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Generation of cluster states in ion-trap systems
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We propose two schemes for the generation of four-qubit cluster states in ion-trap systems. The first scheme
is based on resonant sideband excitation, while the second scheme does not use the vibrational mode as the
memory. The schemes can be realized with presently available ion-trap techniques.
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Entanglement is one of the most striking feature of quan-
tum mechanics. Entangled states of three or more particles
not only provide possibilities to test quantum mechanics
against local hidden theory without using inequality �1�, but
also have practical applications in high-precision frequency
measurement �2� and quantum-information processing �3�. It
has been shown that there are two inequivalent classes of
tripartite entanglement states, the Greenberger-Horne-
Zeilinger �GHZ� class �1� and the W class �4�, under stochas-
tic local operation and classical communication. Recently,
Briegel et al. have introduced another class of multiqubit
entangled states, i.e., the so-called cluster states �5�. Cluster
states have many interesting features. They have a high per-
sistence of entanglement and can be regarded as an entangle-
ment source for the GHZ states, but are more immune to
decoherence than GHZ states �6�. It has been shown that a
new inequality is maximally violated by the four-particle
cluster state but not by the four-particle GHZ states, and the
cluster states can also be used to test nonlocality without
inequalities �7�. More importantly, it has been shown that the
cluster states constitute a universal resource for so-called
one-way quantum computation proceeding only by local
measurements and feedforward of their outcomes �8�.

Walther et al. have experimentally generated four-photon
cluster states and demonstrated the feasibility of the one-way
quantum computation �9�. The experimental demonstration
of the cluster-state violation of Bell’s inequality has also
been reported �10�. On the other hand, recent advance in ion
traps has opened the prospects for quantum-entanglement en-
gineering and quantum-information processing. Very re-
cently, research groups have realized a six-atom GHZ state
�11� and eight-qubit W states �12� in such a system. How-
ever, multi-qubit cluster states have not been demonstrated in
such a system yet. In this paper, we propose two schemes for
the generation of cluster states in ion trap systems. The first
scheme is based on resonant sideband excitation, while the
second scheme does not use the vibrational mode as the
memory. The schemes are realizable with presently available
experimental techniques.

We here assume that the ions have two excited metastable
states �e� and �e�� and one ground state �g�. The quantum bit
�qubit� is carried by states �e� and �g�. The first ion is initially
prepared in the state �e� and the center-of-mass vibrational
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mode is initially prepared in the vacuum state �0�. We drive
the first ion with a laser tuned to the first lower vibrational
sideband with respect to the transition �g�→ �e�. Assume the
laser is off resonant with the transition �g�→ �e�� and thus the
state �e�� is not affected during the interaction. In the Lamb-
Dicke limit and the weak-excitation regime where the Rabi
frequency is much smaller than vibrational frequency, the
interaction Hamiltonian is �13�

H = i
�

2
�e−i�a�e1��g1� + H.c., �1�

where a† and a are the creation and annihilation operators of
the center-of-mass vibrational mode of the trapped ions, � is
the Lamb-Dicke parameter, and � and � are the Rabi fre-
quency and phase of this laser field. After an interaction time
�1 the state of the system combined by this ion and the
center-of-mass mode is

cos��

2
��1	�e1��0� − ei�sin��

2
��1	�g1��1� . �2�

With the choice �=� and ���1=� /2 we obtain

1

2

��e1��0� + �g1��1�� . �3�

We now follow the ideas introduced in Ref. �13� to
achieve a phase gate. We drive the third ion, initially in the
state �1/
2���g3�− �e3��, with a laser tuned to the first lower
vibrational sideband with respect to the transition �g�→ �e��.
The interaction Hamiltonian is given by

H� = i
�

2
��e−i��a�e3���g3� + H.c. �4�

After an interaction time �2 the evolution of the state �1� �g3�
is

�1��g3� → cos��

2
���2	�1��g3� + e−i��sin��

2
���2	�0��e3� .

�5�

On the other hand, �0� �e2�, �0� �g2�, �1� �e2� do not undergo
any transition during the interaction. With the choice
����2=2� we obtain �1� �g3�→−�1� �g3�. This corresponds
to the phase gate between the third ion and the vibrational
mode, which was first proposed by Cirac and Zoller �13�.

Then we have
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1

2
��e1���e3� − �g3���0� − �g1���e3� + �g3���1�� . �6�

We now map the state of the vibrational mode to the
second ion by driving this ion with a laser tuned to the first
lower vibrational sideband with respect to the transition �g�
→ �e�, leading to

1

2
��e1��g2���g3� − �e3�� − �g1��e2���e3� + �g3��� . �7�

Performing the transformation

�e1� →
1

2

��e1� + �g1�� ,

�g1� →
1

2

��g1� − �e1�� , �8�

we obtain

1

2
2
���g1� + �e1���g2���g3� − �e3��

− ��g1� − �e1���e2���e3� + �g3��� . �9�

The fourth ion is initially in the state �1/
2���e4�+ �g4��.
We map its state to the vibrational mode, resulting in

1

4
���g1� + �e1���g2���g3� − �e3��

− ��g1� − �e1���e2���e3� + �g3�����0� + �1�� . �10�

We now perform the phase gate operation between the third
ion and the vibrational mode, leading to

1

4
����g1� + �e1���g2���g3� − �e3��

− ��g1� − �e1���e2���e3� + �g3����0�

+ ���g1� + �e1���g2��− �g3� − �e3��

− ��g1� − �e1���e2���e3� − �g3����1�� . �11�

Mapping the state of the vibrational mode back to the fourth
ion, we have

1

4
����g1� + �e1���g2���g3� − �e3��

− ��g1� − �e1���e2���e3� + �g3����g4�

+ ���g1� + �e1���g2��− �g3� − �e3��

− ��g1� − �e1���e2���e3� − �g3����e4�� . �12�

We can rewrite Eq. �12� as

1

4
��g1��z

2 + �e1����g2��z
3 + �e2����g3��z

4 + �e3����g4� + �e4�� ,

�13�

where
j
�z = �gj��gj� − �ej��ej� . �14�
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The state of Eq. �13� is just a four-qubit cluster state.
We note that the cluster states can also be generated with-

out using the vibrational mode as the memory. We consider
four identical three-level ions, having two ground states �e�
and �g� and an excited state �r�, confined in a linear trap. We
now follow the ideas introduced in Ref. �14� to achieve a
geometric phase gate. The transition �e�→ �r� of the first
three ions is driven by two classical laser fields with detun-
ings � and �+�0−	, with �0 being the frequency of the
center-of-mass vibrational mode. Assume that ��� j, �0,
with � j �j=1,2� being the Rabi frequency of the jth laser.
The relative detuning of the two lasers is close to �0, i.e.,
�0�	. In this case we can neglect other vibrational modes.
In the rotating-wave approximation, the Hamiltonian for this
system is given by �assuming 
=1�

H = �0a†a + 
j=1

3 ��e−i���0−	�t−��a+a†��

+ �ei���0−	�t−��a+a†�� +
�1

2 + �2
2

2�
	Sz,j , �15�

where

Sz,j =
1

2
��rj��rj� − �ej��ej�� , �16�

� =
�1�2

2�
. �17�

If the ions initially have no probabilities of being populated
in the state �r�, they will remain in the ground state during
the interaction. In this case the Hamiltonian reduces to

H = �0a†a − 
j=1

3 ��

2
e−i���0−	�t−��a+a†��

+
�

2
ei���0−	�t−��a+a†�� +

�1
2 + �2

2

4�
	�ej��ej� . �18�

Consider the behavior of the trapped ions in the Lamb-
Dicke regime, where �
n̄+1�1, with n̄ being the mean
phonon number of the center-of-mass mode. Assume that
����0 and thus we can neglect the terms oscillating at
frequencies of the order of �0. In the interaction picture the
interaction Hamiltonian is given by

Hi = − 
j=1

3 ��1
2 + �2

2

4�
+

�

2
�2 cos�− 	t + �0t�

+ i��a†ei	t − ae−i	t��	�ej��ej� . �19�

Define the symmetrical state �k� with k atoms being in the
state �e�, i.e., the well-known Dicke state �15�. During the
infinitesimal interval �t , t+dt� the interaction induces the
evolution
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�k���k�t�� → e−iHidt�k���k�t��

= eik���1
2+�2

2�/4�+� cos�−	t+�0t��dtD�d�k��k���k�t�� ,

�20�

where

d�k = − k�
�

2
ei	tdt . �21�

��k�t�� denotes the vibrational state correlated with the qubit
state �k� at the time t. Assume that the vibrational mode is
initially in the state ���0��. Then we obtain the evolution

�k����0�� → eik���1
2+�2

2�/4��t+��/�−	+�0��sin�−	t+�0t�

�ei�kD��k��k����0�� , �22�

where

�k = − k�
0

t

�
�

2
ei	t�dt� = − k�

�

2i	
�ei	t − 1� , �23�

�k = Im�


�k�
*d�k� = − Im�

0

t �k�
�

2
	2 1

i	
�1 − ei	t��dt�

= − �k�
�

2
	2

Im� 1

i	
�t −

1

i	
�ei	t − 1���

= �k�
�

2
	2� t

	
−

1

	2 sin�	t�� . �24�

With the choice

	t = 2� , �25�

we obtain

�k����0�� → eik�eik2��k����0�� , �26�

where

� =
�1

2 + �2
2

4�
t +

�

2�− 	 + �0�
sin��0t� , �27�

� = ��
�

2
	2 t

	
. �28�

In this case, the vibrational state is displaced along a circular
path, returning to its original point in the pase space, acquir-
ing a geometric phase conditional on the electronic states
�14�.

We now assume that each atom is initially in the state
��ej�+ �gj�� /
2. Then the state for the first three ions can be
written as a Bloch state �16�,

1

8


k=0

3 �k

3
	1/2

�k� . �29�

Using Eqs. �26� and �29�, we obtain the state of the qubit
system after an interaction time t,
065802
1

8


k=0

3

eik�ei�k��/2�2t/	�k

3
	1/2

�k� . �30�

Setting

�2�2

4	
t = �/2, �31�

we have

1

2
2

k=0

3

�e−i�/4eik� + ei�/4�− �keik���k

3
	1/2

�k�

=
e−i�/4

4
��

j=1

3

��gj� + ei��ej�� + i�
j=1

3

��gj� − ei��ej��	 .

�32�

We can satisfy Eqs. �25� and �31� by choosing 	=��
and t=2� / ����. The transformations �e1�→e−i� �e1�,
��g2�+ei� �e2�� /
2→ �g2�, and ��g2�−ei� �e2�� /
2→ i �e2� lead
to

e−i�/4

2
2
���g1� + �e1���g2���g3� + ei��e3��

− ��g1� − �e1���e2���g3� − ei��e3��� . �33�

We then drive the third and fourth ions with the above-
mentioned lasers. After an interaction time t=2� /	 we
obtain

e−i�/4

4
����g1� + �e1���g2���g3� + e2i�ei��e3��

− ��g1� − �e1���e2���g3� − e2i�ei��e3����g4�

+ ���g1� + �e1���g2��ei�ei��g3� + e3i�e4i��e3��

− ��g1� − �e1���e2��ei�ei��g3� − e3i�e4i��e3����e4�� . �34�

We again set �2��2 /4	�t=� /2 and perform the transforma-
tions �e3�→−e−2i�e−i� �e3� and �e4�→−e−i�e−i� �e4�. Then we
have

e−i�/4

4
����g1� + �e1���g2���g3� − �e3��

− ��g1� − �e1���e2���g3� + �e3����g4�

+ ���g1� + �e1���g2��− �g3� − �e3��

− ��g1� − �e1���e2��− �g3� + �e3����e4�� . �35�

We can rewrite this state as

e−i�/4

4
���g1��z

2 + �e1����g2��z
3 + �e2��

���g3��z
4 + �e3����g4� + �e4��� , �36�

where �z
j is given by Eq. �14�. In this way we also obtain a

four-particle cluster state.
It is necessary to estimate the fidelity of the operations.

The error mainly results from two- or three-qubit operations.

The first scheme consists of six sideband excitations which
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couple the internal and external degrees of freedom
and trivial single-qubit rotations. The fidelity of each
sideband excitation is about 0.93 �17,18�. In this case, the
fidelity of the whole procedure is about 0.65. The second
scheme involves a three-ion coupling and a two-ion cou-
pling. The respective fidelities are about 0.89 and 0.95
�14,19� and thus the fidelity of the whole procedure is about
0.85.

In conclusion, we have described two schemes for the
generation of four-qubit cluster states with trapped ions. The

required experimental techniques of the schemes are within

�6� W. Dür and H. J. Briegel, Phys. Rev. Lett. 92, 180403 �2004�.
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the scope of what can be obtained in the ion-trap setup. The
experimental implementation of the schemes is useful for
the test of fundamental aspects of quantum physics and
quantum-information processing.
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