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The nonrelativistic ground-state energy of 4HeH+ is calculated using a variational method in Hylleraas
coordinates. Convergence to a few parts in 1010 is achieved, which improves the best previous result of
Pavanello et al. �J. Chem. Phys. 123, 104306 �2005��. Expectation values of the interparticle distances are
evaluated. Similar results for 3HeH+ are also presented.
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The hydrogen-helium ion 4HeH+, a four-body Coulombic
system consisting of ��+ , p+ ,e− ,e−�, is an important mol-
ecule which has attracted a great deal of attention �see �1�
and references therein�. In a recent paper by Pavanello et al.
�1�, the pure vibrational spectrum of 4HeH+ was studied
nonadiabatically, using a variational method in an explicitly
correlated Gaussian basis. Very accurate vibrational energy
levels up to v=11 have been determined. The characteristic
of this type of calculation is to put all charged particles on
the same footing without using the Born-Oppenheimer ap-
proximation. The vibrational modes are reflected by simply
including higher powers of the internuclear distance in the
basis set. This approach is exact in the sense that it solves the
complete eigenvalue problem of a molecular Hamiltonian.
The ground-state energy of 4HeH+ has been calculated by
them to about nine-digit accuracy, which is the best result
reported so far.

Recently we �2,3� performed high-precision nonadiabatic
calculations on some three- and four-body molecular sys-
tems, such as hydrogen molecular ions and muonium hydride
�MuH�, using Hylleraas coordinates, which have been tradi-
tionally used in solving variational eigenvalue problems of
few-body atomic systems. The purpose of this paper is to
report the variational upper bounds for the ground-state en-
ergies of 4HeH+ and 3HeH+ calculated using Hylleraas coor-
dinates. In this work, the following masses of the 3HeH+

nucleus, the 4HeH+ nucleus, and the proton are adopted �4�:

m3He
= 5495.885 269�11�me, �1�

m4He
= 7294.299 536 3�32�me, �2�

mp = 1836.152 672 61�85�me, �3�

where me is the electron mass. Atomic units �a.u.� are used
throughout, where the unit of energy is Eh=e2 /a0 and the
unit of length is a0=�2 / �mee

2�.
In order to transform a four-body Hamiltonian to an ef-

fective three-body one-center Hamiltonian, we first separate
the center-of-mass motion out and then neglect its coordinate
X; this is because the transformed Hamiltonian does not con-
tain X and thus X can be ignored �3,5�. The resulting Hamil-
tonian, which describes the internal motion of HeH+, is

H = −
1 + mHe

2mHe
��1

2 + �2
2� −

mp + mHe

2mpmHe
�3

2 −
1

mHe
��1 · �2

+ �2 · �3 + �3 · �1� −
1

r1
−

1

r2
+

1

r3
+

1

r12
−

1

r23
−

1

r31
,

�4�

where r1, r2, and r3 are, respectively, the position vectors of
the two electrons and the proton relative to the helium
nucleus. This Hamiltonian �up to the mass polarization
terms� can be thought of as one describing three “effective
particles” moving relative to the heavest particle, the helium
nucleus, located at the origin. This one-center effective three-
body problem, however, is a two-center problem in nature
due to the presence of the two heavy particles, the helium
nucleus and the proton. It is, therefore, crucial to build the
vibrational degrees of freedom into the trial wave function,
according to the picture of the Born-Oppenheimer approxi-
mation. The simplest way to achieve this is to use a
Gaussian-like function �2,6� r3

ne−br3 in the basis set, where n
is a large integer, as demonstrated by our previous work �2,3�
for H2

+ and MuH, where for H2
+, for example, convergence

up to 20 or even more �7� digits can generally be achieved
for lower-lying vibrational energy eigenvalues. Thus, the ba-
sis set can be constructed in Hylleraas coordinates according
to �for the case of nonrotational states�

r1
j1r2

j2r3
j3r12

j12r23
j23r31

j31e−�1r1−�r2−�r3 �5�

with j3� j3min
. In the present work, we set j3min

to be 50 and
40 for 4HeH+ and 3HeH+, respectively. All terms in �5� are
included such that for each given integer � not smaller than
j3min

,

j1 + j2 + j3 + j12 + j23 + j31 � � , �6�

except that terms with j1	 j2, as well as terms with j1= j2
and j23	 j31, are excluded in the basis set in order to avoid a
near-linear dependence problem. We then divide this gener-
ated basis into several blocks each having its own set of
nonlinear parameters �, �, and �. The number of blocks NB
increases as � increases and is determined by NB=�− j3min
+1. The nth block includes all the terms satisfying the fol-
lowing relation for the powers j3

�n� of r3:

PHYSICAL REVIEW A 73, 064503 �2006�

1050-2947/2006/73�6�/064503�3� ©2006 The American Physical Society064503-1

http://dx.doi.org/10.1103/PhysRevA.73.064503


g1 � j3
�1� � g2,

gn 
 j3
�n� � gn+1, n = 2, . . . ,NB, �7�

with

gn = int� j3min +
� − j3min

NB
�n − 1�� , �8�

where int�x� stands for the integer part of x. Thus, the largest
powers of r1, r2, and r3 for the case of �=61 are 5, 11, and
61, respectively. An optimization is performed with respect
to NB sets of nonlinear parameters by minimizing the energy
eigenvalues. This involves the calculation of first- and
second-order energy derivatives ��E /��� and ��2E /��2� with
respect to each nonlinear parameter, where ��E /��� can be
evaluated analytically �8�, whereas ��2E/��2� can be esti-
mated by finite differencing from two successive calcula-

tions. The basic integrals that appear in our calculation are of
the form

� dr1dr2dr3r1
j1r2

j2r3
j3r12

j12r23
j23r31

j31e−�r1−�r2−�r3

� Y�1�m1�
* �r1�Y�2�m2�

* �r2�Y�3�m3�
* �r3�Y�1m1

�r1�

�Y�2m2
�r2�Y�3m3

�r3� �9�

with j12�−1, etc. Computational details, together with the
reduction of Hamiltonian matrix elements into the basic in-
tegrals, may be found in �9�. Table I lists a convergence
study for the ground-state energy of 4HeH+, as the size of the
basis set increases. In the table, R��� is defined by

R��� =
E�� − 2� − E�� − 1�

E�� − 1� − E���
, �10�

which can be used to monitor the rate of convergence and to
extrapolate the energy eigenvalue to �→�. The uncertainty
is taken to be E�62�−E���. The extrapolated value of the
energy is therefore estimated to be accurate at the level of 1
part in 1010, a factor of 30 improvement over the previous
result of Pavanello et al. �1�. A similar calculation was also
performed for 3HeH+ with the calculated ground-state energy
being −2.970 725 444 1�2� a.u. Table II lists all the nonlinear
parameters for the case of �=61 of 4HeH+. However, a full
optimization of nonlinear parameters would be extremely

TABLE I. Convergence of the nonrelativistic ground-state en-
ergy of 4HeH+. N denotes the number of terms in the basis set and
R��� is the ratio of two successive differences in energy. Units are
atomic units.

� N E��� R���

54 120 −2.970 842 869 11

55 256 −2.971 050 388 65

56 502 −2.971 074 362 87 8.65

57 918 −2.971 077 848 85 6.87

58 1589 −2.971 078 352 12 6.92

59 2625 −2.971 078 451 37 5.07

60 4172 −2.971 078 467 40 6.19

61 6412 −2.971 078 469 41 7.97

62 9576 −2.971 078 469 56 13.3

� −2.971 078 469 8�3�
�1� −2.971 078 459 4

TABLE II. Nonlinear parameters for the case of �=61 of
4HeH+.

Block index � � �

1 1.691650 1.691772 35.201599

2 2.615784 2.615784 37.004028

3 2.241943 2.011841 33.162048

4 1.345886 2.249329 33.757141

5 1.247131 2.334534 31.948730

6 1.882263 1.881531 40.661499

7 6.298279 7.614990 37.792725

8 3.602844 7.109436 38.398987

9 2.225769 8.284851 38.678406

10 2.091675 4.064331 39.077576

11 2.072937 4.073364 39.076477

12 2.083435 4.075256 39.075806

TABLE III. Expectation values of various powers of the inter-
particle distances for 4HeH+ and 3HeH+. Units are atomic units.

Quantity 4HeH+ 3HeH+

�r1
−2	 5.836 880�2� 5.836 212 �1�

�r1
−1	 1.660 181 99�1� 1.660 046 280 �2�

�r1	 0.935 568 7�2� 0.935 741 95�1�
�1� 0.935 6

�r1
2	 1.180 895 5�5� 1.181 482 04�2�

�1� 1.180 9

�r3
−2	 0.448 599 4�3� 0.448 016 23�1�

�r3
−1	 0.666 113 0�2� 0.665 560 53�1�

�r3	 1.517 663 0�2� 1.519 458 65�2�
�1� 1.517 7

�r3
2	 2.328 282 6�7� 2.334 605 7�1�

�1� 2.328 3

�r12
−1	 0.940 704 3�2� 0.940 558 61�2�

�r12	 1.405 160 2�2� 1.405 481 456�1�
�1� 1.405 2

�r12
2 	 2.410 698 �3� 2.411 957 5�1�

�1� 2.410 7

�r23
−1	 0.787 179 5�5� 0.786 472 727 �1�

�r23	 1.561 943 9�2� 1.563 608 88�2�
�1� 1.561 9

�r23
2 	 2.777 494 �4� 2.783 673 6�1�

�1� 2.777 5
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time consuming for larger basis sets. Table III presents
expectation values of various powers of the interparticle
distances for 4HeH+ and 3HeH+ together with the results of
Pavanello et al. �1�. Their results are in perfect agreement
with ours to the last digits of their values.

In summary, the ground-state energies of 4HeH+ and
3HeH+ have been calculated to higher precision nonadiabati-
cally using one-center atomic approach with appropriate

building-in of vibrational modes. It would be interesting to
explore higher vibrational and rotational excited states.
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