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We discuss a method for generating Fock �number� states in a single-mode traveling-wave optical field,
based on a method we recently proposed for performing a quantum nondemolition measurement of parity and
for the generation of parity eigenstates �C. C. Gerry, A. Benmoussa, and R. A. Campos, Phys. Rev. A 72,
053818 �2005��. The approach is a kind of “dial-up” scheme that is probabilistic but also depends partially on
directed state reductive measurements.
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An important goal of quantum optics is the generation of
Fock states, or number states, �n� for arbitrary n, for a quan-
tized electromagnetic field. The existence of such states is
fundamental to the most accurate physical theory we have,
quantum electrodynamics. But they may also be of practical
importance in the field of quantum information science, in-
cluding quantum metrology. For example, maximally en-
tangled number states of the form �n� �0�+ �0� �n� �1� and twin
Fock states �n� �n� �2� have been shown to be of utility in
performing interferometric phase shift measurements of
Heisenberg-limited sensitivity, ��HL�1/n, an improvement
over the standard quantum limit ��SQL�1/�n. There has
been much theoretical and experimental work done towards
the generation of photon number states in the context of
cavity QED �3�. There has also been discussion of techniques
for generating these states in optical traveling-wave fields �4�
though experiments lag behind the theory. Recently, the
present authors along with R. A. Campos �5�, proposed a
method for the quantum nondemolition measurement of par-
ity and for the production of parity eigenstates, including
higher-order parity eigenstates �6�, where we indicated how,
under certain conditions, photon number states could be gen-
erated. In the present paper, we systematically flesh out the
details of our ideas on the generation of number states. In a
sense to be discussed below, our proposed scheme has the
characteristics of a probabilistic “dial-up” number state gen-
erator.

A sketch of our proposed generation scheme is given in
Fig. 1. Mode c contains a coherent state ���c out of which we
wish to extract a number state. In terms of the number states

���c = e−���2/2	
n=0

�
�n

�n!
�n�c. �1�

The cross-Kerr medium couples the c mode to the a1 mode
through the nonlinear interaction

ĤK = � �â1
†a1ĉ†ĉ , �2�

where � is proportional to the third-order nonlinear suscep-
tibility ��3�. Mode a1 is an internal clockwise mode of a
Mach-Zehnder interferometer �MZI�, the counterclockwise
mode being labeled a2. The beam splitters BS1 and BS2 are
50:50. The output modes of the BS2 are labeled b1 and b2.
An incident coherent state ��2��, with only the vacuum at
the other input port, at BS1, as indicated in Fig. 1, is split

into two coherent states, i.e., ��2�� �0�→ ���a1
���a2

. We as-
sume that appropriate phase shifting elements can be in-
serted, if necessary, so that the output coherent states will
have the required phases. For example, if BS1 causes the
reflected beam to pick up a phase shift of � /2, a compensat-
ing −� /2 phase shifter can be inserted into that beam. The
phase shift denoted 	 in the counterclockwise beam takes
into account any other required phase shifts for the coherent
state entering BS2 in order to obtain certain outputs, as will
be explained below. This phase shift is the “dial” in our
scheme.

We assume then that the state entering the Kerr medium is

�
in� = ���c���a1
= e−���2/2	

n=0

�
�n

�n!
�n�c���a1

, �3�

where

���a1
= exp�− ���2/2�	

m=0

�
�m

�m!
�m�a1

. �4�

The output state of the Kerr medium is given by

FIG. 1. Schematic of the proposed number state generation
scheme. An input coherent state of small amplitude � is in the c
mode and one of larger amplitude �2� is injected into the one port
of the first beam splitter. The phase shift 	 is adjusted to one of the
values 	=�−�L� where �L�=�L� /2N, L�=0,1 , . . .2N+1−1.
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�
out� = exp�− iĤKt/ � ��
in� = e−���2/2	
n=0

�
�n

�n!
�n�c��e−i�nt�a1.

�5�

At this point we take �t=� /2N where N can take the values
N=0,1 ,2 . . . . We now write the output state as

�
N� = e−���2/2	
n=0

�
�n

�n!
�n�c��e−i�n/2N

�a1 = 	
L=0

�N

��L�c��L�a1,

�6�

where �N=2N+1−1, �L=�e−i�L, �L=�L /2N, and

��L�c = 	
M=0

�

CL+2N+1M�L + 2N+1M�c, �7�

and where

CL+2N+1M = e−���2/2 �L+2N+1M

��L + 2N+1M�!
. �8�

For reasons that will be made clear shortly, we take the
phase shift in the a2 beam to be 	=�−�L�, where L�
=0,1 , . . . ,2N+1−1, so that ���a2

→ �−�e−i�L��a2
= �−�L��a2

.
Then the input to the second beam splitter is

�
BS2
L� �in = 	

L=0

�N

��L�c��L�a1
�− �L��a2

�9�

and its output state is

�
BS2
L� �out = 	

L=0

�N

��L�c��LL�
�−� �b1

��LL�
+ �b2

, �10�

where

�LL�
�−� =

�L − �L�
�2

, �LL�
+ =

�L + �L�
�2

. �11�

We may rewrite this as

�
BS2
L� �out = ��L��c�0�b1

��2�L��b2
+ 	

L=0

L�L�

�N

��L�c��LL�
�−� �b1

��LL�
�+� �b2

.

�12�

Now if detector D1 detects no photons and D2 any number of
photons �assuming the ideal case with detectors of 100%
efficiency� then the c mode is projected into the state

�
L��c = NL� 	
M=0

�

CL�+2N+1M�L� + 2N+1M�c, �13�

where the normalization factor is given by

NL� = 
	
M=0

�

�CL�+2N+1M�2�−1/2

. �14�

From the second term in Eq. �12� it is apparent that there is
nonzero probability that some number of photons will be

detected by both detectors. These outcomes should be dis-
carded. We shall consider the effects of realistic, inefficient,
detectors on the required projection shortly.

Before proceeding, it is perhaps worth writing out explic-
itly in terms of superpositions of coherent states a couple of
example of the states we obtain from the ideal case of the
above procedure. In the case where N=0 we obtain, apart
from normalization factors,

�
0�c � ���c + �− ��c,

�
1�c � ���c − �− ��c, �15�

which are the familiar even and odd quantum superposition
�Schrödinger cat� states �7�. In the limit of ��� small, �
0�c
goes over to the vacuum state �0�c and �
1�c goes over to the
one photon Fock state, �l�c. For N=2 we similarly obtain the
possible set of states

��0� � ���c + �− ��c + ��i��c + �− i��c� ,

��1� � ���c − �− ��c − i��i��c + �− i��c� ,

��2� � ���c + �− ��c − ��i��c + �− i��c� ,

��3� � ���c − �− ��c + i��i��c − �− i��c� . �16�

In the limit of small ���, the first two states go over to the
vacuum and single photon states as before, but the third and
fourth states go over to the states �2�c and �3�c, respectively.
Let us consider the case of ��3�. The normalized form of this
state, �
3�= ���3 ��3��−1/2 ��3�, can be shown to be, in the
limit of small ���,

�
3� = 
1 −
1

2

3!

7!
����8�
�3�c +�3!

7!
�4�7�c + ¯ � .

�17�

Clearly, with ��� small, the coefficient of the number state
�7�c will be very small enough �as will be the coefficients of
all the other number states� to be ignored, and the field mode
is found to be in the state �3�c with a high degree of prob-
ability. Properties of the general “four photon” coherent
states of Eq. �16� were discussed some time ago �8�, and a
scheme for generating them, and the number states which
arise from them in the low-field-strength limit, was discussed
some time ago by one of us �C.C.G.� in the context of cavity
QED �9�. These states have recently been of interest as they
have been shown to possess “sub-Planckian” phase-space
structures in their associated Wigner functions �10�.

Returning to the general case, and assuming we have the
outcome corresponding to the first term of Eq. �12�, that is,
that we have projected out the normalized state of Eq. �13�,
the probability that mode c is in the number state
�L�+2N+1M�c is given by
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PL�,M = �c�L� + 2N+1M�
L��c�2 = �NL��
2e−���2���2�L�+2N+1M�

�L� + 2N+1M�!
,

�18�

where we must have 	M=0
� PL�,M =1 for all L�

=0,1 , . . . ,2N+1−1. We are interested in obtaining, to a good
approximation, the number state �L��c �M =0� and the prob-
ability that the c mode is in this state is given by

PL�,0 = �1 −
L�!

2�L� + 2N+1�!
�2�L�+2N+1��2

� 1 −
L�!

�L� + 2N+1�!
�2�L�+2N+1�, �19�

for � assumed to be real and small, whereas the probability
of obtaining the next highest number state �L�+2N+1�c�M
=1� is given by

PL�,1 �
L�!

�L� + 2N+1�!
�2�L�+2N+1�. �20�

If � is sufficiently small the only state with significant popu-
lation is the state �L��c. That is, we shall have
PL�,0�PL�,1�PL�,2 . . . . We tabulate PL�,0 and PL�,1 for N
=1 and N=2, in Tables I and II, respectively, for the allowed
ranges of L� and for �=1.0. Note that PL�,0 approaches unity
as L� approaches its maximum value 2N+1−1.

Finally, we take into account the effects of detector effi-
ciencies on our proposed scheme. Recall that to project out
the state of Eq. �13� we have to obtain no photon counts from
mode b1 and any number of counts from mode b2. This is

straightforward with ideal detectors, but in the realistic case
where they are not ideal, “dark” counts in the b1 mode de-
tector, that is, photons undetected due to limited detector
efficiency, will be indistinguishable from the “No” counts
resulting from the vacuum state. To account for these “dark”
counts we introduce a positive operator-valued measure
�POVM� for the outputs of the two detectors. Again, for de-
tectors of 100% efficiency, the desired outcomes of the mea-
surements after the second beam splitter is to have “No” �N�
photons counted by D1 and any number of photons, a “Yes”
�Y� measurement, by detector D2. These results are consis-
tent with the POVM

�ˆ
N1

= �0�b1
�0�b1

, �ˆ
Y2

= Î − �0�b2
�0�b2

. �21�

To incorporate detector efficiency, represented by 
, where
0�
�1, the above POVM is modified to

�ˆ
N1

= 	
p=0

�

�1 − 
�p�p�b1
�p�b1

,

�ˆ
Y2

= Î2 − 	
q=0

�

�1 − 
�q�q�b2
�q�b2

, �22�

where Î2 is the unit operator associated with the states of
mode b2. We have assumed the detectors to have the same
efficiencies. Thus using the state of Eq. �12� we obtain the
joint probability of obtaining a “No” in D1 and a “Yes” D2
associated with obtaining the superposition containing the
states �L�+2N+1M�c as

PNY
L� ��,�,
� = �
BS2

L� ��ˆ
N1�

ˆ
Y2

�
BS2
L� �

= 	
L=0

�N

	
p=0

�

�1 − 
�p��L��L�e−��
LL�
�−� �2

��LL�
�−� �2p

p!

+ 	
L=0

�N

	
p=0

�

	
q=0

�

�1 − 
�p+q��L��L�

�e−��
LL�
�−� �2−��

LL�
�+� �2

��LL�
�−� �2p

p!

��LL�
�+� �2q

q!
, �23�

where

��L��L� = 	
M=0

�

�CL+2N+1M�2 = e−���2 	
M=0

� ���2�L+2N+1M�

�L + 2N+1M�!

�24�

In Fig. 2 we plot PNY
L� �� ,� ,
� vs L� for N=2, �=�10,

and �=1.0 for detector efficiencies 
=0.9 and 
=0.1. In
Fig. 3 we repeat but with �=0.5. We include that the former
detector efficiency for the sake of comparison, as it is close
to the ideal, whereas the latter is more realistic. �Note that
these probabilities are not required to add up to unity when
summing over L�.� We notice the counterintuitive result that

TABLE I. Probability of obtaining the number states �L��c and
�L�+2N+1�c, respectively, for N=1.

L� PL�,0 PL�,1

0 0.694444 0.166667

1 0.81 0.1

2 0.891975 0.055556

3 0.942042 0.029412

TABLE II. Same as Table I but for N=2.

L� PL�,0 PL�,1

0 0.694444 0.166667

1 0.81 0.1

2 0.891975 0.055556

3 0.942042 0.029412

4 0.969927 0.015152

5 0.984675 0.007692

6 0.992263 0.003876

7 0.996113 0.001946
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overall the probabilities for No-Yes detection tend to in-
crease with decreasing detector efficiency, but not evenly. In
particular, note that the probability associated with the case
L�=7 is much higher for 
=0.1 than for 
=0.9. Thus for a
lower efficiency detector, the probability of projecting out
the state �
7�c, out of which we obtain the number state �7�c,
is higher than for the case of higher detector efficiency.

In this paper we have shown how a previous proposal for
a quantum nondemolition measurement of parity, and for
generating eigenstates of parity, can be extend to generate
number states in traveling-wave optical fields. The scheme
has the character of a probabilistic dial up technique in the
sense that the choice of the phase shift 	, as given by 	=�
−�L�, in the counterclockwise beam of the Mach-Zehnder
interferometer, sets the stage for a probabilistic No-Yes mea-
surement in the output of BS2, in the case of ideal photon
detection. An essential ingredient to make this scheme work-
able is Kerr media of large third-order nonlinear susceptibili-
ties ��3�. Normal readily available media, such as optical fi-
bers, have susceptibilities far too small for this proposed
application. On the other hand, there is much activity being
directed toward the generation of large Kerr nonlinearities
through the techniques of electromagnetically induced trans-
parency �11�. Most of the schemes likely to be useful involve
four-level atoms in a double electromagnetically induced
transparency regime. Recently, Munro et al. �12�, in connec-
tion with a scheme for the quantum nondemolition measure-

ment of photon number, found that with about 1600 atoms,
fixed and stationary within a cylindrical dielectric wave-
guide, narrow but long compared with the optical wave-
lengths, a phase shift of �t=0.01 radians is possible with a
residual absorption rate of less than 1%. For �t=� /2N

�0.01 one could have N as high as N=8 or 9. Obviously, for
smaller values of �t, higher values of N are possible. Inter-
estingly, Munro et al. �12� found that the minimum number
of atoms required to obtain a given phase shift decreases as
the phase shift increases. So with different numbers of atoms
contained in the dielectric waveguide, it should be possible
to generate the states of Eq. �7� over a wide range of orders
N. Our work is related to the work of D’Ariano et al. �4� but
there are some important differences. Our beam splitters are
all 50:50 whereas in D’Ariano et al. require beam splitters of
very low transmissibility �. To obtain a number state with
four photons from an input coherent state of an average pho-
ton four photons requires a transmissivity of �=5�10−5. The
probability of obtaining the number state �4� in that scheme
is 0.1997. In contrast, with our scheme the probability of
obtaining the state �4� is 0.9670 �with similar probabilities
for higher number states �5�, �6, � and �7�, as shown in Table
II.

We mention one other proposal for generating number
state, a method proposed several years ago by Leonski �13�.
This method deterministically produces number states using
a Kerr medium, but only the self phase-modulation interac-
tion for a single mode, and with parametric pumping. Unfor-
tunately the method requires competition with the Kerr inter-
action with parametric nonlinearity of the kth order.

FIG. 2. Plots of the joint No-Yes probabilities PNY
L� �� ,� ,
� of

obtaining a No in detector D1 and a Yes in D2 vs L� for N=2, �
=�10, and �=1.0 for detector efficiencies �a� 
=0.9 and �b� 

=0.1.

FIG. 3. Same as Fig. 2 except for �=0.5.
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Lastly, the method we propose is not limited to the pro-
duction of Fock states of a single mode field. If one mode of
a two mode state, such as a two-mode squeezed vacuum or a
pair coherent state, is in the input c mode and the other,
which we shall call the d mode, is external to the interfer-
ometer, then it should be possible, because of the correlations
inherent in such states, to generate twin Fock states, i.e.,
states of the form �n�c �n�d. As already indicated, such twin

Fock states would be of utility in implementing the interfero-
metric scheme proposed by Holland and Burnett �2�.
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