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Purity and squeezing exchange between coupled bosonic modes
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We study the dynamics of squeezing and purity exchange between two coupled bosonic modes in the model
of the quantum parametric converter, comparing it with the dynamics of entanglement.
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In the recent paper �1� Boukobza and Tannor called atten-
tion to an interesting feature of coupled quantum systems.
Considering the Jaynes-Cummings model, they showed that
if the quantum state of the whole system is mixed, then the
rates of the change of entropies of the field and atomic
modes can have opposite signs, in contrast to the case of a
pure state of the whole system, where the entropies of both
modes coincide, being equal to zero initially. In particular,
two modes can exchange their entropies. Actually, such a
behavior of partial entropies of the field and atomic sub-
systems was noticed earlier in �2�. Moreover, the possibility
of the purity exchange between two resonantly coupled field
modes in a cavity with oscillating boundary was discovered
in �3�. Consequently, this phenomenon is not specific to the
Jaynes-Cummings system. The aim of our paper is to analyze
the effect of entropy �purity� exchange for coupled bosonic
modes, comparing it with the exchange of other properties,
in particular, the degree of the squeezing of each mode. Ear-
lier we studied the squeezing exchange between resonantly
coupled bosonic modes in �4�, but only in the particular case
of initial pure states of both modes.

Two bosonic modes can be described with the aid of
lowering and/or raising operators âk and âk

†, satisfying
the standard commutation relations �âk , âj

†�=�kj �hereafter
k , j=1,2�, or by means of the Hermitian dimensionless
quadrature components operators, defined according to the
decomposition âk= ��kx̂k+ ip̂k� /�2�k. We define the sym-
metrical real quadrature covariances as q��� 1

2 �q̂�q̂�+ q̂�q̂��,
where q� are components of the four-dimensional vector
q= �x̂1 , p̂1 , x̂2 , p̂2�. We assume for simplicity that all mean
values of quadrature operators are equal to zero �otherwise it
is sufficient to replace the operators âk by âk− �âk��. It is
convenient to gather the covariances in the symmetrical
4�4 covariance matrix Q, splitting it in 2�2 blocks as
follows:

Q = 	 q�� 	 = 
Q11 Q12

Q21 Q22

, Q jk = Q̃kj ,

where the tilde over the matrix means matrix transposition.
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For the Gaussian states, the von Neumann’s entropy
G=−Tr��̂ ln �̂� and the quantum purity �=Tr��̂2� of
the whole system, described by the statistical operator �̂, and
its subsystems, described by the reduced statistical operators
of the form �̂1=Tr2��̂�, can be expressed in terms of the
determinants D0=det Q and Dij =det Qij �5,6�. In particular,
�= �16D0�−1/2 and �k= �4Dkk�−1/2. Therefore, the quantities
D0 and Dkk can also serve as simple entropylike characteris-
tics �equivalent to G and � for Gaussian states and indepen-
dent for non-Gaussian ones�. They can be interpreted as the
effective volumes in the phase space �6–8�. One can verify
the formula

Dkk = �âk
†âk + 1

2�2 − ��âk
2��2. �1�

The degree of squeezing in each mode is characterized in
the best and simplest way by the invariant squeezing coeffi-
cient �9� �or “principal squeezing” coefficient �10��

Sk = 1 + 2�âk
†âk� − 2��âk

2�� , �2�

which is nothing but twice the minimal value of the vari-
ances of quadrature components of the family of operators
âei	, when parameter 	 varies in the interval 0
	�2� �so
that Sk=1 for coherent states and Sk�1 if the state is
squeezed�.

We suppose that there are no correlations between the
modes in the initial states. Then one can always make inde-
pendent rotations in the phase planes of the modes �or mul-
tiply the operators âk by some phase factors�, which elimi-
nate the covariances between the “coordinate” and
“momentum” quadratures. Thus we shall use the following
parametrization of the initial second order moments:

�âk
†âk��0� = 
kcosh�2rk� − 1

2 , �â1
†â2��0� = 0, �3�

�âk
2��0� = 
ksinh�2rk�, �â1â2��0� = 0. �4�

The parameters 
k determine the initial purities of each sub-
system, Dkk�0�=
k

2, while the parameters rk give the initial
degrees of squeezing,

Sk�0� = 2
kexp�− 2rk� . �5�

We suppose that rk�0, assuming that initially squeezed
quadratures are the coordinate ones. The inequality

k�1/2 must hold due to the Schrödinger-Robertson uncer-

tainty relations �11�.
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We consider the evolution of the coefficients Dkk and Sk in
the case of parametric converter, described by the Hamil-
tonian �we assume �=1�

Ĥc = �1â1
†â1 + �2â2

†â2 + �â1
†â2ei�t + �*â2

†â1e−i�t, �6�

where we set �=�2−�1, confining ourselves to the simplest
case of exact resonance. In this case the Heisenberg equa-
tions of motion have exact solutions �12�

â1�t� = e−i�1t�â1�0�cos � − i	â2�0�sin �� ,

â2�t� = e−i�2t�â2�0�cos � − i	*â1�0�sin �� ,

where ���� � t and 	=� / ���. Thus we have

D11 = 
1
2c4 + 
2

2s4 + 2�+
1
2s2c2, �7�

Ḋ11��� = 4cs�s2
2�
2 − �+
1� − c2
1�
1 − �+
2�� , �8�

S1��� = 2�
1cosh�2r1�c2 + 
2cosh�2r2�s2

− �
1
2sinh2�2r1�c4 + 
2

2sinh2�2r2�s4

− 2�
1
2sinh�2r1�sinh�2r2�c2s2�1/2
 , �9�

where c�cos���, s�sin���, ��Re�	2�, and

�± = cosh�2r1�cosh�2r2� ± � sinh�2r1�sinh�2r2� . �10�

For the second mode one should change the indices 1↔2.
Note that �±�1 for any values of rk and �, because
cosh�2�r1−r2��
�±
cosh�2�r1+r2��.

We see from Eqs. �7� and �9� that the modes periodically
exchange their phase volumes and degrees of squeezing.
However, this exchange is not always “straightforward” �mo-
notonous�, and namely this fact seems to us interesting
enough to justify the publication of our observations. Let us
suppose for definiteness that 
1�
2. Then Eq. �8� �with the

substitution 1↔2� shows that initially Ḋ22�0, which seems
to be quite natural. But when �→� /2 �approaching the
moment of total exchange of properties of the modes�, the
sign of this derivative is the same as the sign of combination

1−�+
2. Consequently, a monotonous increase of the phase
volume D22 during the first half of a period is observed,
provided that 
1 is not simply bigger than 
2, but a stronger
inequality 
1��+
2 must be satisfied. Under the same con-

dition, the derivative Ḋ11��� is negative for 0���� /2. If
�+
2�
1�
2 �this can happen if at least one of coefficients
r1 and r2 is different from zero�, then the behavior of the
functions Dkk��� is nonmonotonous, and their derivatives
change the sign at the moments of time �1,2

D determined by
the equations

tan2��1
D� =


1�
1 − �+
2�

2�
2 − �+
1�

= cot2��2
D� . �11�

One can verify that �1
D
� /4
�2

D. The derivatives Ḋ11���
and Ḋ22��� have opposite signs in the interval �1

D
�
�2
D.

The length of this interval diminishes with decrease of the
difference 
2−
1 �for the fixed value of �+�, going to zero if


2=
1. In this special case D11����D22����D11�0�, so that
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the entropies of both subsystems always coincide, indepen-
dently of the values of other parameters; moreover, the phase
volume of each mode increases monotonously, until reaching
the maximal value 
1

2��++1� /2 at �=� /4, and then returns
monotonously to the initial value 
1

2. The three different re-
gimes of the evolution of phase volumes are illustrated in
Fig. 1.

Now let us study the behavior of the squeezing coeffi-
cient, confining ourselves for simplicity to the extreme cases
�= ±1, when the square root in �9� can be calculated exactly.
If �=−1, then

S1
− = 2
1exp�− 2r1�c2 + 2
2exp�− 2r2�s2, �12�

and the degree of squeezing changes monotonously. The
situation is quite different in the case �=1, when

S1
+ = �2
1exp�− 2r1�c2 + 2
2exp�2r2�s2, � � �1

S

2
1exp�2r1�c2 + 2
2exp�− 2r2�s2, � � �1
S

so that the time derivatives of the functions S1,2
+ ��� has iden-

tical finite negative jumps

�Ṡ1,2
+ = − 8�
1sinh�2r1� + 
2sinh�2r2��cs��=�1,2

S

at the instants of time �1,2
S determined by the equation

tan2��1
S� =


1sinh�2r1�

2sinh�2r2�

= cot2��2
S� . �13�

Note that the instants �1,2
S have no relation to the instants �1,2

D

defined by Eq. �11�, moreover, �1
S can be greater than �2

S.

Since the derivatives Ṡ1,2
+ ��� do not change the sign in the

time intervals before and after �1,2
S , one can easily see that

+

FIG. 1. The coefficients Dkk versus z=� /�. The single line �a�
corresponds to the case 
1=
2=0.6 and �+=1.8. The curves �b1�
and �b2� give the coefficients D11 and D22 �respectively� for

1=0.9, 
2=0.6, and �+=1.8. The curves �c1� and �c2� show the
case 
1=0.9, 
2=0.6, and �+=1.25.
there are only two possibilities for the functions S1��� and
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S2
+���: �i� one of them monotonously increases while another

monotonously decreases; �ii� each function increases until �
achieves the value �1

S or �2
S and decreases after that instant. In

both cases, the functions S1
+��� and S2

+��� have identical nega-
tive jumps of their first derivatives at the instants �1

S and �2
S,

respectively. The situation when both the functions first de-
crease and then increase is impossible. This means that the
squeezing coefficient of each mode never can become
smaller than the smallest of the two initial values given by
Eq. �5�. At the moments �1,2

S we have

S1
+��1� = S2

+��2� =
2
1
2sinh�2r1 + 2r2�


1sinh�2r1� + 
2sinh�2r2�
.

Comparing this value with Eq. �5�, one can see that case �ii�
is possible if two inequalities hold simultaneously:


1e−2r1 � 
2e2r2, 
2e−2r2 � 
1e2r1. �14�

This can happen if 
1=
2 or if each mode was initially in
the true squeezed state �when the left-hand sides of both the
inequalities are smaller than 1

2 �. If one of the inequalities in
�14� is not satisfied, then we have case �i�. It can be realized
if some mode was initially in a highly mixed and non-
squeezed state. Examples illustrating the behavior of func-
tions S1��� are shown in Fig. 2.

The coefficients Dkk and Sk characterize statistical proper-
ties of each mode alone. On the other hand, the interaction
between the modes gives rise to their statistical dependence.
It seems natural to suppose that the peculiarities in the be-
havior of functions Dkk��� and Sk���, demonstrated in Figs. 1
and 2, could be explained by this interaction. For the Gauss-

FIG. 2. The squeezing coefficient S1 versus z=� /� for identical
squeezing parameters r1=r2=0.25 and different sets of the initial
purity coefficients �the signs + and − correspond to �= ±1�: �a�

1=
2=0.9; �b� 
1=1.8 and 
2=0.6; �c� 
1=0.9 and 
2=0.6. The
curves corresponding to the second mode can be obtained by the
reflection of this figure with respect to the vertical line z�0.25.
ian states, all information on the statistical correlations be-
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tween the modes is contained in the off-diagonal block Q12
of the total covariance matrix. There are two invariants of
this 2�2 block: its trace and determinant �13�,

T12 � 1
2 Tr�Q12Q21� = ��â1â2

†��2 + ��â1â2��2, �15�

D12 � det Q12 = ��â1â2
†��2 − ��â1â2��2. �16�

For the Gaussian states with zero mean values �âk� the coef-
ficient T12 gives a measure of correlations between fluctua-
tions of the numbers of photons in each mode �14�:

T12 = �N̂1N̂2� − �N̂1��N̂2�, N̂k � âk
†âk. �17�

In the case concerned we have

T12 = s2c2�
1
2cosh�4r1� + 
2

2cosh�4r2� − 2�−
1
2� .

�18�

Since the right-hand side of Eq. �18� is non-negative for any
values of parameters, the dynamics of function T12��� shows
nothing interesting: this periodical function starts from zero,
increases monotonously as sin2�2�� until the moment
�=� /4 and then returns to the initial value. No correlation
with the dynamics of functions Dkk��� and Sk��� is observed.

The evolution of the determinant of the cross-covariance
matrix is quite similar to Eq. �18�,

D12��� = s2c2�
1
2 + 
2

2 − 2
1
2�+� . �19�

However, the sign of the right-hand side of �19� depends on
the concrete values of parameters. This observation is impor-
tant in view of the problem of separability of the density
matrix of the total system of two coupled modes. Indeed, the
known Simon’s separability criterion �15� for Gaussian states
can be represented in the form of a simple inequality Z�0,

FIG. 3. The separability coefficient Z versus z=� /� for

1=1.8 and 
2=0.6 �so that �e�2.28�. The curve �a� corresponds
to the case �+=1.25 �when �q�−0.41�. The curves �b� and �c�
correspond to �q�0, with �+=2 and �+=3, respectively.
where �14,16�
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Z = D0 + 1
16 − 1

4 �D11 + D22� − 1
2 �D12� . �20�

Moreover, if the system’s dynamics is governed by a Hamil-
tonian which is a quadratic form of lowering and/or raising
or quadrature operators with arbitrary time-dependent coef-
ficients, and if the density operator of the whole system was
factorized at the initial moment t=0 �i.e., Q12�0�=0�, then
�14�

Z�t� = Z�0� + 1
2 �D12�t� − �D12�t��� , �21�

due to the existence of two general symplectic invariants �8�
I2�D11�t�+D22�t�+2D12�t� and I0�D0�t�. In the case con-
cerned we have Z�0�= �
1

2−1/4��
2
2−1/4�. If

�q � �+ − �
1
2 + 
2

2�/�2
1
2� 
 0, �22�

then D12 is always non-negative, and the joint quantum state
of two modes remains separable forever. The condition �22�
resembles the condition of monotonous entropy exchange,
�+

1 /
2, but the coefficient is different. Consequently,
again there is no strict correlation between the behavior of
entropies of each subsystem and the separability of the total
system.

If condition �22� is violated, then function Z��� decreases
for 0���� /4, but the state can become entangled �Z�0�
during some time interval if only
�9� V. V. Dodonov, J. Opt. B: Quantum Semiclassical Opt. 4, R1
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�+ � �e � 2
1
2 + �8
1
2�−1. �23�

The instant �e of the “phase transition” from a separable to
an entangled state is determined by the equation

tan2�2�e� =
2�
1

2 − 1/4��
2
2 − 1/4�


1
2��+ − �e�
, �24�

but this instant coincides neither with �1,2
S nor with �1,2

D , as
can be seen by comparing Figs. 1, 2, and 3.

Concluding, we have studied the influence of initial pa-
rameters on the dynamics of the entropy �purity� and squeez-
ing exchange between two coupled bosonic modes in the
model of the quantum parametric converter. This dynamics
appears nontrivial, because it can be nonmonotonous. At the
same time, the dynamics of the degree of separability �en-
tanglement� of the joint mixed quantum state turned out to be
much more simple, and we did not discover any strict corre-
lation between the dynamics of the squeezing and purity in
each mode and the dynamics of entanglement.
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