PHYSICAL REVIEW A 73, 064501 (2006)
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The best three-channel projectile-inelastic close-coupling approximation (CCA) is used to study the reso-
nances in positronium (Ps) and hydrogen (H) scattering at the energy region below the inelastic threshold. The
s-wave elastic phase shifts and s-wave elastic cross sections are studied using the static-exchange, two- and
three-channel projectile-inelastic CCA for both the singlet (+) and triplet (—) channels. The singlet resonances
detected using different CCA schemes confirm previous predictions [ Drachman and Houston, Phys. Rev. A 12,
885 (1975); Page, J. Phys. B. 9, 1111 (1976)]. We report a resonance in the triplet channel too using the present

three-channel CCA scheme.

DOLI: 10.1103/PhysRevA.73.064501

I. INTRODUCTION

In collision physics, resonance is an important phenom-
enon. When a microscopic moving object that is a wave
enters into the scattering chamber near the target, it faces
interactions. When it comes out of the scattering zone, the
original incident wave gathers a phase shift and the new
wave is known as the scattered wave. The change in phase
(phase shift) is the parameter that carries the information
about the scattering process. A rapid change in phase shift by
7 rad in a very narrow energy interval of the incident wave
is an indication of the existence of a resonance. It carries
information about a bound system if it is in the s-wave elas-
tic scattering and below the threshold of excitation.

The phase shift &, can be decomposed as

o =&+ .

& corresponds to the hard-sphere scattering or nonresonant
part; it does not depend on the shape and depth of the poten-
tial. The term 7, depends on the details of the potential. The
quantities & and 7, vary in general slowly and smoothly with
the incident particle energy. But in certain cases 7, may vary
rapidly in a small energy interval of width I" about a given
energy value Ey such that we can write

R -1
=y =tan” ——.
=7 2 ( ER _ E)
In that energy interval the phase shift is therefore given ap-
proximately by

o =&+ 7753-

The physical significance of a narrow resonance can be
inferred by examining the amplitude of the radial wave func-
tion inside the interaction region. The probability of finding
the scattered particle within the potential is much larger near
the resonance energy E=FEjy, so that in that case the particle
is nearly bound in the well. Thus the resonance may be con-
sidered as a metastable state whose lifetime 7, which is much
longer than a typical collision time, can be related to the
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resonance width I" by using the uncertainty relation
AfAE=h. Thus, with Ar=7and AE=T", we have 7=#/I".

The shape of the cross-section curve near a resonance as a
function of energy depends on the nonresonant phase shift &,
For the s-wave scattering it is

B sin®&(Eg — E)? + cos*E12 + sin2&(Eg — E)['/2
- (Er—E)*+T%4

g

Two limiting cases for a nonresonant phase shift are 0 and
/2. In the first case the above equation becomes

1‘*2
T (Ep—E) + T4

which is symmetric and represents a rise in cross section at
the resonance energy. In the other case,
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FIG. 1. The singlet (+) s-wave elastic phase shifts.
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which is also symmetric but goes down to zero at the reso-
nance energy. If the nonresonant phase shift gets some other
value then other forms of the cross section can occur.

Resonance in the singlet channel in positronium (Ps) and
hydrogen (H) scattering was reported by many workers using
different approaches [1-14]. It was first predicted by Drach-
man and Houston [1] using a Feshbach formalism with sta-
bilization and complex rotation methods. But no such reso-
nance was reported using the close-coupling approximation
(CCA) [15-22].

The CCA is the best theory to study low-energy scattering
phenomena. It is based on the very basic principle of quan-
tum mechanics known as eigenstate expansion methodology.
It takes into account the coupling effect of different channels
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by adopting the conservation of total angular momentum
quantum numbers J and M. The coupling effect is more pro-
nounced for the channels that are energetically closer. We
employ different projectile-inelastic CCA schemes to inves-
tigate Ps-H scattering. We perform exact calculations for all
the direct and exchange matrix elements, considering all the
possible Coulomb interactions, but the direct first Born am-
plitudes vanish if the parity of Ps remains unaltered. Our
objective is to investigate the resonances in the present sys-
tem. It is a very difficult task since a large number of fine
mesh points are required in a very narrow energy interval
~1072 to 107 eV. We study s-wave elastic phase shifts and
s-wave elastic cross sections in the energy region below the
inelastic threshold.

II. THEORY

The wave function of the system is

1
\I,t(rp’rl’rz) = /_5(1 + P12) E
\’

s (L 1, Jl>
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with the Hamiltonian of the system as
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Here P, stands for the exchange operator and R,-:%(r,,
+r;) and p;=r,-r;, i=1,2; r| and r, are the position vectors
of the electrons belonging to Ps and H, respectively, and r), is
that of the positron with respect to the center of mass of the
system. U,,tlt(r)/ rand V, zp(P)/ p are the radial parts of the
wave functions of and Ps, respectively, and
Frop(k,k’,R)/R is the radial part of the continuum wave
function of the moving Ps atom; I';) indicates all the quanti-
ties ndn,l,LJ,JM of T" at the initial channel.

Projecting the Schrodinger Eq. (1) just as in the Hartree-
Fock variational approach and integrating over the desired
coordinates, we can get a set of integro-differential equations
which can be transformed into integral equations like the
Lippmann-Schwinger equations by applying asymptotic
boundary conditions. These coupled integral equations can
be formed either in momentum space or in configuration
space. Fraser et al. used the configuration space approach
[23] whereas we are using the momentum space formalism
[24]. The set of coupled integral equations obtained for the
scattering amplitudes is as follows:

f:’l’,nl(k,’k) = B:'l',nl(k”k)

1 E dk" B:rlr ,n”l"(k ' 5 k,/)f:’l",nl(k”’ k)
2772 n" ki”l” - k/IZ +i€ ’

3)

* indicates the Born-Oppenheimer [25] scattering ampli-
tudes; plus (+) is for the singlet channel and minus (=) for
the triplet channel. The formulation for the Born matrix ele-
ment is available in our previous papers [26-32]. Similarly
f* indicates the unknown scattering amplitudes for the sin-
glet and the triplet channels, respectively. The summation
over n"l” is to include various channels. The two sets of
coupled integral equations of scattering amplitudes in mo-
mentum space for the singlet (+) and triplet (=) channels,
respectively, are solved separately for each partial wave (L).

III. RESULTS AND DISCUSSION

We report our singlet (+) s-wave elastic phase shifts in
Fig. 1 and corresponding cross sections in Fig. 2 using the
present two- and three-channel projectile-inelastic CCA
schemes. Similarly we report our triplet (=) s-wave elastic
phase shifts and cross sections in Figs. 3 and 4. We have
presented the corresponding static-exchange data [15-18]
in all the four figures. The present phase shifts are
again compared with other theoretical data for the singlet
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FIG. 2. The singlet (+) s-wave elastic cross sections.

channel [1,9,18] in Fig. 1 and for the triplet channel [3,9,18]
in Fig. 3.

We find resonances in the singlet channel using two- and
three-channel projectile-inelastic CCA schemes both in
phase shift and in cross section at the energy region very
close to the inelastic threshold. The position and width have
both been changed by adding the target-elastic Ps(2p) chan-
nel after the target-elastic Ps(2s) channel. The position of the
resonance is shifted toward lower energy away from thresh-
old and the width increases. All these findings are quite con-
sistent with the existing physics [1-14]. Our nonresonant
phase shift near the resonance energy region is ~0.5 rad,
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FIG. 3. The triplet (-) s-wave elastic phase shifts.
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FIG. 4. The triplet (—) s-wave elastic cross sections.

which is responsible for the peak appearing in partial cross
sections and in reasonable agreement with the above dis-
cussed Breit-Wigner-like formulation.

Our triplet results using the two-channel projectile-
inelastic CCA are in reasonable agreement with previous cal-
culations of Sinha et al. [18]. In their three-channel CCA
scheme, Sinha et al. [18] excluded the intermediate target-
elastic Ps(2p) —Ps(2p) channel that is responsible for the
nonadiabatic or dynamic effects [33]. Including that channel
with exact exchange in our three-channel CCA scheme, we
find a resonance in the triplet channel too. Our three-channel
CCA results are different from theirs [18] only in the energy
region near and above the resonance. We find a dip in the
triplet cross section. It is again consistent with a Bright-
Wigner-like formulation. In this case our nonresonant phase
shift near the resonance energy region is ~—/2 rad; it sat-
isfies the above mentioned second criterion of the cross sec-
tion. In both Figs. 1 and 3, the solid triangles are the phase
shift data obtained by Blackwood er al. [9], crosses are the
data obtained by Drachman and Houston [1,3], and solid
squares are the three-channel projectile-inelastic CCA results
calculated by Sinha ef al. [18]. However, not enough theo-
retical data are available to compare the present results near
and above both the resonances [1-14]. So we welcome spe-
cial attention in this energy region.

In addition, the present triplet phase shift data fit nicely
with the nonresonant part as

& =-1.4053 +0.1295E - 0.04613E>

and provide the width '=0.15173 eV and resonance position
Er=3.2630 eV.

An interesting question is the reality of these resonances,
i.e., if we increase the basis set do the resonances still exist?
Resonances above threshold were reported by Higgins and
Burke [34,35] and Sarkar et al. [36,37] which were reported
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later as untrue by Zhou and Lin [38]. So the subject of
above-threshold resonances needs more investigation. We
discuss below-threshold resonances. According to the litera-
ture the van der Waals interaction should be important in
Ps-atom scattering. In our calculation, although the van der
Waals interaction has been omitted, all the Coulomb interac-
tions are taken into account exactly in evaluating all the ma-
trix elements required in the calculation. In addition the ma-
jor quantum-mechanical effect of channel coupling from the
closest excitation channels, e.g., H(ls)+Ps(ls)—H(1s)
+Ps(2s) and H(1s)+Ps(1s)— H(1s)+Ps(2p) on the elastic
channel H(1s)+Ps(1s)— H(1s)+Ps(1s) is considered. The
target excitation channels, or the excitation of both atoms,
which are responsible for the van der Waals interaction, are
energetically far away from the elastic channel. Thus, ac-
cording to quantum-mechanical concepts, the effect of these
target excitations and both excitation channels is expected to
be less important in Ps-H scattering.

However, the target-elastic Ps(3s) and Ps(3p) channels
are energetically closer to the elastic channel than other
channels. So calculations using these two further target-

PHYSICAL REVIEW A 73, 064501 (2006)

elastic projectile excitation channels in the CCA scheme are
very useful for future investigation.

IV. CONCLUSION

We perform a complete and exact three-channel
projectile-inelastic CCA calculation for both the singlet and
triplet channels in Ps-H scattering. We study s-wave elastic
phase shifts and cross sections below the inelastic threshold.
We report singlet resonances using two- and three-channel
projectile-inelastic CCA schemes that confirm earlier predic-
tions [1,2]. We report a resonance in the triplet channel using
the best three-channel projectile-inelastic CCA scheme.

ACKNOWLEDGMENTS

The author is thankful to DST, Government of India, for
full financial support through Grant No. SR/FTP/PS-80/
2001. She is grateful to R. J. Drachman for academic help
and encouragement.

[1]R. J. Drachman and S. K. Houston, Phys. Rev. A 12, 885
(1975).
[2] B. A. P. Page, J. Phys. B 9, 1111 (1976).
[3]R. J. Drachman and S. K. Houston, Phys. Rev. A 14, 894
(1976).
[4] R. J. Drachman, Phys. Rev. A 19, 1900 (1979).
[5] D. M. Schrader, F. N. Jacobsen, N. P. Frandsen, and U.
Mikkelsen, Phys. Rev. Lett. 69, 57 (1992).
[6] Z. C. Yan and Y. K. Ho, Phys. Rev. A 59, 2697 (1999).
[7]Z. C. Yan and Y. K. Ho, Phys. Rev. A 60, 5098 (1999).
[8] C. P. Campbell, M. T. McAlinden, F. R. G. S. MacDonald, and
H. R. J. Walters, Phys. Rev. Lett. 80, 5097 (1998).
[9] J. E. Blackwood, M. T. McAlinden, and H. R. J. Walters, Phys.
Rev. A 65, 032517 (2002).
[10]J. DiRienzi and R. J. Drachman, Phys. Rev. A 65, 032721
(2002).
[11]J. DiRienzi and R. J. Drachman, Phys. Rev. A 66, 054702
(2002).
[12] J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B
35, R81 (2002).
[13] S. Chiesa, M. Mella, and G. Morosi, Phys. Rev. A 66, 042502
(2002).
[14] P. Van Reeth and J. W. Humberston, J. Phys. B 36, 1923
(2003).
[15] H. Ray and A. S. Ghosh, J. Phys. B 29, 5505 (1996).
[16] H. Ray and A. S. Ghosh, J. Phys. B 30, 3745 (1997).
[17] H. Ray and A. S. Ghosh, J. Phys. B 31, 4427 (1998).
[18] P. K. Sinha, P. P. Chaudhury, and A. S. Ghosh, J. Phys. B 30,

4644 (1997).

[19] H. Ray, J. Phys. B 32, 5681 (1999).

[20] H. Ray, J. Phys. B 33, 4285 (2000).

[21] H. Ray, J. Phys. B 35, 2625 (2002).

[22] S. K. Adhikari and P. K. Biswas, Phys. Rev. A 59, 2058
(1999).

[23] S. Hara and P. A. Fraser, J. Phys. B 8, L472 (1975).

[24] A. S. Ghosh, N. C. Sil, and P. Mandal, Phys. Rep. 87, 313
(1982).

[25] N. F. Mott and H. S.W. Massey, The Theory of Atomic Colli-
sions, 3rd ed. (Oxford University Press, New York, 1965) p.
414.

[26] H. Ray, Phys. Lett. A 252, 316 (1999).

[27] H. Ray, J. Phys. B 35, 3365 (2002).

[28] H. Ray, Nucl. Instrum. Methods Phys. Res. B 192, 191
(2002).

[29] H. Ray, Phys. Lett. A 299, 65 (2002).

[30] H. Ray, Pramana 63, 1063 (2004).

[31] H. Ray, Europhys. Lett. 73, 21 (2006).

[32] H. Ray, Pramana 66, 415 (2006).

[33] H. R. J. Walters, J. Phys. B 9, 227 (1976).

[34] K. Higgins and P. G. Burke, J. Phys. B 24, 1.343 (1991).

[35] K. Higgins and P. G. Burke, J. Phys. B 26, 4269 (1993).

[36] N. K. Sarkar, Madhumita Basu, and A. S. Ghosh, J. Phys. B
26, 1427 (1993).

[37] N. K. Sarkar, Madhumita Basu, and A. S. Ghosh, J. Phys. B
26, L799 (1993).

[38] Yan Zhou and C. D. Lin, J. Phys. B 28, L519 (1995).

064501-4



