unex-
pectedly large reversibility is discussed in detail in the next
subsection.

C. Reversibility in the weak-interaction model

The weak-interaction model exhibited near-deterministic
recovery of a coherent spin state �104�. The reasons for this
considerable reversibility are that the measurements

	T̂m�� ,��
 and 	T̂m��−� ,�−��
 commute with the spin z
component, as shown in Eq. �36�, and that the interaction
between the system and probe is weak. Such a measurement
does not greatly disturb a state with a small variance of the
spin z component,

��Ŝz
2� � ��2¯ − ��̄�2� �2. �105�

In fact, when the variance is small, the average fidelity after
the second measurement is large, as in

�
m,m�

pmm�Fmm� � 1 − 2g2j��2¯ − ��̄�2�sin2 � , �106�

to the second order in g. The coherent spin state �104� can
thus be recovered near-deterministically because of its small

FIG. 9. Probability pm and fidelity Fm of the first measurement
on the state �Sx=s� �q as functions of the outcome m �j=50, s=10,
g=0.01, �=� /12, �=� /4�.

FIG. 10. Joint probability pmm� of the first and second measure-
ments on the state �Sx=s� �q as a function of the outcomes m and m�
�j=50, s=10, g=0.01, �=� /12, �=� /4�.

FIG. 11. Fidelity Fmm� after the two measurements on the state
�Sx=s� �q as a function of the outcomes m and m� �j=50, s=10, g
=0.01, �=� /12, �=� /4�.
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variance of s�2 /2, not on the order of s2�2. Therefore, a
considerable reversibility is obtained for other spin states as
long as their variances are small. For example, a Schrödinger

cat state between the eigenstates of Ŝx with eigenvalues +s�
and −s�,

���q = c+�Sx = + s � �q + c−�Sx = − s � �q, �107�

has the same variance as state �104� and can thus be recov-
ered in a near-deterministic way without any knowledge
about c+ or c−. In contrast, a cat state between the eigenstates

of Ŝz with eigenvalues +s� and −s�,

���q = c+�s�q + c−�− s�q, �108�

has a large variance, on the order of s2�2, which decreases
the probability of approximate recovery, Eq. �102�. For the
previous example �j=50, s=10, g=0.01, �=� /12, and �
=� /4�, the probability of approximate recovery for the cat
state �107� gives q�=0.999 92 independent of c+ and c−,
while it is q�=0.59 for the cat state �108� in the worst case
��c+�2= �c−�2=1/2�, which is still high.

The above discussion is based on the fact that the joint

measurement 	T̂m�� ,��
 and 	T̂m��−� ,�−��
 changes the
measured state little. One might think therefore that the mea-
sured state is changed little throughout the whole measure-
ment process. It should, however, be recalled that the first

measurement 	T̂m�� ,��
 can change the measured state sub-
stantially �see Fig. 9� through the high spin j of the probe.
The average fidelity after the first measurement is given by

�
m

pmFm � 1 − g2j��2¯ − ��̄�2��sin2 � + 2j cos2 ��

�109�

to the second order in g. As j increases, this average fidelity
becomes small, even if the strength of the interaction g is
decreased as g2�1/ j, in accordance with the weak-
interaction condition �101�. �Of course, Eq. �109� is not valid
when j is so large that the second term becomes comparable
to 1.� The term of order g2j2 originates from arg�am�

�j� �� ,���
rather than �am�

�j� �� ,���; the former changes the relative
phases between the states 	���q
, while the latter changes the
spin distribution �q�� ���q�2. If am�

�j� �� ,�� were �am�
�j� �� ,���,

thereby leaving the relative phases invariant, the average fi-
delity would be given by

1 − g2j��2¯ − ��̄�2�
sin2 � sin2 �

1 − sin2 � cos2 �
, �110�

which includes no term of order g2j2. On the other hand, the
change in the measured state by the joint measurement

	T̂m�� ,��
 and 	T̂m��−� ,�−��
 remains small, since the ef-
fect of the second measurement can also be amplified by the
high-spin probe so as to cancel that of the first measurement.
The average fidelity after the second measurement thus has
no term of order g2j2, as in Eq. �106�. As a result, in spite of
the near-deterministic recovery by the weak measurements,
the change in fidelity can be drastic due to the action of the
high-spin probe.

V. POSSIBLE EXPERIMENTAL SITUATION

Finally, we describe a possible experimental situation for
our reversible spin measurement. Consider an ensemble of
atoms as a measured system. Each atom possesses a doubly
degenerate ground state, which is regarded as a spin-1 /2
system. Provided that the initial state and dynamics are to-
tally symmetric under the interchange of atoms, the en-
semble of atoms can be described by the total spin operator

Ŝ = �
i=1

Na

ŝ�i�, �111�

where ŝ�i� is the spin operator of the ith atom and Na is the
number of atoms. In this case, the spin of the system is given
by s=Na /2. In addition, we consider the polarization of 2j
photons as a probe system. This system can also be described
by the spin operators �18�

Ĵx �
�

2
�â1

†â2 + â2
†â1� ,

Ĵy �
�

2i
�â1

†â2 − â2
†â1� ,

Ĵz �
�

2
�â1

†â1 − â2
†â2� , �112�

where â� is the annihilation operator for the photon of mode
� �1=horizontal, 2=vertical�. These operators obey the com-
mutation relations �11� because

�â�, â��
† � = ����, �â�, â��� = 0. �113�

The total spin of this probe is given by j= �N1+N2� /2, where
N� is the number of photons with mode �. The probe state
�m�p corresponds to the number state �N1= j+m ,N2= j−m� of
photons. The initial state �13� can then be simply prepared,

since the operators exp�−iĴy� / � � and exp�−iĴz� / � � corre-
spond to the half-wave plate exp�−� /2�â1

†â2− â2
†â1�� and the

phase shifter exp�−i� /2�â1
†â1− â2

†â2��, respectively. The in-
teraction �16� can be realized by using the paramagnetic Far-
aday rotation �11,19–21�. The unitary operator �17� corre-
sponds to a half-wave plate, and the projective measurement

of the probe variable Ĵz is achieved by two photodetectors for
the two modes. In this way, we can implement the reversible
spin measurement.

For the purpose of a quantitative understanding, we fol-
low the estimation in Ref. �21�. For an ensemble of Na
�108 cesium atoms trapped and cooled by laser beams and
with the two-mode photons being laser beams with average
photon number N��108, the spins s and j are both on the
order of 108, while the strength of the interaction g is about
10−8. Then, the weak-interaction condition �101� is satisfied
for a very small angle ��10−8. This means that, with a half-
wave plate rotated by a very small angle, we can apply the
weak-interaction model of the reversible and reversing mea-
surements for a high-spin system. Since the width �100� is on
the order of 108, the probability of approximate recovery is
expected to be large. Conversely, when � is large, Na

�N�
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should be on the order of 108 to satisfy the weak-interaction
condition.

VI. CONCLUSIONS

We have proposed a physically reversible quantum mea-
surement on a spin-s system using a spin-j probe, along with
an experimentally feasible interaction that can experimen-
tally realize reversibility in quantum measurements. The
physical reversibility resulting from the reversing measure-
ment allows the unknown premeasurement state to be recov-
ered from the postmeasurement state. For a spin-1 /2 system
�s=1/2�, we have analyzed an exact reversing measurement
using fidelity as a measure of recovery, giving a criterion for
more than 95% recovery of the measured state. We have
found that a high-spin probe �j�1/2� drastically changes
fidelity during the reversible and reversing measurements,
and thus enhances the recovery of the quantum state, though

reducing the probability of success. On the other hand, for
a high-spin system �s�1/2�, we have investigated an ap-
proximate reversing measurement instead of an exact one, in
view of physical implementation. We have then shown that
the reversing measurement for a spin-1 /2 system is an ap-
proximate reversing measurement for a high-spin system
�s�1/2� when the measured system is initially in a two-
dimensional subspace or when the interaction is sufficiently
weak. Notably, in the weak-interaction case, even a cat state
can be recovered near-deterministically in spite of there be-
ing a large change in fidelity.
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