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We consider the phase separation of a trapped atomic mixture of fermions with unequal spin populations
near a Feshbach resonance. In particular, we determine the density profile of the two spin states and compare
with the recent experiments of Partridge et al. �Science 311, 503 �2006��. Overall we find quite good agree-
ment. We identify the remaining discrepancies, which provide important clues for the complete understanding
of the experiment.
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I. INTRODUCTION

The usual Bardeen-Cooper-Schrieffer �BCS� theory of
Bose-Einstein condensation �BEC� of fermion pairs requires
the populations of the two species involved in the s-wave
pairing to be equal. For a long time, therefore, theorists have
discussed fermionic pairing when the species densities are
unequal, and several proposals for the ground state have
been put forward �1–3�. Experimentally, however, such su-
perfluid states with unequal densities have remained elusive.

After several years of experimental studies of the BEC-
BCS crossover with equal spin population, experiments with
ultracold atoms have very recently also turned to studying
superfluidity with unequal populations �4,5�. The basic idea
is to load a trap with an unequal population of two hyperfine
states of 6Li and tune the bias magnetic field close to a Fes-
hbach resonance. It turns out that the physics of an unequal-
population Fermi mixture in a trap is rather different from
the uniform case. The dominant characteristic of the mea-
sured density profiles appears to be a phase separation, with
an equal-density BCS phase in an interior core, and an outer
shell consisting mostly of the majority species. If there are
additional two-component phases, for instance, Fulde-Ferrel-
Larkin-Ovchinikov �FFLO� phases, they are confined to a
shell-shaped region between the outer majority shell and the
inner BCS-like core.

Partridge et al. have reported in situ measurements of the
density profiles of the two states �4�, while Zwierlein et al.
report on measurements after expansion �5�. The former ex-
periments are performed close enough to the Feshbach reso-
nance that they may be regarded as being in the unitarity
limit, i.e., in the limit that the interaction strength g is effec-
tively infinite. In this Rapid Communication we concentrate
on the data from Ref. �4� and limit ourselves, therefore, to
the unitarity region. We do not consider here the data of Ref.
�5� on rotating fermion gases, nor do we deal with the issues
arising from expansion after the trap is switched off.

We present a zero-temperature analysis of the phase sepa-
ration using a local density approximation �LDA� and a BCS
ansatz for the many-body wave function. The Feshbach reso-
nance is treated using a single-channel description, because
the closed-channel component of the Cooper pair wave func-
tions is small in the crossover region for the extremely broad
Feshbach resonance that is being used in the experiment
�6,7�. Based on an analysis of the uniform case at unitarity,

we give simple arguments for the occurrence of phase sepa-
ration, and to identify the surface that surrounds the BCS
phase. We then calculate the majority and minority density
profiles within the BCS ansatz, and compare with experi-
mental profiles.

II. BCS ANSATZ FOR THE UNITARITY REGIME

We first examine pairing at unitarity with unequal chemi-
cal potentials for a homogeneous mixture. Since we will treat
the trapped case in LDA, the results from this analysis can be
used locally for any point in the trap. We are interested in the
g→� limit of the Hamiltonian

Ĥ = �
k,�

��k − ���ĉk,�
† ĉk,� +

g

V
�

p,q,k
ĉp+k,1

† ĉq−k,2
† ĉq,2ĉp,1.

The index � runs over the two hyperfine states of 6Li, de-
noted by �1� and �2�. The masses are the same, so �k
=�2k2 /2m for both species, but the chemical potentials are
different, i.e., �1,2��±h, so that it is possible to have un-
equal densities n1,2�n±m.

We use the BCS wave function as an ansatz for the paired
ground state. This corresponds to using the following decom-
position for the interaction term: ��k�ĉk,1

† ĉ−k,2
† + ĉ−k,2ĉk,1�

−�2 /g. We restrict ourselves to zero-momentum pairing be-
cause the experimental data do not indicate the presence of
an FFLO state �8�, and because two-channel calculations
suggest that FFLO states are not stable close to the resonance
�9�. At unitarity, the BCS ansatz is best understood as a
variational approach as opposed to a mean-field approxima-
tion. For the case of an equal-density mixture, this approach
has been shown to be a rather accurate method of interpolat-
ing the density profile between the BCS and BEC limits. We
employ the same philosophy here. Fortunately, improved in-
formation about the equal-density case is available from
Monte Carlo simulations �10–12� and may be used to im-
prove our trap calculations.

For the equal-density case, and within the single-channel
approximation, the many-body system at resonance is uni-
versal in the sense that the only energy scale in the problem
is that set by the density, i.e., the Fermi energy of the corre-
sponding free gas �F. The BCS ansatz gives the energy of the
resonantly interacting system to be 0.59 times �F. This num-
ber is called 1+�, with the universal number � being known
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from Monte Carlo calculations to be �	−0.58 �10–12�, to
which the BCS value �	−0.41 should be regarded as an
approximation. In the strong-coupling region, the pairing gap
is of the order of the chemical potential, instead of being
exponentially suppressed as in the weak-coupling regime.
Within the BCS ansatz �0	1.16�	0.68�F, while Monte
Carlo calculations give �0	0.50�F �12�.

With differing chemical potentials, i.e., h�0, the quasi-
particle energy spectrum of the BCS ansatz has two branches
Ek,±=Ek±h, with Ek=
�2+�k

2 �13,14�. For h	�, the lower
branch becomes negative in the momentum interval �k1 ,k2�,
where �k1,2= �2m�1,2�1/2 with �1,2=�

h2−�2. In that case
we need to fill up the negative energy modes to construct the
lowest-energy ground state. As a result, the thermodynamic
potential becomes

� =
1

V
�
k
���k − � − Ek� +

�2

2�k
� −

�2

g

+ ��h − ��
1

V
�

k1
�k�
k2

Ek,−. �1�

The �2 /2�k and �2 /g terms are required to remove the usual
ultraviolet divergence. Note that the last term is the only
place where h enters. The gap equation is given by the con-
dition for the extrema of the thermodynamic potential
��� ,h ,��, i.e., �� /��=0. The density average and differ-
ence may be calculated as n=−�� /�� and m=−�� /�h.

The ground state of the system is the absolute minimum
of �. For equal chemical potentials, the function ��� ,0 ,��
has a maximum at �=0 and a minimum at the equal-density
gap �0. As h is increased, there is a certain value, h
=�0 /�1, at which the �=0 extremum becomes a minimum
and there is an intermediate maximum �14�. This maximum
corresponds to an unequal-density paired solution of the gap
equation, commonly known as the Sarma phase �2�, which is
thus unstable. At some higher value of the chemical potential
difference, h=�0 /�2, the �=0 solution becomes the global
minimum so that the normal state is more stable than the
paired state. For weak coupling �g−1→−�� the special values
of h are h=� /2 and h=� /
2	� /1.414. Moving towards
the resonance from the BCS regime, we find that the values
of �1 and �2 change only slightly within the BCS ansatz. The
change in �1 is smaller than 1%, while we find that �2
evolves to about 1.44 at unitarity, i.e., a change of about 2%.
The value of �2 at infinite coupling is a universal number
and our value �2	1.44 is the approximation of this univer-
sal number within the BCS ansatz. Since �−h is still posi-
tive at h=�0 /�2, the normal state obtained after the first-
order phase transition is only partially polarized, and h has to
be further increased to obtain a fully polarized single-
component normal state.

Knowing that the Sarma phase is a maximum of the ther-
modynamic potential in the uniform case, it is clear that we
will not have this phase in the trap within the local-density
approximation. Thus, barring more exotic pairing mecha-
nisms, we only have to consider normal phases and equal-
density BCS phases.

III. PHASE SEPARATION IN A TRAP

The trapping potential used in Ref. �4� is asymmetric and
obeys Vtrap�r�= 1

2m�z
2z2+ 1

2m��
2 �x2+y2�, with �z=2��

�7.2 Hz� and ��=2�� �350 Hz�. We scale the spatial vari-
ables in the radial directions so that the trap potential be-
comes spatially symmetric, with trapping frequency �z in
each direction. In LDA, the trap terms in the Hamiltonian are
absorbed into the chemical potential, so that we have effec-
tive space-dependent chemical potentials

�eff
�1��r� = �1 − Vtrap�r� = �� + h� −

1

2
m�z

2r2,

�eff
�2��r� = �2 − Vtrap�r� = �� − h� −

1

2
m�z

2r2. �2�

The average �eff=
1
2 ��eff

�1�+�eff
�2�� decreases parabolically away

from the center of the trap while the difference equals 2h and
stays constant. Near the center of the trap, h is small com-
pared to �eff and hence compared to �0��eff�. Thus the den-
sities are forced to be equal and we have a BCS phase in the
center. Since �eff�r� decreases monotonically, there is some
radius RBCS at which �0��eff�	1.16�eff is equal to �2h. Out-
side this radius, a two-component normal phase is more
stable than a superfluid state. For this phase, we ignore
interactions between the two components and treat it like
two ideal Fermi gases whose densities are determined by
their different chemical potentials �see Fig. 1�. At the
Thomas-Fermi radius of the minority ��2�� species, RTF

�2�

=
2��−h� /m�z
2, the minority density vanishes. Outside

r=RTF
�2� only the majority remains. This outer shell survives

up to the majority ��1�� Thomas-Fermi radius RTF
�1�

=
2��+h� /m�z
2.

IV. DENSITY PROFILES

Given the chemical potentials �±h at the trap center, we
can calculate the BCS core radius RBCS and the Thomas-

FIG. 1. �Color online� Left: argument for phase separation from
consideration of the local effective chemical potentials. Shown are
�eff�r� �dashed� and �eff�r�±h �solid�. Right: phase separation, after
the x and y coordinates have been scaled to make the trap look
spherically symmetric. Here A is the BCS core, B is the intermedi-
ate shell of the bicomponent phase which we treat as two noninter-
acting ideal gases and C is the outer majority shell.
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Fermi radii RTF
�1,2�. The densities are then given by

n1,2�r� = 
nBCS��eff�r�� , r 
 RBCS

nN��eff�r� ± h� , RBCS 
 r 
 RTF
�1,2�

0, r 	 RTF
�1,2�.

� �3�

Here nBCS���=�k�1− ��k−�� /Ek� /2V is the usual equal-
density BCS density for a single component, and nN���
= �2m��3/2 /6�2 is the ideal-gas density. At unitarity,
nBCS���=nN�� / �1+���. To calculate the density correspond-
ing to the given total atom numbers, we first find the chemi-
cal potentials which give N1,2=�drn1,2�r�, and then use the
expressions given above.

In Fig. 2, we show density profiles for a typical experi-
ment of Ref. �4�. Experimentally, the density itself is
not accessible, but it is interesting to note some features.
At the BCS core radius RBCS, the majority density n1�r�
has a discontinuity because it is determined by the BCS
density corresponding to � on the r
RBCS side and by the
normal density corresponding to �+h on the r	RBCS side.
In the weak-coupling limit, the nBCS��� and nN��� functions
are almost identical, and so the discontinuity would then
have been much more prominent. At unitarity, however,
nBCS���=nN�� / �1+���= �1+��−3/2nN���, so that nN���
	0.454nBCS��� for our BCS treatment. This significantly re-
duces the upward jump of the majority density at the core
edge.

Similarly, the minority density n2�r� has a discontinuity at
the BCS core edge as it jumps down from nBCS��� to nN��
−h�. This discontinuity is enhanced by the effect of nonzero
� in nN���= �1+��3/2nBCS���. The large decrease of the mi-
nority density assures that the minority Thomas-Fermi radius
RTF

�2� is only slightly larger than the BCS core radius RBCS,
i.e., that the intermediate two-component shell is rather thin.
In the real system, we expect the LDA discontinuities to be
smoothed out somewhat by gradient and other corrections.
Since experimentally only spatially integrated versions of

n1�r� �column densities� are observed, the small nonmonoto-
nicity of the majority density is further washed out and is
expected to be difficult to observe.

V. MAJORITY AND MINORITY RADII

Figure 3 shows the evolution of the three radii in our
theory �RBCS,RTF

�2� ,RTF
�1�� with the number asymmetry P

= �N1−N2� / �N1+N2�, and compares with the radii from Ref.
�4�. Measured in units of the ideal-gas Thomas-Fermi radii
corresponding to N1,2, the theoretical curves depend only on
P and not on the total number. It is reasonable to assume that
the experimental minority radii correspond to RBCS rather
than RTF

�2�, since the minority occupancy in the intermediate
shell is negligible, as shown in Fig. 2. Our ab initio LDA
calculations then explain the radius data extremely well at
large P. At small P, the calculated radii are somewhat higher
than the experimental ones. This is expected from the use of
the BCS ansatz, which underestimates the reduction of the
paired state energy, and hence also the reduction of the size
in a trap. We could improve our calculation by using the
Monte Carlo values �	0.42�F and �0	0.50�F. However, to
identify RBCS we also need the ratio �2=�0 /h at which the
unequal-density normal phase becomes more stable than the
equal-density paired phase, and to the best of our knowledge
�2 is not known outside the BCS ansatz. We have, therefore,
opted for consistency and used the BCS ansatz throughout.

The question remains whether there is a critical nonzero
value of P at which phase separation first appears. No such
feature appears in our calculations, because in the BCS
+LDA framework, phase separation appears at any nonzero
asymmetry, since only the equal-density superfluid phase and
the normal phase are stable in this case.

VI. AXIAL DENSITY PROFILES

In Fig. 4, we have plotted LDA calculations for densities
with both x and y directions integrated out, and compared

FIG. 2. �Color online� Majority and minority densities calcu-
lated in LDA for typical experimental parameters of Ref. �4�. The
densities are expressed in units for the effective spherical trap with
trapping frequency �z in each direction after rescaling the radial
directions.

FIG. 3. �Color online� Radius versus number asymmetry. The
three solid lines from bottom to top are calculated values of RBCS,
RTF

�2� and RTF
�1�. Filled circles and empty squares are experimental

majority and minority radii, respectively, from Ref. �4�. The radii
RBCS, RTF

�2�, and the experimental minority radii are scaled by the
ideal-gas Thomas-Fermi radius RTF

ideal�N2� of N2 �minority� fermions.
The radius RTF

�1� and the majority radii are scaled by RTF
ideal�N1�.
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them with column densities integrated along the x direction
�8�. The typical feature seems to be that the majority density
profile fits better than the minority profile, especially outside
the BCS core. This is not so surprising because, outside the
core, the majority distribution is simply the ideal-gas
Thomas-Fermi distribution. Some details of the density pro-
files are smoothed out because of the double integration, but
it is instructive to look at the axial density difference. In the
integral for the axial density difference, one can for z

RBCS remove z from both the integrand and the integration
limits, so that the theoretical axial density difference is con-
stant up to z=RBCS, as seen in Fig. 4. In the experimental
data, however, there is barely an extended constant part in
the difference. Geometrically, the experimental data indicates
that the inner core is expanded radially and squeezed axially
compared to the LDA prediction. At this point the physical
reason for this deformation is not clear. Possible reasons
could be temperature effects, nonuniversal physics beyond
the single-channel description, or the effects of nontrivial

phases in the interface region which we have not included.
Another intriguing possibility is that, since the trap is much
tighter in the radial direction than in the axial direction, cor-
rections to the local density approximation might be required
for the radial directions. The discrepancy in the density dif-
ference is an urgent issue and is presently under investiga-
tion.

VII. CONCLUSIONS

In summary, we have presented ab initio calculations of
the density profiles for a fermion mixture near a Feshbach
resonance loaded into a trap and with unequal spin popula-
tions. While the major features are successfully reproduced,
two major questions emerge from our analysis. One is the
shape of the axial density difference curve which deviates
somewhat from the LDA calculation, as seen clearly in Fig.
4. The second issue is the possibility of having a transition
from a non-phase-separated configuration to a phase-
separated configuration at a certain critical value of the num-
ber asymmetry P.

We have assumed that unequal-density pairing schemes
are less favored than the two-component normal phase of the
intermediate shell. While it is likely that the intermediate
shell is too small to make a difference in the density profiles,
the issue of stability of various unequal-density pairing
schemes has not been examined thoroughly at unitarity.
Some of these questions and issues are currently also under
investigation.

Note added. Recently we learned of independent work on
issues similar to ours �15,16�.
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FIG. 4. �Color online� Experimental axial densities as function
of z for several �N1 ,N2�, plotted together with theoretical densities
integrated over both x and y directions: �dxdyn�x ,y ,z�. Upper pan-
els are the axial densities of states �1� and �2� and the lower panels
are the differences. Note that there are no fitting parameters.
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