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We studied energy spectrum for the hydrogen atom with deformed Heisenberg algebra leading to the
minimal length. We developed the correct perturbation theory free of divergences. It gives a possibility to
calculate analytically in the three-dimensional case the corrections to s levels of the hydrogen atom caused by
the minimal length. Comparing our results with the experimental data from precision hydrogen spectroscopy
an upper bound for the minimal length is obtained.
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I. INTRODUCTION

Recently a lot of attention has been attracted to the quan-
tum mechanical problems linked with generalized �modified�
commutation relations. Such an interest was motivated by
the works on the quantum gravity and the string theory
which suggested the existence of a finite lower bound to the
possible resolution of length �minimal length� �1–3�. Kempf
et al. showed that minimal length can be obtained from the
deformed Heisenberg algebra �4–8�. Note that the deformed
algebra leading to quantized space time was introduced by
Snyder in the relativistic case �9�. In the D-dimensional case
the deformed algebra proposed by Kempf reads

�Xi,Pj� = i � ��ij�1 + �P2� + ��PiPj�, �Pi,Pj� = 0,

�Xi,Xj� = i �
�2� − ��� + �2� + ����P2

1 + �P2 �PiXj − PjXi� , �1�

where � ,�� are parameters of deformation. We suppose that
these quantities are positive � ,���0. It can be seen that
position operators do not commute so we have a noncommu-
tative space. From the uncertainty relation it follows that
minimal length is ���+��. Note that in the special case
��=2� the position operators in linear approximation over
deformation parameters commute, i.e., �Xi ,Xj�=0.

The hydrogen atom is one of the simplest quantum sys-
tems allowing highly accurate theoretical prediction and is
well studied experimentally offering the most precisely mea-
sured quantities �10�. Therefore, this simple atom has a cru-
cial role for our understanding of the key points of modern
physics. Due to the singularity of the Coulomb potential at
the origin this system is in particular sensitive to whether
there is a fundamental minimal length. There are only a few
papers on the investigation of the hydrogen atom in quantum
space with minimal length �11–13�.

Brau �11� considered the special case of deformation ��
=2� and in the linear approximation over the deformation
parameters the energy spectrum of hydrogen atom was cal-
culated. The general case of deformation ���2� was stud-
ied in Ref. �12�. Using the perturbation theory the authors

calculated the correction to the energy spectrum of the hy-
drogen atom. But in order to calculate the corrections to the
s levels for three-dimensional space the authors were forced
to use a numerical method and cutoff procedure due to the
appearance once of the term �1/r3 in the Hamiltonian in the
linear approximation over � ,��. We would like to emphasize
that without the cutoff procedure this term leads to the diver-
gence of the correction to the s levels.

Note also paper �14� where the comparison between the
“space curvature” effects and minimal length effects for
the hydrogen spectrum was made. In Ref. �15� a one-
dimensional Coulomb problem was solved exactly.

In the present paper we propose the modified perturbation
theory free of divergences which gives a possibility to cal-
culate the corrections to all energy levels including s levels.
This paper is organized as follows. In the second section we
obtain corrections to the spectrum of D-dimensional Cou-
lomb problem using the ordinal perturbation theory. In the
third section we propose a modified perturbation theory and
calculate corrections to the energy of the s levels of hydro-
gen in the three-dimensional case. And finally the fourth sec-
tion contains the discussion.

II. PERTURBATION OF THE ENERGY SPECTRUM

In this section we consider the ordinal perturbation theory
similarly as in Ref. �12� but using another representation of
the deformed algebra. This algebra is more convenient for
the development of the modified perturbation theory.

We studied the eigenvalue problem for the hydrogen atom
in the D-dimensional case

� P2

2m
−

e2

R
�� = E� , �2�

where operators of position Xi and momentum Pi satisfy the
deformed commutation relation �1�, R=��i=1

D Xi
2.

We use the following representation that satisfies the al-
gebra �1� in the first order in �, ��,

Xi = xi +
2� − ��

4
�xip

2 + p2xi� ,*Email address: mykola@ktf.franko.lviv.ua
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Pi = pi +
��

2
pip

2; �3�

where p2=�k=1
D pk

2 and operators xi, pi obey canonical com-
mutation relations �xi , pj�= i��ij. For the undeformed
Heisenberg algebra the position representation may be taken:
xi=xi, pi= i�

�
�xi

.
We write the Hamiltonian of Eq. �2� using representation

�3� and taking into account only the first order terms in �, ��,

H =
p2

2m
+

��p4

2m
−

e2

�r2 +
2� − ��

2
�r2p2 + p2r2 + �2D�

,

�4�

where r=��i=1
D xi

2 and D is the dimension of space.
Expanding the inverse distance R−1 in the series over pa-

rameters of deformation up to the first order � ,�� we have

H =
p2

2m
+

��p4

2m
− e2	1

r
−

2� − ��

4
�1

r
p2 + p21

r

+
�2�D − 1�

r3 �
 . �5�

This Hamiltonian contains the correction of the first order
over � ,�� to the undeformed hydrogen atom Hamiltonian.

Now we can calculate the corrections �Enl
�1� to the spec-

trum using the eigenfunctions of the undeformed hydrogen
atom

�Enl
�1� =

e2�2

a3n3� �D − 1��2� − ���

4l̄�l̄ + 1�� l̄ +
1

2
� +

2� + ��

l̄ +
1

2

−
� + ��

n̄ � ,

�6�

where a is the Bohr radius, n̄=n+ D−3
2 , l̄= l+ D−3

2 , n is the
principal quantum number, and l is the orbital quantum num-
ber.

Expression �6� is in agreement with the results calculated
in the paper �12�. It is worth it to mention that in the special
case D=3 and l=0 expression �6� gives the divergent contri-
bution. It is caused by the term proportional to 1/r3 in
Hamiltonian �5�.

III. MODIFIED PERTURBATION THEORY.
CORRECTIONS TO THE ENERGY OF s-LEVELS

IN THREE-DIMENSIONAL CASE

In this section we propose a modified perturbation theory
which gives a possibility to overcome the problem of diver-
gence of the corrections to the s levels in three-dimensional
case. The idea is to use a shifted expansion of inverse dis-
tance R−1 which does not contain divergent terms like 1/r3.
So, we rewrite R as follows:

R = �r2 + b2 + ��r2p2 + p2r2 + �2D − b̄2� , �7�

where �= �2�−��� /2 and b2=�b̄2. Next we consider the ex-

pansion over ��r2p2+ p2r2+�2D− b̄2� in the vicinity of point

r2+b2. We will choose the introduced parameter b from the
condition that terms proportional to 1/r3 that are absent in
the series.

In the first order over � we can write

�r2 + b2 + ��r2p2 + p2r2 + �2D − b̄2� = �r2 + b2 + �Ĉ .

�8�

Squaring left and right hand side of �8� and taking into
account only the term of first order over �, we obtain the

following equation for operator Ĉ:

r2p2 + p2r2 + �2D − b̄2 = rĈ + Ĉr . �9�

In order to find Ĉ we write the left side of �9� in the
following form:

r2p2 + p2r2 + �2D − b̄2

=
1

2
	r�rp2 + p2r +

A

r
� + �rp2 + p2r +

A

r
�r
 , �10�

where parameter A=�2�D−1�− b̄2.
It is straightforward to show using �10� that

Ĉ =
1

2
�rp2 + p2r +

A

r
� . �11�

So we have the following expansion for the distance:

R = �r2 + b2 +
�

2
�rp2 + p2r +

A

r
� . �12�

It is easy to obtain the inverse distance R−1 using �12�,

1

R
=

1
�r2 + b2

−
�

2�r2 + b2�rp2 + p2r +
A

r
� 1
�r2 + b2

=
1

�r2 + b2
−

�

2
�1

r
p2 + p21

r
+

A

r3� . �13�

The contributions 1/�r2+b2 in the second term of expan-
sion �13� can be replaced with 1/r in the linear approxima-
tion over �. We demand that our expansion does not contain
the terms proportional to 1/r3 so we conclude that A=0, i.e.,

b = � ���D − 1� . �14�

It should be noted that �13� takes place under condition b2

	0, i.e., 2�	��.
We rewrite Hamiltonian �4� applying expansion �13� as

follows:

H =
p2

2m
+

��p4

2m
− e2	 1

�r2 + b2
−

2� − ��

4
�1

r
p2 + p21

r
�


= H0 + V , �15�

where H0 is the Hamiltonian of the undeformed hydrogen
atom and perturbation caused by the deformation is

V =
��p4

2m
− e2	 1

�r2 + b2
−

1

r
	 −
2� − ��

4
�1

r
p2 + p21

r
�
 .

�16�
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Now we calculate the correction to the ground state en-
ergy of the hydrogen atom caused by perturbation V. First let
us consider correction which is connected with 1/�r2+b2

−1/r. We have

�1s� 1
�r2 + b2��1s� =

4

a3�
ab

4
	H1�2b

a
� − Y1�2b

a
�
�

−

b2

2
�	H0�2b

a
� − Y0�2b

a
�
� ,

�17�

where H and Y are the Struve and the Bessel functions, re-
spectively �19�. Then up to first order over � �or b2�

�1s� 1
�r2 + b2

−
1

r
��1s� =

2b2

a3 �ln
b

a
+ � +

1

2
� , �18�

where �=0.57721. . . is the Euler constant.
It is easy to calculate the contributions caused by the

terms 1
r p2+ p2 1

r and p4. As a result the correction to the
ground state energy reads

�E1s
�1� = ��1s�V��1s�

=
e2�2

a3 	3� + �� − �2� − ���

��ln
�2�2� − ���

a2 + 2� + 1�
 . �19�

We also calculate the correction to the 2s level

�E2s
�1� = ��2s�V��2s�

=
e2�2

8a3 	7� + 3��

2
− �2� − ���

��ln
�2�2� − ���

4a2 + 2� +
5

2
�
 . �20�

Note that in special case 2�=�� these results for energy
levels reproduce the results of Brau �11�.

Similarly as in Ref. �12� we introduce two parameters 
=�xmin/a and �=� / ��+��� instead of � and ��, where the
minimal length �xmin= ���+��. We have already noticed
that the calculated corrections to the s levels take place under
the conditions 2�−���0. The conditions for the parameters
�, �� restrict the domain of the variation for the parameter �.
It is easy to verify that 1

3 ���1. We rewrite the correction
for the 1s level using the parameters � and :

�E1s
�1� =

e2

a
2�2� + 1 − �3� − 1��ln 2�3� − 1� + 2� + 1�� .

�21�

The correction to the 2s level as the function of parameters 
and � reads

�E2s
�1� =

e2

8a
2	1

2
�4� + 3� − �3� − 1�

��ln
2�3� − 1�

4
+ 2� +

5

2
�
 . �22�

The energy of the 1s and 2s level as a function of param-
eter  for the fixed value � is presented in Figs. 1 and 2,
respectively. The unit of energy in these figures is the abso-
lute value of the ground state energy of the undeformed hy-
drogen atom E0=e2 /2a.

FIG. 1. Comparison of different results for the energy of 1s
states with �=1/3 �upper graph� and �=1 �lower graph�. Solid
lines represent our results and dotted lines correspond to the results
of Benczik �see Ref. �12��.

FIG. 2. Energy of the 2s level. The solid line shows the result
when �=1 and the dash-dotted line corresponds to the parameter
�=1/3.
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Finally, we can consider constraints on the minimal
length. As it was noted �12�, the best estimation of the mini-
mal length can be obtained by including the contributions of
the minimal length effects in the Lamb shift. In Ref. �12� it
was pointed out that the experimental Lamb shift for the 1s
level of the hydrogen atom L1s

exprt=8172.837�22� MHz �16� is
larger than the best theoretically obtained L1s

theor

=8172.731�40� MHz �17�. To compare our results with Ref.
�12� we calculate the minimal length using the same data.
Assuming similarly as in Ref. �12� that the discrepancy be-
tween the experimental and theoretical values L1s

exprt−L1s
theor is

entirely attributed to the minimal length correction �E1s
�1� that

we find upper bound for the minimal length.
So having relation �21� we can estimate the minimal

length as a function of parameter �. The limit values of the
minimal length are �xmin=1.64�10−16 m for �=1/3 and
�xmin=2.86�10−17 m for �=1. Let us compare our results
with the estimation obtained in Ref. �12� where it was shown
that for �= 1

3 the minimal length ��xmin�−1=1.75 GeV or
�xmin=1.13�10−16 m and for �=1 the minimal length
��xmin�−1=6.87 GeV or equivalently �xmin=2.87�10−17 m,
where 1 m= ��c /e� �eV�−1. The comparison of our results for
the minimal length with results obtained in Ref. �12� for all
values of parameter � is shown in Fig. 3.

We also estimate the upper bound for the minimal length
using more recent experimental and theoretical results for
the Lamb shift from Ref. �18�, namely, L1s

exprt

=8172.840�22� MHz and L1s
theor=8172.811�32��2� MHz. The

result is shown in Fig. 3 �dashed line�. As one can see, the

minimal length calculated with more recent data is less than
the one calculated with the previous data �16,17� but both
quantities are of the same order.

As one can see our results for the energy levels as well as
for the estimation of the minimal length are in good agree-
ment with the results obtained in the paper �12�, especially
for the �=1. The discrepancy between these two estimations
are caused by the use of different methods of computation.
Namely, using the modified perturbation theory we have the
analytical expressions for the s energy levels. The authors of
Ref. �12� in order to calculate a correction to the s levels in a
three-dimensional case used a cutoff procedure and numeri-
cal calculation. More detailed comparison is made in Sec. IV.

IV. DISCUSSION

We studied the hydrogen atom in the space with the de-
formed Heisenberg algebra leading to nonzero minimal
length. The ordinary perturbation theory proposed in Ref.
�12� leads to the term proportional to 1/r3 in the perturbation
operator. This term gives a divergent contribution to energy
of the s levels in the three-dimensional case. Therefore, the
authors of Ref. �12� were forced to use the cutoff of the
expectation value integral �1/r3� at some point. In order to
find the free parameter that appeared as a result of this pro-
cedure, the author used the numerical calculation.

We construct a modified perturbation theory free of diver-
gences where instead of b2 /r3 we have �1/r−1/�r2+b2�
with b= ���D−1��2�−��� /2. It gives us the possibility to
calculate the analytically corrections to the energy levels
caused by deformation including the s levels in the three-
dimensional case. Comparing our results with experimental
data from precision hydrogen spectroscopy we find that the
upper bound for the minimal length is of the order of 10−16

and 10−17 m. Our results for the energy levels as well as the
result for the estimation of the minimal length are in a good
agreement with the results obtained in the paper �12� with
the help of the numerical calculation and cutoff procedure.
Note also that for the case �=1/3 �2�=��� our results for
the energy levels reproduce the result of Brau �11�, as it must
be.

Finally, we would like to draw attention to the problem
which is ignored in present paper as well as in the papers of
other authors. Considering the hydrogen atom in deformed
space we suppose that the Coulomb potential is the same as
in nondeformed space. In fact, in deformed space the Cou-
lomb potential as a potential of a point charge might be cor-
rected. This will lead to additional corrections to the energy
spectrum of the hydrogen atom. It is an interesting problem
which is worth separate investigations.
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