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Efficient construction of photonic quantum-computational clusters
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We demonstrate a method of creating photonic two-dimensional cluster states that is considerably more
efficient than previously proposed approaches. Our method uses only local unitaries and type-I fusion opera-
tions. The increased efficiency of our method compared to previously proposed constructions is obtained by
identifying and exploiting local equivalence properties inherent in cluster states.
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Cluster states are entangled states constructed in such a
way as to enable universal quantum computation (QC), ef-
fected solely by suitable measurements performed on the
constituents of the cluster [1-3]. In this paper we present a
novel method for constructing photonic clusters that is more
efficient than previously presented methods.

Photonic quantum computation has received significant
attention in recent years. The initial work on photonic QC
considered different circuit-based approaches [4]. Since
quantum-computational logic transformations, such as the
controlled-NOT (CNOT) gate, require a mechanism by which
qubits directly interact, the choice of photons as qubits in
turn motivated the choice of nonlinear Kerr-type media in
the first analyses of photonic QC [5]. Although this ap-
proach, in principle, enables photonic entangling gates, the
practical difficulties associated with the use of Kerr-type me-
dia made this method appear problematic.

Interest in photonic QC was renewed with the appearance
of the work of Knill, Laflamme, and Milburn (KLM) in 2001
[6]. This approach makes use of linear optics, combined with
measurements carried out on ancillary photons, in order to
circumvent the difficulties associated with the use of nonlin-
ear media. Although it avoids the use of nonlinear media, the
KLM approach to linear optics quantum computation
(LOQC) is nevertheless problematic due to the inefficiency
associated with the necessity of dealing with extremely large
numbers of ancillary photons [7].

Both of these approaches to photonic QC, the nonlinear
approach and the linear approach, are formulated within the
circuit-based paradigm. With the discovery of the cluster-
based paradigm, it became natural to explore the possibility
of using photons as the nodes in a cluster.

Nielsen noted [7] that a photonic cluster could furnish a
more efficient realization of a quantum computation than a
photonic circuit if certain techniques from the LOQC were
used to build the photonic cluster (as opposed to directly
executing the computation itself). Browne and Rudolph [8]
refined this idea, and presented a more efficient scheme for
the construction of photonic clusters. In this scheme, the sug-
gestion of Nielsen to use LOQC-derived operations to con-
struct the cluster, is replaced by a proposal to use simpler
“fusion” operations to construct the cluster. A number of ad-
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ditional methods for constructing clusters have been sug-
gested [9,10] and small photonic cluster states have been
experimentally implemented [11-13].

In this paper we present a method for constructing generic
clusters that, in the case of photonic clusters, in particular, is
considerably more efficient than previously proposed meth-
ods. The increased efficiency is achieved by identifying a
useful equivalence class of cluster configurations, which is
exploited to reduce the number of distinct transformations
that are needed to generate clusters suitable for carrying out
universal QC. Our technique makes use of this equivalence
and combines this with the use of type-I fusion operations.
We thus entirely avoid the use of resource-costly type-II fu-
sion operations. (It is worth noting that, to date, only type-I
fusion has been experimentally realized [13].) Our approach
results in a significant increase in cluster construction effi-
ciency. In particular, we show that our method is more effi-
cient, in terms of resources used, than that of [8]. We note
that the analysis provided in [8] makes use of the idealizing
assumption of perfect experimental devices, including, in
particular, single photon detectors with perfect detection ef-
ficiency. Of course, actual photon detectors and other experi-
mental equipment will exhibit imperfections in practice. The
point of our paper is to show that, under the same assump-
tions adopted in [8], it is possible to construct two-
dimensional photonic clusters without making use of type-II
fusion operators at all, and it is indeed advantageous to do
so. This is because, in our approach, clusters are generated at
a lower cost than in the approach presented in [8].

The technique described in our paper should be regarded
as an example of a general approach for increasing the effi-
ciency of cluster construction. Our general approach pro-
ceeds by identifying a suitable equivalence class of graph
states with respect to a specified set of graph isomorphisms,
and appropriately combining these with local unitaries to re-
duce the number of steps required in lattice construction.

Consider the following equivalence, described in [11,14].
A four-qubit linear cluster, or chain, is equivalent to a 2X2
box cluster up to Hadamard rotations and a swap operation.
We denote the action of a Hadamard rotation on the jth qubit
by the symbol H;. The symbol SWAP;, denotes the swap op-
eration acting on qubits j and k, which can be realized by
simply relabeling the qubits. Applying H,® H; to a four-
qubit cluster chain and exchanging the labels of qubits 2 and
3 effectively adds a bond between qubits 1 and 4. This is
illustrated in Fig. 1(a).

Note that Fig. 1(a) depicts a transformation that involves
only the four qubits shown in the diagram. We extend this
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FIG. 1. (Color online) (a) shows how Hadamard and swap op-
erations are used to transform a chain into a box shape. In (b) the
above operations are used to prepare the “box-on-a-chain” cluster
state. In (c) the box-on-a-chain form is used to create the basic L
shape used as a building block for cluster states capable of universal
quantum computation. To achieve this, a o, measurement on qubit 2
deletes all bonds involving the measured qubit, deterministically
giving the desired L-shape cluster at a cost of only two bonds.

transformation by embedding the four-qubit chain in a larger
linear structure of arbitrary size, as depicted in Fig. 1(b).
Here the chain extends arbitrarily far in both directions. The
presence of the extensions in both directions of the initial
chain in Fig. 1(b) reflects the existence of additional en-
tanglement correlations between qubits 1 and 4 and the qu-
bits along the chain extensions. One can show that these
additional entanglement correlations are, in fact, preserved
by the same transformation utilized in Fig. 1(a) [14].

We have thus extended the “box construction” method
given in [11] to obtain a “box-on-a-chain construction”
method. We now apply our box-on-a-chain construction
method to the problem of generating generic clusters suitable
for carrying out universal QC. Following the suggestion in
Refs. [8,7], we adopt the use of an L-shaped lattice, con-
structed from arbitrary length chains, as a basic “building
block” with which to construct clusters capable of carrying
out universal QC. In this way the L-shaped lattice serves as a
standard figure-of-merit with which to measure the efficiency
of the construction of general quantum-computational
clusters.

Our efficient method of constructing the L shape is illus-
trated in Fig. 1(c). We start with a cluster chain, drawn sug-
gestively as the left-most element in Fig. 1(c). After carrying
out the transformation already described to obtain the middle
element in Fig. 1(c), one then applies a o, measurement on
qubit 2 to produce the L shape in the right-most element in
Fig. 1(c). This operation deletes two bonds from the cluster

PHYSICAL REVIEW A 73, 064303 (2006)

a

—0-0-0-0- " 0@

@060 066

FIG. 2. (Color online) Two L-shape clusters, of the type con-
structed in Fig 1(c) are linked via a type-I fusion operation. Begin
with separate chains as in (a). (b) and (c) illustrate the deterministic
transformation of the chains into two L shapes. A type-I fusion
operation is applied: if successful, the sideways H shape shown in
(d) is created; if unsuccessful, recover two separate chains, return to
(a), and repeat.

chain due to the measurement of qubit 2. Note that this tech-
nique requires no probabilistic operations, and carries a net
cost of only two cluster chain bonds. In contrast, Browne and
Rudolph use the probabilistic type-II fusion operation to
build the L shape requiring, on average, eight bonds from
previously constructed cluster chains [8].

Our technique for constructing the basic L-shape cluster
building blocks is generic, and not specific to photonic quan-
tum bits. In order to yield a complete, integrated method of
efficiently constructing general photonic clusters capable of
universal QC, we can combine our method of constructing L
shapes with the already-known type-I fusion operation of
Browne and Rudolph. This integrated cluster generation
method is significantly more efficient than previously pro-
posed approaches: the increased efficiency derives from the
improved efficiency of our L-shape generation technique as
compared to the costly technique based on the use of type-II
fusion operations. Type-II fusion operations are not needed
in our approach.

The general method for constructing a two-dimensional
cluster, such as the “sideways H shape” illustrated in Fig.
2(d), proceeds as follows. We start with the assumption that
we have two chains of arbitrary length, as illustrated in Fig.
2(a). Given two initial chains, we deterministically transform
each of them into an L shape using our method described
above, shown in Fig. 2(b), at a cost of two bonds for each L
shape, or a net cost of four bonds. (In constrast, transforming
two chains into two L shapes, using the nondeterministic
type-II fusion operations of Browne and Rudolph, would
cost 8 bonds on average for each L shape, and would thus
result in an average net cost of 16 bonds.) Then, making use
of the type-I fusion operation of Browne and Rudolph, we
attempt to adjoin the two completed L shapes illustrated in
Fig. 2(c) to form the desired two-dimensional H shape clus-
ter. Since the type-I fusion operation succeeds with probabil-
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ity %, there are two possible outcomes: (1) If the joining
operation succeeds as shown in Fig. 2(d) we are done, and
the desired two-dimensional cluster has been built at a net
cost of four bonds. In contrast, had the initial L shapes been
formed using type-II fusion operations, the average net cost
of the two-dimensional cluster would have been 16 bonds.
(2) If the joining operation fails, each L shape reverts to a
chain, returning us to the state illustrated in Fig. 2(a), encur-
ring a net additional cost of two bonds. Then, the process
described above is iterated, beginning with the new chains
that resulted from the failure of the attempted joining opera-
tion, until success is achieved. Upon such iteration, the av-
erage net cost for a successful outcome is 10 bonds if the
initial (and subsequent) chains are transformed into L shapes
using our technique, but the average net cost would have
been 34 bonds had the various chains been transformed into
L shapes using the type-II fusion operation of Browne and
Rudolph.

We have presented a method for constructing two-
dimensional photonic clusters by making use of the type-I
fusion operation of Browne and Rudolph combined with our
technique for transforming a given cluster chain into the ba-
sic L shape. As demonstrated above, this method of generat-
ing a two-dimensional H shape cluster is significantly more
efficient than the original proposal of [8] that makes use of
type-I and type-II fusion operations. We note that H shapes
are comprised of a single “rung” connecting two chains.
These H shapes can be grown into “sideways ladder” shapes
that possess additional rungs, by repeatedly applying our
method along the length of an initial H shape. In addition,
two-dimensional clusters with greater depth than an H shape
(or a sideways ladder) can be built by adjoining parallel
chains to a given H-shaped cluster. This is done, one depth
level at a time, by applying our method to a given additional
chain and either of the “outer” sides of the starting H shape.
In this way, making use of our technique for creating basic L
shapes out of chains, a two-dimensional cluster of any com-
plexity can be formed, with a significant increase in effi-
ciency compared to previous approaches [15].

Our cluster construction method employs only local
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FIG. 3. (Color online) Starting with a cluster chain, two bonds
are added via local unitaries. o, measurements on qubits 3 and 5 (at
a cost of four bonds) yield the desired cluster state cross.

unitary rotations and type-I fusion operations: type-II fusion
operations are neither needed nor used, which results in a
significant increase in the efficiency of photonic cluster con-
struction as discussed above. Although our method makes no
use of type-II fusion operations, this does not compromise
the generality or diminish the flexibility of the method. As an
illustration of this flexibility, we now discuss a sample of
typical cluster shapes that can be constructed making use
only of local unitaries and type-I fusion operations.

As a first example, we note that a cluster chain can be
deterministically transformed into a cross shape. Following
the progression illustrated in Fig. 3, apply H,® H3® H;
® Hg followed by SWAP,;°SWAPs,. This forms bonds be-
tween qubits 1 and 4, and between qubits 4 and 7. Subse-
quent execution of o, measurements on qubits 3 and 5 cre-
ates the desired cross shape at a cost of only four bonds and
involves no probabilistic operations. Continuing with ex-
amples of constructions of additional shapes, we begin with
the seven-qubit chain suggestively drawn in Fig. 4(a). Noting
the similarity of Fig. 4(a) with the left-most element of Fig.
3, we may apply the same Hadamard and swap operations
used in Fig. 3 in order to obtain the structure shown in Fig.
4(b). The cluster shape in Fig. 4(b) can then be used as an
alternative to the previously discussed L shape as a basic
building block to construct general two-dimensional clusters.
To illustrate the use of this cluster shape as a building block

FIG. 4. (Color online) Representative cluster
shapes illustrating the generality and flexibility of
the efficient cluster construction method de-
scribed in the text.
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for more general shapes, we note that two cluster shapes of
the type presented in Fig. 4(b), when adjoined by the suc-
cessful application in succession of two type-I fusion opera-
tions, yield the cluster depicted in Fig. 4(c). If the second of
the two attempted type-I fusion operations used to build the
cluster of Fig. 4(c) fails, the cluster that remains is illustrated
in Fig. 4(d) [16]. This shape in turn may be used to attempt
to build the cluster illustrated in Fig. 4(e). One proceeds by
using type-I fusion operations to fuse qubits 10 and 12, fol-
lowed by a o, measurement applied to qubits 6 and 11. If the
fusion fails, rather than performing the 0, measurement, we
attempt to fuse qubits 6 and 11 via type-I fusion. If that also
fails one recovers the basic structure of Fig. 4(b). If either
fusion operation succeeds (i.e., applied to the pair {10,12} or
{6,11}), we continue building a more general structure mak-
ing use of the cluster of Fig. 4(e). Further exploring our
approach to generating basic structures, we note that the
cluster shapes in Figs. 4(f) and 4(g) are generically useful.
The cluster shape illustrated in Fig. 4(f) may be determinis-
tically constructed by starting with a ten-qubit chain and ap-
plying suitable Hadamard and swap operations by analogy
with the transformation of a seven-qubit chain into the shape
given in Fig. 4(b). We obtain the useful structure depicted in
Fig. 4(g) as follows. Beginning with a nine-qubit chain, we
join the ends using type-I fusion to obtain an eight-qubit
ring. If this operation succeeds, we apply Hadamard opera-
tions on qubits 1, 4, 5 and 8, and SWAP, ;SWAP, . In practice,
one continuously builds clusters such as those illustrated in
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Figs. 4(c), 4(e), and 4(g) off line and keeps only the results
of successful attempts [Fig. 4(f) is deterministically con-
structed and is always successfully formed]. Those clusters
may then be fused together (with successful type-I fusion
operations) to form larger clusters, and in this way one builds
arbitrary two-dimensional clusters suitable for quantum com-
putation [17].

In conclusion we have introduced and demonstrated a
method of constructing two-dimensional photonic cluster
states for quantum computation that is significantly more ef-
ficient than previously proposed approaches. Our technique
exploits the properties of equivalent graph states under local
unitaries and graph isomorphisms, and combines this with
the use of type-I fusion operations. In this paper we have
illustrated this general method by considering a specific class
of graph isomorphisms and demonstrating the resulting in-
crease in the efficiency of construction. In view of the results
presented here, it is important to explore additional equiva-
lence classes in order to discover what further increases in
efficiency can be obtained. Our method entirely avoids the
use of resource-costly type-II fusion operations. We demon-
strated the generality and flexibility of our approach with a
number of explicit representative sample constructions of
useful cluster shapes.
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