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We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-
pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes, and atomic-ensemble
spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, Bosonic
mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend
the Bloch-Messiah reduction theorem, previously known for discrete linear systems �S. L. Braunstein, Phys.
Rev. A 71, 055801 �2005��. We present typical mode functions in the case of one-dimensional scattering in an
atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a
simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are
excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count
statistics. We also consider the readout of the stored atomic polarization using the anti-Stokes scattering
process. We prove that the readout process can also be decomposed into multiple mode pairs, each pair
undergoing independent evolution analogous to a beam-splitter transformation. We show that this process can
have unit efficiency under realistic experimental conditions. The shape of the output light wave packet can be
predicted. In the case of unit readout efficiency it contains only excitations originating from a specified atomic
excitation mode.
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I. INTRODUCTION

Efficient entanglement generation, distribution, and stor-
age are the basic requirements for development of successful
quantum information technologies, including proposals for
realizing quantum information networks �1,2�. They com-
prise entanglement generation by Raman scattering, storage
in collective polarization of atomic ensembles, and release
by anti-Stokes Raman scattering. Such a network can be
used, among other things, for a quantum cryptography �3�
and quantum teleportation �4�. Those protocols deal with
spin or polarization entanglement. Another important possi-
bility is the entanglement of continuous variables, such as
light quadrature amplitudes or molecular vibrational coordi-
nates. Stokes Raman scattering �5,6� generates entanglement
between light and atoms, and this in turn can be used for
entangling distant atomic ensembles �7–11�. Such an en-
tanglement can be exploited for continuous-variable quan-
tum cryptography �12� or teleportation �13�. In the Stokes or
anti-Stokes configuration, Raman scattering can be used for
transferring a quantum state of light to atoms or vice versa
�14–17�. Already early works demonstrated phase memory
of atomic polarization induced by Raman scattering and its
robustness against decoherence �18�, thus a Raman medium
offers the possibility to realize long-lived continuous-
variable quantum memory.

Parallel to Raman-scattering techniques, the phenomenon
of electromagnetically induced transparency �EIT� is being
extensively studied. In this completely resonant situation,
weak probe light can be slowed down and stopped in a form

of localized atomic polarization by controlling a strong pump
�19–21�. In this form of a quantum memory �22�, the light
bandwidth is narrower, compared to the off-resonant Raman
interaction, due to the resonant character of this phenomenon
�1�.

In this paper we focus on the precise one-dimensional
quantum description of the generation of entanglement be-
tween light and an atomic ensemble by spontaneous and
stimulated Stokes Raman scattering, followed by the readout
of the atomic polarization state onto an anti-Stokes field, as
depicted in Figs. 1 and 2. Following Raymer �9�, we will use
an input-output formalism to describe these interactions. As
was already conjectured there and proved approximately by
numerical means, the Raman scattering process can be de-
composed into a discrete set of two-mode entanglement
processes. Each process is described by a Bogoliubov two-
mode squeezing transformation, which linearly mixes photon
annihilation and creation operators. Each elementary process
squeezes the phase sum of excitation amplitudes of optical
and atomic-ensemble collective Bosonic modes. Below
we shall present a proof of this decomposition, an extension
of the Bloch-Messiah reduction �23�, and demonstrate that it
is applicable as long as the input-output relations are linear
relations, involving mixing creation and annihilation
operators.

We also consider the readout of the stored atomic polar-
ization using the anti-Stokes scattering process. We prove
that the readout process can also be decomposed into mul-
tiple mode pairs, each pair undergoing independent evolution
analogous to a beam-splitter transformation. For this, we de-
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rive a canonical form of an all-linear unitary transformation
acting on a bipartite system.

Throughout this paper we keep in mind the idea of an
experiment with Raman scattering in a thermal vapor of
87Rb, pumped by highly detuned, subnanosecond laser

pulses. Our idealization comprises neglecting the influence
of sidewards spontaneous emission, as well as atomic polar-
ization damping, atom loss, and density fluctuations. We will
also restrict ourselves to a one-dimensional model, which is
justified approximately in the case when the Fresnel number
of the pump beam equals unity or less �6�. However, we will
include the effects of dispersion in the vapor, which intro-
duces appreciable group-velocity difference between the
pump and scattered wave under realistic experimental condi-
tions. We find that dispersion significantly increases the num-
ber of independent modes excited in the Raman scattering
process, since the Stokes photons born in different parts of
the medium become distinguishable by their delay respective
to the pump pulse. Dispersion also can reduce the efficiency
of the readout process.

Our work stems from early studies of stimulated Raman
scattering �5,6,24�, and we adopt the formalism of these
works. We will also draw from early results on quantum
energy �25,26� and phase �27� statistics of Stokes pulses.

In Sec. II we give theoretical foundations of the decom-
position used to analyze the structure of squeezing generated
in the Stokes scattering process. The specific case of pulsed
pump fields and nonzero dispersion, which needs to be
solved numerically, is addressed in Sec. III. The conse-
quences of the multimode character of the output field for
photon-count statistics are studied in Sec. IV. The problem of
reading out of the atomic polarization by anti-Stokes scatter-
ing is discussed in Sec. V.

II. PAIR-WISE ENTANGLEMENT OPERATION

We begin developing our model by idealizing the process
of stimulated Raman scattering as a three-wave mixing and
restricting ourselves to one dimension �5�. This is justified
provided that atomic saturation and pump field depletion can
be neglected while the pump Rayleigh range is comparable
to or shorter than the medium length �6�.

We formulate the equations in the moving reference frame
of the Stokes wave,

t = tlab −
z − L/2

vgr,S
�1�

where tlab is the time in the laboratory frame, vgr,S is the
Stokes group velocity, while L is the medium length. Accord-
ing to the above expression, the laboratory and Stokes refer-
ence frames meet in the middle of the medium. Atomic po-

larization �or spin �1�� is described by an operator b̂�z , t�
which removes one atom’s worth of internal excitation from
the atomic ensemble localized in a thin-slice volume around
a point in space-time in the medium �9�:

b̂�z,t� = i
�1/2

n �
���z

�1�	
3��ei��p−�S�tlab−i�kp−kS�z �2�

where � is linear atom density �atoms per mm�, n is the
number of atoms in a slice, indexed by �, �1	 and �3	 denote
the Raman-coupled atomic levels, �p and �S are the pump
and Stokes angular frequencies, while kp and kS are their
wave vectors �see Fig. 1�. As long as the fraction of excited

FIG. 1. Relevant atomic levels in the Stokes and anti-Stokes
�upper panel� Raman scattering. Initially atoms reside in state �1	.
During the first scattering process �lower panel� they are driven by
strong pump field at a frequency �p, which creates Stokes optical

field â at a frequency �S and atomic polarization b̂. Subsequently,
the atoms are subjected to a strong field at a frequency �p� which

erases atomic polarization we will denote by d̂ shifting the excita-
tion into anti-Stokes optical field ĉ at a frequency �a �upper panel�.

FIG. 2. �Color online� Pictorial representation of the Stokes and
subsequent anti-Stokes scattering processes �see Sec. V� in the labo-
ratory reference frame. The vertical stripe represents the cell in
which the nonlinear medium is contained, the shaded parallelo-
grams are the spatiotemporal interaction boundaries, the gray �green
in color� stripe represents Stokes pump field envelope Ap�z , t�,
while the dark gray �red� stripe represents anti-Stokes pump field
envelope Ap��z , t�. Letters with hats are the annihilation operators of
the input and output quantum fields, defined at the respective
boundaries of the interaction regions.
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atoms is small, b̂�z , t� is approximately a Bosonic operator,

�b̂�z , t� , b̂†�z� , t�����z−z��. The Stokes field is described by
an envelope annihilation operator at each point in space
along the pump beam â�z , t�:

â�z,t� =� d�e−i��−�S�tlab+ikSzâ�z,�� . �3�

It is a Bosonic operator, �â�z , t� , â†�z , t���=��t− t��. Finally,
the pump field is given by its envelope Ap�z , t� in the refer-
ence frame of the Stokes pulse, scaled to unity, defined by

Ep„t − �z − L/2���…

Ep,max
= Ap�z,t�e−i�pt+ikpz + c.c., �4�

where Ep�t� is the pump electric field while �� is the differ-
ence of the inverse group velocities of the pump and Stokes
pulses �measured in picoseconds per millimeter�

�� =
1

vgr,S
−

1

vgr,p
, �5�

where vgr,p is the pump group velocity. If the Stokes field is
faster than the pump, then �� is negative.

Using these definitions, the Raman scattering process is
cast into the following pair of coupled equations �5,9�:

�â�z,t�
�z

= g0Ap�z,t�b̂†�z,t� , �6a�

�b̂�z,t�
�t

= g0Ap�z,t�â†�z,t� , �6b�

where g0 is the coupling constant �measured in �mm ps�−1/2�
defined as

g0 = �1/2
 ��S

2�0c
Ep,max	1, �7�

where 	1 is a coupling constant defined in Ref. �5�. Since the
pump and Stokes pulses are narrowband, higher-order dis-
persion effects, possibly distorting the pulses, can be ne-
glected. On the other hand, in the atomic vapor one finds that
the frequency difference between the interacting waves is
large enough for significant group velocity differences to be
observed. A typical subnanosecond pump pulse can be de-
layed by several times its duration with respect to the Stokes
pulse, thus the presence of nonzero �� cannot be neglected
�28�.

We proceed with solving Eq. �6� by integrating over a
finite spatial-temporal region in which the interaction takes
place, thus formulating the problem as a quantum scattering
problem. This approach, pictorially represented in Fig. 3 re-
quires introduction of a suitable scattering matrix, which in
the case of Stokes scattering is composed of the Green func-
tions of Eq. �6�. We choose to introduce them over a space-
time region 0
z
L and −T
 t
T, in the following way:

â�L,t� = �
−T

T

dt�Ca�t,t��â�0,t�� + �
0

L

dz�Sa�t,z��b̂†�z�,− T� ,

�8a�

b̂�z,T� = �
0

L

dz�Cb�z,z��b̂�z�,− T� + �
−T

T

dt�Sb�z,t��â†�0,t�� .

�8b�

We can simplify the above input-output relations using an
extended Bloch-Messiah reduction theorem �23�, which we
derive in Appendix A. This theorem states that since the
Green functions for this problem must describe a unitary
operator transformation, they possess common singular vec-
tors and related singular values cosh �n and sinh �n:

Ca�t,t�� = �
n

�cosh �n��n
�out�*�t��n

�in��t�� , �9a�

Cb�z,z�� = �
n

�cosh �n�
n
�out�*�z�
n

�in��z�� , �9b�

Sa�t,z�� = �
n

�sinh �n��n
�out�*�t�
n

�in�*�z�� , �9c�

Sb�z,t�� = �
n

�sinh �n�
n
�out�*�z��n

�in�*�t�� , �9d�

where �n are real numbers while �n
�out��t�, 
n

�out��z�, �n
�in��t�,

and 
n
�in��z� are complex-valued functions which form sepa-

rate orthonormal bases for the output and input, light, and
atomic mode-function spaces, respectively �35�:

�
−T

T

dt�n
�in�*�t��m

�in��t� = �n,m,

�
0

L

dz
n
�in�*�z�
m

�in��z� = �n,m,

FIG. 3. �Color online� Pictorial representation of the Stokes
scattering process in the Stokes reference frame, defined in Eq. �1�.
The medium entangles light field â with atoms b̂. The local en-
tanglement amplitude increases with a �fixed� local pump field
strength Ap�z , t�, represented in the picture by a gray �green in
color� stripe. Horizontal stripe corresponds to equal group velocities
of pump and Stokes, ��=0.
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�
−T

T

dt�n
�out�*�t��m

�out��t� = �n,m,

�
0

L

dz
n
�out�*�z�
m

�out��z� = �n,m. �10�

We insert the Green functions in the form given in Eq. �9�
into Eq. �8�. Then we express input and output field annihi-

lation operators â�0, t�, b̂�z ,−T� by mode expansions and de-

fine output operators â�L , t� and b̂�z ,T� analogously,

â�0,t� = �
n

ân
�in��n

�in�*�t� ,

â�L,t� = �
n

ân
�out��n

�out�*�t� ,

b̂�z,− T� = �
n

b̂n
�in�
n

�in�*�z� ,

b̂�z,T� = �
n

b̂n
�out�
n

�out�*�z� , �11�

where we have introduced operators ân
�in�, ân

�out�, b̂n
�in�, and

b̂n
�out�. Thanks to orthonormality of the respective mode func-

tions expressed in Eq. �10�, these operators obey canonical
commutational relations:

�ân
�out�, âm

�out�†� = �nm, �b̂n
�out�, b̂m

�out�†� = �nm �12�

and the operators with superscript �in� obey analogous com-

mutational relations. Therefore ân
�in�, ân

�out�, b̂n
�in�, and b̂n

�out� are
Bosonic operators, which annihilate excitations in respective
light and atomic modes. Using Eqs. �9�–�11�, Eq. �8� can be
cast into the following form:

ân
�out� = ân

�in� cosh �n + b̂n
�in�† sinh �n, �13a�

b̂n
�out� = b̂n

�in� cosh �n + ân
�in�† sinh �n. �13b�

This expresses independent two-mode squeezing processes,
and is the main result of this part of our study. Each of these
elementary processes squeezes the optical field in a particular
temporal mode �n

�in��t� with the atomic polarization in a par-
ticular longitudinal spatial mode 
n

�in��z�, producing fields in
optical temporal modes �n

�out��t� that are pair-wise entangled
with the internal states of atoms described by collective spa-
tial modes 
n

�out��z�. The squeezing parameter equals �n. The
noise in the sum and difference of quadratures scales by a
factor of exp��n�, corresponding to the mean number of ex-

citations 
n̂n	= 
ân
�out�†ân

�out�	= 
b̂n
�out�†b̂n

�out�	=sinh2 �n, provided
the atomic and field modes are initially unoccupied.

Note that for a pump pulse of a given shape, characterized
by duration �p, for instance Gaussian,

Ap�z,t� = exp�− 2 ln 2� t − �z − L/2���

�p
�2� , �14�

the time and space in Eqs. �6� can be reduced to a dimen-
sionless coordinates by measuring time in units of pump
pulse duration �p and space in units of distance over which
temporal Stokes walkoff equals pump duration �p /��. This
way the pump envelope Ap���z /�p , t /�p� becomes a fixed
function. Note that for T��p the Green functions do not
depend on T since there is no longer any interaction taking
place for large t. Thus the Green functions defined in Eq. �8�
can depend only on medium length, coupling strength, and
pulse shape. Both can be brought into a form of two dimen-
sionless parameters:

� =
L��

�p
, �15a�

� = g0

L�p. �15b�

The first is the temporal walkoff between pump and Stokes
field, measured in pump pulse durations, while the second
measures the squeezing strength and is proportional to the
squeezing parameter in the case of zero dispersion �5,9�.
Therefore there is a congruence between the solutions and
mode functions for the Stokes scattering problem, as long as
the pump pulse shapes are congruent and the values of the
parameters � and � are the same.

Finally, let us note that the characteristic output modes
�n

�out��t� and 
n
�out��t� we obtained with the help of the Bloch-

Messiah reduction are identical to previously obtained
atomic and field coherence modes �6,9,29�. The latter were
introduced as the eigenmodes of the first-order coherence

functions for atoms 
b̂†�z ,T�b̂�z� ,T�	 and field

â†�L , t�â�L , t��	. Calculating these functions explicitly using
Eqs. �9� we obtain


â†�L,t�â�L,t��	 = �
0

L

dz�Sa
*�t,z��Sa�t�,z��

= �
n


n̂n	�n
�out�*�t��n

�out��t�� , �16�


b̂†�z,T�b̂�z�,T�	 = �
−T

T

dt�Sb
*�z,t��Sb�z�,t��

= �
n


n̂n	
n
�out�*�z�
n

�out��z�� �17�

as in Refs. �6,9�. In Ref. �9� also the characteristic input
modes were introduced as those evolving into a particular
pair of output modes, which is another way of obtaining the
decomposition given in Eq. �9�.

III. NUMERICAL RESULTS

To illustrate the meaning of the above results and provide
the decomposition into independent entanglement processes
in some specific and realistic cases, we have numerically
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found Green functions defined in Eq. �8�. Calculations were
carried out for a medium of length L=75 mm for various
values of group velocity difference ��, coupling strength g0,
and Gaussian pump pulse of full width at half maximum
�FWHM� duration �p=200 ps as defined in Eq. �14�. Let us
note that for a specific case of 87Rb vapor such a pulse may
be broadband enough to drive unwanted transitions between
the two hyperfine ground states. However, the results ob-
tained can be always scaled to a longer pulse lengths using
the relations �15�.

As the equations of motion �6� are linear, they are identi-
cal to the classical equations for evolution of the Stokes field
and the atomic polarization in the case of stimulated Raman

scattering, in which annihilation operators â�z , t� and b̂�z , t�
are replaced by classical field ��z , t� and polarization ampli-
tudes ��z , t�. Therefore we can compute matrix approxima-
tions to the Green functions Ca�t , t��, Cb�z ,z��, Sa�t ,z��, and
Sb�z , t�� using standard methods developed in nonlinear op-
tics. To accomplish this, Eqs. �6� were solved numerically for
a complete orthonormal set of initial conditions. First we put
��0, t�=0 for every t except for a single point on a compu-
tational grid t= t� where ��0, t��=1, and ��z ,−T�=0 for ev-
ery z. Performing finite integration steps over the space-time
grid of 200�200 points where the interaction occurs, we
computed ��L , t� and ��z ,T�. For the initial conditions cho-
sen, they are equal to Ca�t , t�� and Sb�z , t��, respectively. Re-
peating this calculation for each t�, we constructed a matrix
approximation of these Green functions. Then analogously
starting from ��0, t�=0, and ��z ,−T�=0 except for a single
point on a computational grid where ��z� ,−T�=1, we have
constructed Cb�z ,z��, Sa�t ,z��. Next we numerically per-
formed the singular value decomposition �31� of these ma-
trices to obtain the singular values sinh �n and cosh �n as well
as associated vectors �n

�in��t�, 
n
�in��t�, �n

�out��t�, and 
n
�out��t� as

defined in Eq. �9�. We have verified that our simulation is
accurate by repeating it on a grid two times finer in each
dimension. The differences between the results were of the
order of precision with which singular value decomposition
can be computed. We have also verified that our numerical
calculation reconstructs the analytical results for square
pump pulse without dispersion �9�.

Numerical calculations confirm that the total number of
photons


Ntot	 = �
n


n̂n	 = �
n

sinh2 �n �18�

is, to a good approximation, an exponential function of cou-
pling g0, within the range plotted in Fig. 4. However, we find
a strong dependence of 
Ntot	 on the group velocity differ-
ence between pump and Stokes pulses ��. With increasing
�� the total photon number 
Ntot	 quickly decreases. Using
results displayed in Fig. 4 we have found, for each ��, the
value of coupling g0 for which the total number of photons
equals 
Ntot	=106. These values of coupling g0 will be used
in the following examples.

In Fig. 5 we plot the mean number of photons in each
mode 
n̂n	=sinh2 �n. In the case of no dispersion ��=0, the

occupation of the first mode dominates by a factor of 103

over the next, as known previously �25,26�. Strong domina-
tion, however, quickly comes to an end with increasing dis-
persion. For ��=−30 ps/mm more than a dozen modes have
occupancy equal within an order of magnitude.

The physical reason behind this result can be traced in
Fig. 6, where we depict a space-time region where the inter-
action occurs. We mark the pumped area as the dark gray
�green� region. In the case of zero group velocity difference,
��=0, the first few Stokes photons propagate through the
pumped region, stimulating subsequent scattering acts and
inducing coherence between atomic polarization in various
regions along the cell. The process is almost single mode
�9,26�. On the other hand, in the case of high group velocity
difference, the spatial-temporal interaction region can be di-
vided into several regions, the number of such regions being
roughly the ratio of the total temporal walkoff to the pump
duration �=L�� /�p. These regions are weakly coupled,
since the photons scattered in the distinct parts of the cell do
not have a chance to meet each other. Thus several uncorre-
lated temporal modes take part in the process and become
significantly occupied.

This latter phenomenon complicates the possible applica-
tions. For nonzero dispersion one must afford means, such as

FIG. 4. Mean number of Stokes photons as a function of cou-
pling strength g0 ��mm ps�−1/2�. Three lines are the results of com-
putations for different �� equal 0 �solid line�, −10 ps/mm �dashed
line�, and −30 ps/mm �dotted line�.

FIG. 5. Mean number of photons in each of characteristic output
modes 
n̂n	 for 15 most-occupied modes. The histograms has been
made for coupling yielding average total number of Stokes photons

Ntot	=106 for different �� equal 0 �black bar�, −10 ps/mm �gray
bars� and −30 ps/mm �empty bars�.
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for example balanced homodyne detection, for separating
distinct output modes in order to extract a pure squeezed
state of light and matter. Whether in the single or multimode
squeezing regime, an efficient detection of Stokes light is
necessary for quantum communication and computation.
This is possible by means of balanced homodyne detection
using a local oscillator in the shape of the characteristic
Stokes mode. In Fig. 7 we plot the temporal shape of the
most occupied output field modes for the Gaussian pump
centered at t=0 defined in Eq. �14�. The dominant mode has
a single peak, which is time delayed relative to the pump
peak �29�. The modes resemble in shape the eigenmodes of a
harmonic oscillator. They are also strongly affected by the
group velocity difference. With increasing ��, the duration
of the fundamental mode increases while the time delay rela-
tive to the pump pulse in the middle of the medium de-
creases. Also for large �� all the characteristic modes have
significant intensity over the same period of time, spanning
approximately one pump duration plus temporal walkoff be-
tween pump and the Stokes �p+L��=�p�1+��.

Note that in the limit of zero dispersion, ��=0, the Green
functions calculated numerically can be found in a closed
form using Laplace-transform techniques �5�, even for the
full three-dimensional case �6�. The results presented here
for zero dispersion are recovered by applying numerical di-
agonalization directly to those functions �9�. Finally let us

note that the output characteristic modes can be used to re-
construct the statistics of fluctuating Stokes pulse shapes
�29�.

IV. PHOTON COUNT STATISTICS

Using the results of numerical calculations, we were able
to compute the photon-count statistics for the Stokes pulse.
Let us recall that one mode of the pair comprising a two-
mode squeezed state exhibits thermal statistics �30�. This is
the case of any particular output field mode �m

�out��t� by itself.
Also, each of the output field modes is independent, since
they evolve separately from vacuum. Thus the Stokes pulse
has multimode thermal statistics as first predicted in Ref.
�26� and observed in Ref. �25�:

p�n� =
1

2�
� dk

e−ikn

�m
�1 − ik
n̂m	�

. �19�

We plot p�n� in Fig. 8 for total photon number

Ntot	=106 and various values of group velocity difference
��.

Following the analogy with thermal light, we have also
computed and plot in Fig. 9 the equivalent number of modes
M. It is defined as a number of independent thermal modes
of equal intensity that measured together reproduce the
Stokes fluctuation-to-mean ratio:

M =

Ntot	2

�m

n̂m	2

. �20�

As can be seen in Fig. 9, the equivalent mode number M
depends mostly on ��, which is almost independent of cou-
pling strength g0. This is consistent with the intuitive way of
understanding Stokes scattering we propose in Fig. 6.

V. ATOMIC POLARIZATION READOUT

As shown in Sec. II, the optical Stokes pulse contains
only one part of the squeezed state. Alone it has thermal
statistics and possesses no distinct quantum features. En-

FIG. 6. �Color online� Pictorial representation of the Stokes
scattering for zero group velocity difference �� �left� and large
negative ���−�p /L �right�. The gray box represents the spatiotem-
poral region of interaction, the dark gray �green in color� stripe is
the pumped region, the horizontal �red� arrows are the Stokes emis-
sion, while the vertical �blue� arrows represent atomic polarization.
The picture has been drawn in the Stokes reference frame.

FIG. 7. Optical �n
�out��t� and

atomic 
n
�in��t� output mode func-

tions for three most excited
modes, n=1 �solid line�, n=2
�dashed line�, and n=3 �dotted
line� for various group velocity
differences ��.
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tanglement can be observed only if the field counterpart—the
atomic polarization—is acted upon. A convenient to way

process the atomic b̂�z� field is to translate its statistics into
the optical field. This is done in the anti-Stokes scattering
process, during which a portion of atomic polarization gives
rise to an anti-Stokes pulse. The equations governing this
process are similar to Eqs. �6� in the anti-Stokes reference
frame �9�:

�ĉ�z,t�
�z

= g0�Ap��z,t�d̂�z,t� , �21a�

�d̂�z,t�
�t

= − g�0
*A�p

*�z,t�ĉ�z,t� , �21b�

where ĉ�z , t� is the anti-Stokes field annihilation operator,

defined by an equation analogous to Eq. �3�, d̂�z , t� is the
atomic polarization operator, defined by an equation analo-
gous to Eq. �2�, g0� is the readout coupling defined analo-
gously to Eq. �7�, while Ap��z , t� is the readout pump field
envelope. The definition of the Ap��z , t� is analogous to that of
the Stokes pump field envelope Ap�z , t� given in Eq. �4�, but
with a different peak amplitude and a different group veloc-

ity difference, which we will designate by ���:

��� =
1

vgr,a
−

1

vgr,p
�22�

where vgr,a is the group velocity of the anti-Stokes wave,
while vgr,p is the group velocity of the readout pump.

Again, we formulate the readout problem as a quantum
scattering problem, analogously to the situation illustrated in
Fig. 3. This time the scattering matrix is composed of four
Green functions for the anti-Stokes scattering equations �21�.
We define them analogously to those defined in Eq. �8� for
the Stokes scattering:

ĉ�L,t� = �
−T

T

dt�Cc�t,t��ĉ�0,t�� + �
0

L

dz�Sc�t,z��d̂�z�,− T� ,

�23a�

d̂�z,T� = �
0

L

dz�Cd�z,z��d̂�z�,− T� − �
−T

T

dt�Sd�z,t��ĉ�0,t�� .

�23b�

Here ĉ�0, t� is the optical field operator �usually representing
the vacuum� entering the vapor during readout, and

d̂�z ,−T� is the atomic ensemble operator just prior to the
readout.

We can cast these relations into multiple, independent
beam-splitter transformations �see Appendix B�. Since the
Green functions for this problem must describe a unitary
transformation, they possess common singular vectors and
related singular values, which we parametrize by �n:

Cc�t,t�� = �
n


1 − �n�n
�out�*�t��n

�in��t�� , �24a�

Cd�z,z�� = �
n


1 − �n�n
�out�*�z��n

�in��z�� , �24b�

Sc�t,z�� = �
n


�n�n
�out�*�t��n

�in��z�� , �24c�

Sd�z,t�� = �
n


�n�n
�out�*�z��n

�in��t�� . �24d�

The readout modes �n
�out��t�, �n

�out��z�, �n
�in��t�, and �n

�in��z�
form orthonormal bases in the input and output, light, and
atomic mode-function spaces:

�
−T

T

dt�n
�in�*�t��m

�in��t� = �n,m,

�
0

L

dz�n
�in�*�z��m

�in��z� = �n,m,

�
−T

T

dt�n
�out�*�t��m

�out��t� = �n,m,

FIG. 8. Photon count probability distribution p�n� of Stokes
light pulses. Three lines are the results of computations for different
�� equal 0 �solid line�, −10 ps/mm �dashed line�, and −30 ps/mm
�dotted line�.

FIG. 9. Equivalent number of independent thermal modes M as
a function of coupling strength g0 ��mm ps�−1/2�. Three lines are the
results of computations for different �� equal 0 �solid line�,
−10 ps/mm �dashed line�, and −30 ps/mm �dotted line�.
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�
0

L

dz�n
�out�*�z��m

�out��z� = �n,m. �25�

We use these functions as mode bases in respective spaces
and decompose the annihilation operators ĉ�0, t�, ĉ�L , t�,
d̂�z ,−T�, and d̂�z ,T�:

ĉ�0,t� = �
n

ĉn
�in��n

�in�*�t� , �26a�

ĉ�L,t� = �
n

ĉn
�out��n

�out�*�t� , �26b�

d̂�z,− T� = �
n

d̂n
�in��n

�in�*�z� , �26c�

d̂�z,T� = �
n

d̂n
�out��n

�out�*�z� , �26d�

where we have introduced annihilation operators of the input

and output characteristic modes ĉn
�in�, d̂n

�in�, ĉn
�out�, and d̂n

�out�.

Again, it turns out that the output operators ĉn
�out� and d̂n

�out�

are independent Bosonic operators. The same is true for in-

put operators ĉn
�in� and d̂n

�in�.
These operators annihilate excitations of modes that

undergo transformations analogous to a beam-splitter
transformation:

ĉn
�out� = 
1 − �nĉn

�in� + 
�nd̂n
�in�, �27a�

d̂n
�out� = 
1 − �nd̂n

�in� − 
�nĉn
�in�. �27b�

The real parameters �n have the meaning of the readout ef-
ficiency. Modes with �n=1 are completely translated from
the atomic field into the optical field while spatial modes
with �n=0 remain unaffected by the anti-Stokes scattering
process.

We have numerically found forms for the Green functions
defined in Eq. �23� for similar conditions used to calculate
the Raman process in earlier sections. Results are first pre-
sented for the case of a medium of length L=75 mm with
zero group velocity difference ���, various coupling
strengths g0�, and Gaussian pump pulse Ap��z , t� of FWHM
duration �p�=200 ps given in Eq. �14�. In Fig. 10 we plot
the calculated �n. It can be seen that above a certain value
of coupling g0�, many modes have unit readout efficiency
�n=1, i.e., are completely translated into the optical field.
Those modes are degenerate, thus within a subspace spanned
by their mode functions we can change the basis, i.e., the
modal functions, without affecting relations �27�.

Let us focus on the case that the readout takes place just
following the Raman scattering process described in earlier

sections; in this case d̂�z ,−T� is given by the output operator

b̂�z ,T� in Eq. �8�:

d̂�z,− T� = ei�kzb̂�z,T� , �28�

where �k is the wave-vector mismatch in the time-delayed
four-wave mixing process:

�k = kp − kS + ka − kp�, �29�

where subscript p, p�, S, a denote Stokes pump and anti-
Stokes pump, Stokes and anti-Stokes signal waves, respec-
tively. For efficient readout the phase-matching condition
�k=0 must be satisfied. Below we will assume perfect phase
matching. It is possible to satisfy this by proper choice of
pump frequencies.

Using the expansions �11� and �26� we find that the char-

acteristic anti-Stokes input operators d̂n
�in� are related to the

characteristic Stokes output operators b̂n
�out� by a unitary

transformation expressing the change of basis from 
n
�out��z�

to �n
�in��z�:

d̂m
�in� = �

n

Umnb̂n
�out�, �30�

where the transformation coefficients are

Umn = �
0

L

dz
n
�out�*�z�e−i�kz�m

�in��z� . �31�

Let us consider the readout of the first characteristic atomic
mode of the Stokes scattering 
1

�out��z� whose quantum sta-

tistics, before the readout, is contained in the operator b̂1
�out�.

It can be decomposed in the characteristic anti-Stokes input
mode base �n

�in��z�, according to the above formulas.
The readout has unit efficiency if the atomic mode 
1

�out��z�
decomposes only into readout characteristic input modes
�n

�in��z� for which �m=1. In other words, if for all m for
which Um1�0 the readout efficiencies �m equal 1, then the
readout has unit efficiency.

There is, however, a more straightforward way to analyze
a readout of an excitation in a particular mode. Assuming

perfect phase matching, �k=0, so d̂�z ,−T�= b̂�z ,T� we sub-

stitute input atomic operator d̂�z ,−T� in Eq. �23� by b̂�z ,T� in
an expanded form given by Eq. �11�:

ĉ�L,t� = �
n

�n
*�t�b̂n

�out� + �
−T

T

dt�Cc�t,t��ĉ�0,t�� , �32a�

FIG. 10. Readout efficiency �n for the most efficiently read
modes in anti-Stokes scattering process for ���=0 and coupling g0�
equal 0.01, 0.02, 0.05, 0.1 �ps mm�−1/2, for black, gray, and empty
bars, respectively.

W. WASILEWSKI AND M. G. RAYMER PHYSICAL REVIEW A 73, 063816 �2006�

063816-8



d̂�z,T� = �
n

�n
*�z�b̂n

�out� − �
−T

T

dt�Sd�z,t��ĉ�0,t�� , �32b�

where we have introduced mode functions

�n
*�t� = �

0

L

dz�Sc�t,z��
n
�out�*�z�� , �33a�

�n
*�z� = �

0

L

dz�Cd�z,z��
n
�out�*�z�� . �33b�

Equations �32� give yet another modal decomposition of the
output atomic and light fields. However, this time the modal
functions �n

*�t�, Cc�t , t��, �n
*�z�, and Sd�z , t�� form orthonor-

mal bases in the joint atom-light space:

�
−T

T

dt�n
*�t��m�t� + �

0

L

dz�n
*�z��m�z� = �mn, �34a�

�
−T

T

dt�n
*�t�Cc�t,t�� − �

0

L

dz�n
*�z�Sd�z,t�� = 0. �34b�

This is a consequence of unitarity of the relations �23� �see
also Appendix B�.

Usually we want statistics of some particular atomic
mode, say 
1

�out��z�, to be completely transferred into an op-
tical field mode. This requirement is equivalent to requesting

�1�z�=0 for every z, so that d̂�z ,T� in Eq. �32b� contains only
zero-point, vacuum noise represented by ĉ�0, t��. The output
light mode �1�t� can be computed in advance and detection
apparatus tuned to it. Note that if the transfer is complete the
z integrals containing �1�z� vanish in Eq. �34�. It follows that
all other output field modes must be orthogonal to �1�t�. In
other words no crosstalk occurs, i.e., the polarization in any
other atomic mode does not give rise to any photons in the
optical field mode �1�t� we are presumably tuned to. This
does not prevent emission into other optical modes, however.

Therefore the readout problem can be reduced to a
question of how to prepare the readout pump pulse in such a
way that the atomic polarization of interest, say in mode

1

�out��z�, is completely transferred into the optical field.
We investigated this by simulating readout of an atomic

mode 
1
�out��z� in an anti-Stokes interaction. Calculations

were carried out for a medium of length L=75 mm for
various values of group velocity differences, assuming
��=���. For each particular value of this parameter, we
have first computed the mode function of the fundamental
atomic output mode 
1

�out��z� in a way described in Sec. III,
with the Stokes coupling such that the total mean number of
excitations 
Ntot	=106. Next we have simulated the anti-
Stokes scattering of this particular atomic mode for various
anti-Stokes coupling strengths g0� and Gaussian pump Ap��z , t�
of FWHM duration �p�=200 ps given in Eq. �14�. We have
quantified the quality of the readout by computing the re-
sidual fraction of atomic polarization after the readout

1 − � = �
0

L

dz��1�z��2. �35�

The results are shown in Fig. 11. One can see that for zero
group velocity difference 1−� rapidly falls with increasing
coupling g0� as predicted in Ref. �9�. The readout is virtually
perfect for g0��0.04 �ps mm�−�1/2�. However, for nonzero
��� the residual atomic polarization is of the order of at least
a percent. The readout inefficiency 1−� becomes a periodic
function of coupling g0�. The period increases with increasing
���, and the particular optimal values of g0� depend on the
parameters of the readout process as well as the initial atomic
excitation mode function 
1

�out��z�. We expect that perfect
readout, �=1, can be achieved in the presence of dispersion
by changing the shape of the pump pulse. However, we leave
this question to a future study.

In Fig. 12 we plot the output field modes �1�t� obtained in
the readout simulations. In case of homodyne detection of
the output of the anti-Stokes readout process, those would be
the optimal local oscillator shapes. For zero group velocity
difference ���=0 we observe that the output field mode be-
comes shorter with increasing g0�. For nonzero ��� the mode
shapes �1�t� corresponding to the subsequent minima of the
function 1−��g0�� depicted in Fig. 11 show increasing num-
ber of nodes.

The physics behind the readout process can be intuitively
understood if one notes that integrating the propagation
equations �21� over a spatiotemporal region 2�z�2�t where
the fields are almost constant gives a simple beam-splitter-
like relation between input and output fields:

ĉ�z + �z,t� = ĉ�z − �z,t�
1 − ���2 + �d̂�z,t − �t�

�z

�t

,

d̂�z,t + �t� = d̂�z,t − �t�
1 − ���2 − �*ĉ�z − �z,t�

�t

�z

,

�36�

where �=2g0�Ap��z , t�
�z�t. Therefore we can visualize the
scattering process as a square network of virtual beam split-

FIG. 11. Fraction of residual atomic polarization 1−� not trans-
ferred to an optical field after the anti-Stokes scattering process as a
function of the readout coupling g0 ��ps mm�−1/2�. Results for three
group velocity differences ��� equal 0 �solid line�, −10 ps/mm
�dashed line�, and −30 ps/mm �dotted line� are displayed.
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ters, each having different reflectivity 
�. In Fig. 13 we rep-
resent the pumping intensity Ap��z , t� and the beams repre-
senting atomic polarization and optical field, which
propagate in the above-mentioned network.

For zero group velocity difference and a nearly exponen-
tial input atomic mode 
1

�out��z� �see Fig. 7�a�� the anti-Stokes
field grows with z sweeping the major part of the atomic
polarization out of the cell. At each z along the pump beam,
where the virtual beam splitters mix atomic polarization and
anti-Stokes light the condition of suppressing the atomic out-

put d̂�z , t�
1− ���2=�*ĉ�z , t� is met, since the anti-Stokes and
atomic polarization both grow exponentially with z. For
small group velocity difference ���=−10 ps/mm, the input
atomic polarization has a maximum inside the cell and the
anti-Stokes scattering process first shifts the atomic excita-
tion into the field, but at some point the process is partially

reversed and the atomic polarization, albeit shifted towards
the end of the cell, partially remains within it. The atomic
input mode shape is not proper to achieve suppression of the
atomic output polarization which occurred in the case of the
of vanishing dispersion. Finally, for the largest group veloc-
ity difference ���=−30 ps/mm, the initial atomic mode
shape plays a minor role, since the scattering processes in
various parts of the cell are nearly independent from each
other, because there is no light connecting them. This is why
the residual fraction of the atomic polarization can be smaller
for larger ��� as found in the numerical calculations and
depicted in Fig. 11.

We explain the oscillations of readout efficiency 1−� as a
function of coupling g0� found in numerical calculations and
plotted in Fig. 11 in the following way. We investigate in
detail the scattering in a small part of the pumped region,
shown in Fig. 13�d�. As soon as the atomic polarization
reaches the pumped region, it is converted into an anti-
Stokes wave within a small period of time. Released light
propagates along the horizontal arrow, however, soon it is
converted back into atomic polarization. The excitation ex-
change continues until the atomic polarization or light leaves
the pumped region. Since the period of oscillations changes
with the pumping intensity, we observe in the end either
excitation form alternately. In particular for some pumping
intensities the oscillations stop just when the excitations are
stored in light, which corresponds to the maximum readout
efficiency �. This scenario is confirmed by the numerical
simulations for high pumping intensity. It can be also ob-
tained from an analytical solution of Eq. �21� rewritten in the
pump reference frame under assumption that the quantum
fields do not depend on z in this reference frame.

VI. CONCLUSION

In summary, we have analyzed the Stokes and anti-Stokes
scattering processes under transient pumping conditions and
in presence of group velocity difference between the inter-
acting waves in the nonsaturated regime. Using Bloch-
Messiah reduction �23� we confirm previous conjecture �9�
that the Stokes scattering process can be decomposed into
multiple independent squeezers. Each of them entangles at-

FIG. 12. Readout anti-Stokes light modes �1�t� for fundamental atomic Stokes modes 
1
�out��z� for various group velocity difference

��=��� and coupling strengths corresponding to readout efficiency peaks for nonzero ��� �compare Fig. 11�. Solid, dashed, and dotted
lines correspond respectively to subsequent values of g0�, listed below each panel.

FIG. 13. �Color online� Pictorial representation of the anti-
Stokes scattering for zero group velocity difference ��� �a�, me-
dium value of ��� �b� and high negative ����−�p /L �c�. The gray
box represents the spatiotemporal region of interaction, the dark
gray �red in color� stripe is the pumped region, the horizontal
�green� arrows are the anti-Stokes emission, while the vertical
�blue� arrows represent atomic polarization. The picture is drawn in
the anti-Stokes reference frame. Panel �d� gives insight into oscil-
latory exchange of excitation between light and atoms.
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oms and field, both in characteristic input modes �n
�in��t� and


n
�in��z�, into a pair of quantum-correlated states occupying

characteristic output modes �n
�out��t� and 
n

�out��z�. We com-
pute those modes and their occupancies 
n̂n	 for a few real-
istic cases. We find that with increasing group velocity dif-
ference between the pump and Stokes waves, the scattering
process involves an increasing number of modes which be-
come comparably squeezed and occupied. This is also re-
flected in the photon-count statistics we compute, which
changes from single-mode thermal statistics in the case of no
group velocity difference, into multimode thermal statistics.

Next, we consider reading out the atomic polarization in
the anti-Stokes scattering process. We show that in general
the readout can be decomposed into multiple independent
beam-splitter-like transformations. Each of them mixes the
statistics contained in a pair of characteristic input field
�n

�in��t� and atomic �n
�in��z� modes, producing two character-

istic output modes field �n
�out��t� and atomic �n

�out��z�. This
fact stems from the preservation of the total number of exci-
tations during the anti-Stokes scattering.

However, when the anti-Stokes scattering is applied to
reading out an atomic polarization in a particular mode, this
consideration can be much simplified. We show under what
conditions the readout process is successful in translating the
atomic statistics into the field. It turns out that efficient read-
out is possible for wide range of group-velocity differences,
however, usually the pumping intensity must be precisely
controlled. Also it turns out that once the readout is success-
ful, it translates a given atomic mode into a predetermined
field mode, and the latter is unsullied by statistics of any
other atomic modes.

Let us note that the equations governing Stokes and anti-
Stokes scattering have closed-form analytical solutions �5� in
the limit of vanishing dispersion. In this limit modal decom-
position can be obtained by a single-step numerical diago-
nalization of the analytical field and atomic correlation func-
tions �9�.

Finally let us remark that our treatment applies to the case
of writing a weak quantum signal into an atomic medium
�14,16,32–34�.
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APPENDIX A: DERIVATION OF THE NONDEGENERATE
REDUCTION THEOREM

The Bloch-Messiah reduction has been derived for a gen-
eral case of a monolithic quantum system �23�. The original

theorem comprises derivation of a modal expansion of the
system quantum field operator, whose application reduces
given output-input relations into a set of parallel single-mode
squeezing transformations.

However, in the particular case of Raman scattering pro-
cess two distinct types of operators exist—those labeled by
space and those labeled by time. In this case, a fruitful ex-
tension of this theorem can be made. A natural division into
atomic and light subsystems which are separated before and
after interaction is utilized for this. These subsystems play
symmetric roles in the process. This is a crucial fact we will
employ to specify a particular form of Bloch-Messiah reduc-
tion in the nondegenerate case. Below we will show how to
introduce separate modal expansions for the atomic and light
subsystems and cast the input-output relations into parallel
two-mode squeezing transformations.

We start our generalization of the Bloch-Messiah reduc-
tion theorem by first reducing the number of atomic and light
modes involved in the interaction to a finite number, so that
we can use the original form of the theorem �23�. This is
easily done when one notes that the functions appearing in
our considerations can be approximated with any chosen ac-
curacy on a discrete grid. Therefore we discretize the spatial-
temporal region in which the interaction occurs by introduc-
ing sets of points in time �tn� and space �zn� and restricting
ourselves to the rectangular grid spanned by this set. Then
we can introduce the input and output vectors:

â� in,n = â�0,tn�, â�out,n = â�L,tn� ,

b̂
�

in,n = b̂�zn,− T�, b̂
�

out,n = b̂�zn,T� , �A1�

the Green matrices:

Can,m
= Ca�tn,tm�, Cbn,m

= Cb�zn,zm� ,

San,m
= Sa�tn,zm�, Sbn,m

= Sb�zn,tm� , �A2�

and the characteristic mode vectors:

�� k,n
�in� = �k

�in��tn�, �� k,n
�out� = �k

�out��tn� ,


� k,n
�in� = 
k

�in��zn�, 
� k,n
�out� = 
k

�out��zn� �A3�

which allow for casting Eq. �8� into a matrix form:

�A4�

where the column vectors are concatenations of their com-
ponents, and we defined block-matrices C and S. Since the
atomic and light subsystems play a symmetric role in the
process, the C commutes with matrix O defined in the fol-
lowing way:

O = � i 0

0 − i
� �A5�

while for S the following holds: OS=SO†.
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Equation �A4� is a Bogoliubov transformation, thus the
Bloch-Messiah reduction can be applied �23� to C and S and
we can express them in decomposed form:

C = �
k

cosh �k��� k
�out�, 
� k

�out��†��� k
�in�, 
� k

�in�� , �A6�

S = �
k

sinh �k��� k
�out�, 
� k

�out��†��� k
�in�, 
� k

�in��*, �A7�

where ��� k
�out� ,
� k

�out�� and ��� k
�in� ,
� k

�in�� are left and right eigen-
vectors �output and input eigenmodes�, defined as concatena-
tion of respective component vectors, �n are real numbers.
Here † denotes transposition and complex conjugation. By
definition of singular value decomposition �SVD� �31� the
singular vectors obey the following relations:

C��� k
�in�, 
� k

�in��† = cosh �k��� k
�out�, 
� k

�out��†, �A8�

C†��� k
�out�, 
� k

�out��† = cosh �k��� k
�in�, 
� k

�in��† �A9�

multiplying both equations by O from the left and

using CO=OC shows that if ��� k
�out� ,
� k

�out�� and ��� k
�in� ,
� k

�in��
are left and right eigenvectors, then �i�� k

�out� ,−i
� k
�out�� and

�i�� k
�in� ,−i
� k

�in�� also satisfy the above relations, and thus by
definition of SVD are left and right eigenvectors of C. There-
fore in the summation �A6� we can group those vectors to-
gether, obtaining

C = �
k

cosh �k���� k
�out�, 
� k

�out��†��� k
�in�, 
� k

�in��

+ �i�� k
�out�, − i
� k

�out��†�i�� k
�in�, − i
� k

�in���

= �
k

cosh �k��� k
�out�†�� k

�in� 0

0 
� k
�out�†
� k

�in� � �A10�

which shows that in each term of the singular value decom-
position of C the off-diagonal elements vanish. Applying
analogous transformation to the summation �A7� it can be
confirmed that the same property holds for S. These state-
ments are the content of our extension of Bloch-Messiah
reduction. They allow for expressing the blocks of C as in
Eqs. �9a� and �9b� in the text, and blocks of S as in Eqs. �9c�
and �9d�.

APPENDIX B: PROOF OF DECOMPOSITION INTO
BEAM-SPLITTER TRANSFORMATIONS

Analogously to Appendix A we begin by discretizing the
annihilation operators

ĉ�in,n = ĉ�0,tn�, ĉ�out,n = ĉ�L,tn� ,

d̂
�

in,n = d̂�zn,− T�, d̂
�

out,n = d̂�zn,T� , �B1�

the Green matrices:

Ccn,m
= Cc�tn,tm�, Cdn,m

= Cd�zn,zm� ,

Scn,m
= Sc�tn,zm�, Sdn,m

= Sd�zn,tm� , �B2�

and the characteristic mode vectors:

�� k,n
�in� = �k

�in��tn�, �� k,n
�out� = �k

�out��tn� ,

�� k,n
�in� = �k

�in��zn�, �� k,n
�out� = �k

�out��zn� . �B3�

Next, let us rewrite Eq. �23� in a matrix form:

�B4�

For the energy to be conserved in the anti-Stokes scattering
process, the underbraced matrix U must be unitary,

� Cc Sc

− Sd Cd
��Cc

† − Sd
†

Sc
† Cd†

� = �Cc
† − Sd

†

Sc
† Cd†

�� Cc Sc

− Sd Cd
�

= �1 0

0 1
� , �B5�

therefore eight equations constrain the Green matrices. Let
us first focus on the diagonal parts of the product. The con-
dition CcCc

†+ScSc
†=1 means that matrices CcCc

† and ScSc
†

commute, therefore CcCc
† and ScSc

† have the same eigenvec-
tors. This in turn imposes the condition that the left singular
vectors of Cc and Sc are the same. By analyzing the remain-
ing equations contained in the diagonal portion of Eq. �B5�
we conclude that the singular vectors are shared between
Green functions. Thus we can specify their singular value
decompositions:

Cc = �
n

�n�� n
�out�*�� n

�in�T, Cd = �
n

�n�� n
�out�*�� n

�in�T,

Sc = �
n

�n�� n
�out�*�� n

�in�T, Sd = �
n

�n�� n
�out�*�� n

�in�T. �B6�

Let us note that all the singular values can be always
made real, by transferring the phase factor into the associated
singular vectors. Inserting these Green matrices in the above
form into Eq. �B5� yields that for every n the matrix built
from the eigenvalues

Un = � �n �n

− �n �n
� �B7�

must be unitary. But any real unitary 2�2 matrix has the
form

� �n �n

− �n �n
� = � cos �n sin �n

− sin �n cos �n
� , �B8�

where �n is a real angle. Inserting the singular values in the
above form into Eq. �B6� and replacing sin �n=
�n we get
Eq. �24�.
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