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We present a double-pass optical loop containing a purely dispersive and an essentially purely nonlinear
element as a potential fast intensity oscillator. The residual dispersion in the nonlinear element is found to play
a key role in the dynamics. We analytically investigate the dynamics of the loop both for normal and anoma-
lous dispersion, using linear and weakly nonlinear analysis. Numerically, stable operation is found for normal
residual dispersion, while a tendency to multimode and irregular spiking is observed for anomalous dispersion.
The effect of losses is also discussed.
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I. INTRODUCTION

The control of optical dynamical instabilities is a useful
way to generate pulse trains with high repetition rate out of
continuous waves �1�. The modulation instability �MI� in op-
tical fibers is a much studied example of this concept, partly
because the pulses so obtained are close to optical solitons
��2�, pp. 142–144�. In particular, Nakazawa et al. �3� demon-
strated fast intensity self-oscillations in a ring-cavity con-
figuration. The latter, after subsequent improvements,
evolved into what is now called the MI laser �4�. Meanwhile,
other geometries involving counterpropagating waves �5,6�
were also shown to spontaneously amplify perturbations and
to play the role of oscillators. In all these configurations
however, the repetition rate depends on the pump power and
thus inherits its fluctuations.

In the same way as the temporal MI mentioned above
results from the interplay between nonlinearity and group
velocity dispersion, a number of spatial instabilities are pro-
duced by the coupling of nonlinearity with diffraction. One
especially simple system supporting spatial MI is a thin
Kerr-Slice with a feedback mirror �7–9� and many experi-
mental setups function on this scheme. These have included
liquid crystal light valves �10,11�, nematic liquid crystal lay-
ers �12–14�, or Na vapor cells �15,16� as nonlinear media. In
particular, periodic �17� or quasicrystalline patterns �18� and
“optical turbulence” �19� have been demonstrated. More re-
cently, fractal patterns have been investigated �20�. We note
for future reference that what limits the spatial frequency
bandwidth is usually the diffusive character of the optical
response of the Kerr element. This has motivated recent ad-
vances in the measurement techniques of this response �21�.

In this paper, we analyze in detail a temporal analog of the
Kerr-Slice with a feedback mirror that can be used as a fast
oscillator. The choice of this particular system is motivated
by the fact that, in the spatial case, the most unstable wave
number is independent of the power. We expect the same for
the natural frequency in the temporal case. In the usual Kerr-
Slice experiment, an input wave passes through a nonlinear
Kerr-Slice, diffracts in free space and is reflected by a mirror
back to the Kerr-Slice �7�. By analogy, we consider a double-

pass optical loop �Fig. 1� in which an input wave first passes
through a nonlinear Kerr element, then disperses and passes
a second time through the Kerr element. The basic idea un-
derlying such a design is the following. In the nonlinear me-
dium, the input wave undergoes a cross-phase modulation as
it interacts with the wave that has already completed one
roundtrip in the loop. Later on, due to the dispersive element
between E and F in Fig. 1, this phase modulation becomes
an amplitude modulation at the next roundtrip. This nonlin-
ear feedback, as we will show, can lead to a modulation
instability.

The analogy with the spatial system is complete if light
passes only twice in the nonlinear medium. This is achieved
by carefully controlling its polarization. If we temporarily
ignore the nonlinear element in Fig. 1, then, with a suitable
orientation of their axes, the two quarter-wave plates are
equivalent to a single half-wave plate. They thus change an
incoming x-polarized wave into a y-polarized wave. The two
polarizing beam splitters PBSo and PBSi then perfectly re-
flect the wave, making it pass a second time through the two
quarter-wave plates. After the second passage, the polariza-

FIG. 1. The double-pass loop. Light enters through the polariz-
ing beam splitter �PBSi�, passes twice in the nonlinear medium and
leaves the loop through �PBSo�. The quarter-wave plates �� /4� po-
larize the wave circularly in the nonlinear medium, with orthogonal
polarizations in the first and in the second pass. They also globally
rotate the linear input polarization by 90° between A and D, so that
light is reflected by �PBSi� in the first turn, and escapes the loop in
the second one �see turn numbers next to the representations of the
linear ��, ��, and the circular ��, �� polarization states�.
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tion is set back in the x direction and the wave leaves the
system through PBSo.

In the nonlinear element between the two quarter-wave
plates, the linear states of polarization along the x and y
directions become circular states, respectively e+ and e−,
where e±= �ex± iey� /�2. We assume that the nonlinear ele-
ment is of the isotropic Kerr type, with Kerr coefficient �,
cross-phase modulation coefficient �, and dispersion coeffi-
cient �2

NL. In that case the slowly varying amplitudes u± of
the two circular polarizations satisfy the vectorial nonlinear
Schrödinger equation �22�

i� �

�z
+

1

v

�

�t
�u± =

�2
NL

2

�2u±

�t2 − ���u±�2 + ��u��2�u±. �1�

The coupling between the two waves u+ and u− only occurs
through their intensities �u±�2 and is therefore incoherent.
Moreover, there is no energy transfer between the two circu-
lar polarizations, hence it is still true that light makes two
roundtrips in the loop. Note that incoherent coupling has also
been achieved in cavities that are much longer than the co-
herence length of the signal �23�.

It is worth emphasizing that the double-pass characteristic
of the loop prevents us from assimilating the various sections
inside the loop with a single element having average disper-
sion and nonlinearity coefficients. Indeed, a necessary con-
dition for this would be that light cycled many times in it.

Before describing the full analysis of the system, a flavor
of its dynamics can already be obtained from the simple
following arguments. We assume that the nonlinear section is
only weakly dispersive, i.e., that

�2
NL

2

�2u±

�t2 � ��u±�2u±. �2�

Hence it seems reasonable to neglect �2
NL�2u± /�t2 altogether.

In this case, it has been shown �24� that the output power Po
evolves, in some properly rescaled time T, according to

Po�T + �� = Pi�F−1
†F�eiPo�T�/2Pc�e2i�2

‡�2, �3�

where Pi is the input power, F denotes Fourier transform, Pc
is some critical power, � is the rescaled loop roundtrip time,
and � is the normalized frequency. In this equation e2i�2

is a
phase factor coming from the chromatic dispersion between
sections E and F, while eiPo�T�/2Pc stems from the cross-phase
modulation in the nonlinear element between the u+ and u−
waves.

In steady state, Eq. �3� admits the continuous wave �cw�
solution Po�T�	 Pi. On the other hand, according to the
same equation, linear perturbations with frequency � are
amplified at each roundtrip by a factor

G = − �Pi/Pc�sin �2. �4�

Hence, if Pi	 Pc, the cw solution is unstable, with a maxi-
mum instability gain for all frequencies such that �sin �2�
=1. This simplified model thus attests the existence of a
modulation instability. However, the generation of arbitrary
large frequencies is a physically unacceptable conclusion.

Actually, despite �2�, dispersive effects cannot be entirely
neglected in the nonlinear element. In the spatial case, these

correspond to the small amount of diffraction taking place
over the thickness of the thin Kerr-Slice, which is always
neglected by comparison with the diffusive Kerr response.
Here however, the Kerr response being assumed instanta-
neous, the dispersion or diffraction in the nonlinear element
is the dominant bandwidth-limiting mechanism. Therefore,
the existing linear stability results for the Kerr-Slice with
feedback mirror are not transposable to the present system
and we must reconsider the instability in the presence of this
dispersion. This is what we do in the following section. We
perform the analysis both in the linear and weakly nonlinear
approximations. Particular attention is devoted to the effect
of weak, anomalous, and finally to arbitrary dispersion. In
Sec. III, we validate and extend our analytical findings by a
series of numerical simulations. In particular, we discuss the
effect of losses. Finally, we conclude by some further tech-
nical remarks on the experimental implementation of this
system as well as some implications of the above results in
the spatial domain.

In addition to the detailed stability analysis, the results
described in this paper differ from those in �24� by the non-
linear bifurcation analysis, the study of the effect of anoma-
lous dispersion, and the numerical simulations with or with-
out losses that validate our analytical study. Finally, let us
mention that some nanomechanical, Kerr-like systems �in
which the optical path is a function of the light� are also
found to produce power-independent pulsation under the ac-
tion of a cw optical beam �25,26�.

II. INSTABILITY

A. Preamble

We recall that the system under study has a finite size. The
most natural way to address stability, therefore, is through a
normal mode approach. We will thus consider small pertur-
bations of the form


u�z,T� = 
û�z�e−i�T, �5�

where z is the longitudinal coordinate in the loop and T is
time in appropriate units. For a normal mode to exist, � must
satisfy some characteristic equation and is generally com-
plex. Given an acceptable complex frequency �=��+ i��,
�� is the actual oscillation frequency and �� is the growth
rate of the corresponding normal mode. Moreover, the am-
plification factor per roundtrip �of normalized duration �� is
given by G=exp�����; our aim is thus to determine the re-
lation between the gain per roundtrip �G� and the modulation
frequency ����.

B. Model

Let �2
NL and LNL denote the dispersion coefficient and the

length of the nonlinear section, respectively, and let �2
D and

LD similarly characterize the dispersion section. Using the
amplitude-phase decomposition u=Aei�, Eq. �1� becomes

�A±

�z
+

1

vNL

�A±

�t
= �2

NL� �A±

�t

��±

�t
+

A±

2

�2�±

�t2 � , �6�
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��±

�z
+

1

vNL

��±

�t
= �2

NL
� ��±

�t
�2

−
1

2A±

�2A±

�t2 � + ��A±
2 + �A�

2 � .

�7�

Meanwhile, in the dispersive section, we have

�Ay

�z
+

1

vD

�Ay

�t
= �2

D� �Ay

�t

��y

�t
+

Ay

2

�2�y

�t2 � , �8�

��y

�z
+

1

vD

��y

�t
= �2

D
� ��y

�t
�2

−
1

2Ay

�2Ay

�t2 � . �9�

To express the boundary conditions for these equations, let
us write the vectorial amplitude of the electric field in a
section � of Fig. 1 as

u� = ux
�ex + uy

�ey = u+
�e+ + u−

�e−. �10�

We then have the following continuity relations:

uA�t + tFA� = �Piex + uy
F�t�ey , �11�

uB�t + tAB� = ux
A�t�e+ + uy

A�t�e−, �12�

uD�t + tCD� = u−
C�t�ex + u+

C�t�ey , �13�

uE�t + tDE� = uy
D�t�ey , �14�

uO�t + tDO� = ux
D�t�ex, �15�

where Pi is the input power and t��� is the time of flight
between � and ��.

Setting � /�t to zero everywhere, the only nontrivial part
of the steady state �Asei�s

� is in the nonlinear section. It is
immediate from Eq. �6� that �A±

s /�z=0. Moreover, from the
boundary conditions, A±

s =�Pi. The phase equations �7� then
imply that

�±
s �z� = �±

s �zB� + �Pi�1 + ���z − zB� �16�

in the nonlinear section.

C. Normal modes

We now study linear deviations from the steady state, of
the form

A
 = �Pi�1 + a
�, �
 = �

s + �
, �17�


 being any of the indices �, x, y. For convenience, we
rescale time as

T =� 2

�2
DLD

t , �18�

and, similarly, introduce TAB, TBC , . . . as well as a nondimen-
sional frequency � through �T=�t. In the dispersive sec-
tion, the normal modes take the following form

�ay

�y
� = � ây�z�

�̂y�z�
�e−i�T, �19�

while in the nonlinear section of the loop, we have

�a+

�+
� = � â+�z�

�̂+�z�
�e−i�T. �20�

Substituting in the evolution equations and using the bound-
ary conditions, we then derive �see Appendix� the following
relations:

� ây

�̂y
�F

= ei�TCFUD� â+

�̂+
�C

, �21�

� â+

�̂+
�C

= ei�TFCUNL� ây

�̂y
�F

, �22�

where

UD = �cos �2 − sin �2

sin �2 cos �2 � �23�

and

UNL =
1

2� cos �+�c − cos �+�c
b sin �−�c

�−
−

b sin �+�c

�+

�+

b
sin �+�c −

�−

b
sin �+�c cos �+�c − cos �+�c


 . �24�

To shorten the notations, we have introduced above

�± = �b�1 + b ± �� , �25�

where the parameter b measures the relative importance of
dispersion and nonlinear phase modulation through the ratio

b =
�2

NL�2

4�Pi
. �26�

The latter can also be expressed as b=���2 /2, where ��
=�2

NL/ ��Pi�2
DLNL�. Finally,

�c = 2�PiLNL. �27�
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Substituting expression �22� into �21�, we obtain the charac-
teristic equation

det�I − ei��UDUNL� = 0, � = TCF + TFC, �28�

which allows us to analyze the stability of the constant out-
put solution. As already explained in Sec. II A, each complex
value of � that satisfies �28� defines a mode of frequency
��, and growth rate ��. Computing the above determinant is
a straightforward but rather tortuous exercise and leads to
complicated expressions that are hard to interpret. We will
therefore start our analysis of �28� by considering the limit
b�1, which is another way of expressing our basic assump-
tion �2� that nonlinearity must dominate dispersion in the
nonlinear element. Later on, we will compute solutions of
�28� for arbitrary values of b and compare with our approxi-
mate theory.

1. Small dispersion limit

In the limit b=���2 /2→0, the characteristic equation
�28� becomes

1 + ��ce
i���sin �2 − 1

2b�c��c sin �2��ei�� cos �2 + 2
3�

− cos �2�� = O�b2� . �29�

It can be further simplified by noting from above that
sin �2=−���ce

i���−1+O�b�. Hence, to first order in b, Eq.
�28� approximates as

1 + 1
3b�c

2 + ��ce
i���sin �2 + b�c cos �2� = 0. �30�

Bearing in mind that b is small, we thus identify ��c
=2��PiLNL as a key group of parameters, which measures
the system nonlinearity. This defines the critical power intro-
duced in the model of Sec. I as

Pc = �2��LNL�−1. �31�

The presence of � confirms that the source of instability is
cross-phase modulation, rather than self-phase modulation: if
� were zero then Eq. �30� could not be satisfied for any
dynamical mode. Using ei��=ei��� /G, we can rearrange �30�
slightly as

G�1 + 1
3b�c

2� = − ��ce
i����sin �2 + b�c cos �2� . �32�

The imaginary part of this equation

0 = Im�ei����sin �2 + 1
2���2�c cos �2�� �33�

is a resonance condition for the frequency �. Coupled with
the real part, it determines the spectrum of dynamical modes
in the system. To make further progress, we now use the
additional simplifying assumption of a long loop, in the
sense that ��1 or, dimensionally

tcav � ��2
DLD, �34�

tcav being the dimensional loop roundtrip time. This condi-
tion is easily reached in fiber cavities. As a result, if

G 	 e��� = O�1� , �35�

then �� is of order 1 /�. Hence �=��+O�1/��, and the reso-
nance condition �33� is just

ei��� = ± 1. �36�

In fact, �� can vary quasicontinuously in this limit since any
value of �� is O�1/�� close to a resonant frequency. The gain
per roundtrip, on the other hand, is now given by

G = ± ��c�sin ��2 + b�c cos ��2��1 − 1
3b�c

2� . �37�

By definition, G is positive and the sign above should be
chosen accordingly. Since our aim is to determine instability
thresholds, we restrict our attention to the maxima of G, i.e.,
to �sin ��2�=1−O�b� and therefore to cos ��2=O�b1/2�.
Hence,

G = ± ��c sin ��2�1 − 1
3b�c

2� + O�b3/2,1/��

= ± ��c sin ��2�1 − 1
6���c

2��2� , �38�

or, dimensionally

G = ± �Pi/Pc�sin� 1
2�2

DLD��2��1 − 1
3�Pi�2

NLLNL
2 ��2� .

�39�

This formula for the gain is illustrated in Fig. 2. Expression
�38� with b=0 is just the gain formula given in the prelimi-
nary model of the Introduction. For Pi	 Pc, a quasicontinu-
ous band of frequencies such that Pc / Pi� �sin���2���1 be-
come unstable. Moreover, the instability gain has local
maxima given by ��=��N+1/2��, or

�� =��2N + 1��
�2

DLD

, N = 0,1,2, . . . . �40�

Let us emphasize here that only �2
DLD enters in the latter

expression, not �2
DLD+�2

NLLNL. This is specifically due to the
design of the loop, which is double pass and where the cou-
pling is incoherent. Moreover, we note the interesting prop-
erty that the maximum value of the instability gain only de-
pends on the input power, while the associated frequency is
solely determined by �2

DLD and is thus stable against power
fluctuations. This is not the case with other systems as, for
instance, the MI laser �4,27�.

FIG. 2. Instability gain per roundtrip in the normal dispersion
regime from the approximate formula �39�. Pi=19 mW, �
=1/ �W km�, �=2, LNL=15 km, LD=2.2 km, �2

D=25 ps2 /km, �2
NL

=0.2 ps2 /km. For this set of parameters, b�� / �2�100 GHz�.
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Including the O�b� correction, there is now a cut-off fre-
quency, which can be found by setting G=1 and
�sin� 1

2�2
DLD��2��=1 in �39�

�c.o.�2 =
12�2�Pc

�2
NL

Pc

Pi
�1 −

Pc

Pi
� . �41�

For an order of magnitude estimate, let us notice that Pc and
Pi are of the same order and hence, �c.o.� ���Pi /�2

NL.

2. Anomalous dispersion

The developments presented so far can also be done in the
case of anomalous dispersion, i.e., if �2

D or �2
NL is negative.

The results for anomalous dispersion in the dispersive sec-
tion are easy to infer from the previous section. In this case,
one should rescale time using ��2

D� and it is immediate to see
that this leads to a minus sign in front of the second time
derivative in Eq. �A2�. As a result, all the formulas for the
dispersive section can be obtained from the previous ones
with the transformation �2→−�2. In particular, the gain for-
mula �38� is still valid.

The treatment of the nonlinear section, on the other hand,
involved b, which is proportional to �2

NL. Hence, in the case
of an anomalous dispersion in the nonlinear element, b�0
and Eq. �38� does not predict a finite bandwidth for the gain
anymore. To remedy this problem, we must expand the char-
acteristic polynomial to higher order in b. Here, we directly
consider the large-delay limit. We obtain, after some manipu-
lations

G � ��cF
1 −
1

3
b�c

2 −
1

2
b2�c

2�1 −
3 + �2

60
�c

2�� , �42�

where

F = sin ��2 + �b�c +
1

6
b2�c

3�cos ��2 +
b2�c

3�

12G
. �43�

We thus see that the maxima of G, for which sin ��2�1 and
cos ��2�0, now decrease for large values of b=����2 /2
and finite bandwidth is recovered. However, we do not ex-
pect the above formula to be quantitatively useful, since it
is only valid for b small. Nevertheless, the form of the
bandwidth-limiting factor in Eq. �42� suggests that anoma-
lous dispersion allows larger bandwidth. This motivates us to
solve the exact characteristic polynomial.

3. Arbitrary dispersion

We now compute the gain numerically for arbitrary values
of b. Considering only the large-delay limit, the characteris-
tic equation becomes, with O�1/�� accuracy

det�GI − ei���UD� UNL� � = 0, �44�

where UD� , UNL� are obtained from UD, UNL by replacing �
with ��. Since in this limit � is essentially real, from now
on, we will note � instead of ��.

Starting with the normal dispersion regime, we see by
comparing Figs. 2 and 3 that the approximate formula accu-
rately matches the exact curve in the limit �b��1. On the

other hand, the exact calculation reveals that the locus of
dynamical modes in the �� ,G� plane is actually a set of
closed curves. The effect becomes more and more pro-
nounced for larger values of b, as illustrated in Fig. 4. There,
formula �39� becomes less precise, although it still predicts
reasonably well the position of the first gain maximum.

Finally, in Fig. 5, we plot the roundtrip gain in the anoma-
lous dispersion regime. As anticipated, the maximum of the
envelope of the gain is now shifted towards higher values of
� �see Fig. 5�. Indeed, with the same absolute value of �2

NL

as in Figs. 2 and 3, the global maximum of G now appears at
around ±150 GHz, instead of ±30 GHz in the normal case.
The location of this maximum is now essentially determined
by b=O�1�, hence by the balance between nonlinearity and
dispersion in the nonlinear element, as in the classical modu-
lation instability in optical fibers. This is at variance with the
normal dispersion regime, where the first mode to become
instable has a frequency given by �40� with N=1. Moreover,
Fig. 5 suggests that the anomalous regime more easily leads
to multimode dynamics, where several lobes of frequency
are simultaneously unstable. Hence, more complex dynamics
can be expected beyond the instability threshold in that case.

D. Nonlinear analysis

A nonlinear analysis is possible if we consider a slightly
revised version of the simplified model �3�. Specifically, we

FIG. 3. Exact instability gain per roundtrip in the normal dis-
persion regime. Same parameter values as in Fig. 2.

FIG. 4. Exact instability gain per roundtrip in the normal dis-
persion regime. Pi=55 mW, �=1/ �W km�, �=2, LNL=5 km, LD

=0.160 km, �2
D=25 ps2 /km, �2

NL=0.2 ps2 /km.
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investigate the bifurcation properties of the following equa-
tion:

Po�T + �� = Pi�F−1
†F�eiPo�T�/2Pc�H���e2i�2

‡�2, �45�

where, in the light of the preceding discussion, �Eq. �38�� we
introduce a small dispersion in the nonlinear section by

H��� = 1 − 1
6���2�c

2. �46�

Dealing with Eq. �45� rather than with the full model �6�–�9�
considerably simplifies the algebra. The precise form of H is
unimportant at this stage, as long as it only lets one mode
destabilize at threshold. Note however that, due to this
bandwidth-limiting factor, the threshold input power differs
from Pc and we will denote it by Pth. We now construct a
periodic solution of �45� of the form

Pi � Pth�1 + �2Pi,2 + ¯ � , �47�

Po � Pth + Pc„� cos��T� + �2Po,2�T� + ¯ … , �48�

where ��1 is the oscillation amplitude close to threshold.
The procedure for obtaining Pi,2 and Po,2�T� is a standard
application of the Poincaré-Lindstet method and we omit the
details for clarity. Substituting the above ansatz into Eq. �45�
and expanding in power series of �, we find at O��2� that Po,2

is constant and equal to 1/8. Further, it emerges at O��3� that
the equation for the next correction Po,3�T� is only solvable if
Pi,2=1/8. Inserting this value in Eq. �47�, we thus find that

� � �8�Pi/Pth − 1� . �49�

Hence, the maxima of the output power are given by

Po,max � Pth +
1

2��LNL

�8�Pi/Pth − 1� , �50�

and the bifurcation is clearly supercritical �Pi	 Pth�. We
compare this approximation with the exact numerical solu-
tion in the next section.

III. NUMERICAL STUDY

Having determined the instability thresholds, we now in-
vestigate the long-term evolution of the growing modes. To
this end, instead of a true cw pumping, we simulate a syn-
chronously pumped loop: at each roundtrip, a new pulse is
injected, which is long enough �400 ps� to be considered as
cw in its middle. In this way, we only need to discretize
the vectorial nonlinear Schrödinger equation over a domain
of several pulse widths in the moving frame, rather than over
the whole loop in the case of true cw pumping. Moreover,
this renders the boundary conditions �11�–�14� easier to
implement and allows us to use efficient propagation
algorithms, such as the split-step Fourier algorithm ��2�,
pp. 51–55�.

A. Range of parameters

In our simulations, we use nonlinear coefficients and dis-
persion values that are typical of commercially available op-
tical fibers. We also include the losses, since they are un-
avoidable in practice; these can strongly affect the dynamics
of the system, as will be explained below.

The parameters used are chosen from �38� to ensure that
only one mode can grow. To check robustness against noise,
we added a random complex perturbation at the beginning of
each turn into the loop. We found no significant changes with
noise levels up to 10−2Pi and the self-modulation profile was
the same after 1000 and 10 000 roundtrips.

In a typical numerical simulation, the initial stage of the
instability is accurately described by the linear stability
analysis. The distribution of peaks in the power spectra faith-
fully reproduces that in the spectral gain curve derived in the
previous sections, see Fig. 6�a�. After this initial exponential
growth, nonlinear effects set in and the first mode starts
dominating the others. This can be viewed in Fig. 6�b�,
where the peaks are now equally spaced in the frequency
domain and are all higher harmonics of the first one. Finally,
the self-modulation amplitude saturates and reaches the state
shown on Fig. 7. Note that even in this fully nonlinear re-
gime, the self-modulation remains strongly sinusoidal. This
is consistent with our weakly nonlinear analysis, which re-
vealed that higher harmonics are absent at O��2�. We also
plotted the maxima of Po�T� as a function of the input power
Pi in Fig. 8 and found excellent agreement with the analyti-
cal approximation.

B. Distributed losses

We now study the effect of dissipation by including dis-
tributed losses in the simulations. To preserve the overall
nonlinearity, these should be compensated, which can be
done by either placing an amplifier in the loop or increasing
the pump power. Both methods work but the latter is clearly
preferable in view of keeping an experimental setup as
simple as possible. The result of this compensation is shown
in Fig. 9. From a series of simulations we reached the con-
clusion that the nonlinear section should be shorter than the
absorption length. Otherwise, the power decreases signifi-
cantly between sections B and C in Fig. 1. In extreme cases,

FIG. 5. Exact instability gain per roundtrip in the anomalous
dispersion regime. Pi=21 mW, �=1/ �W km�, �=2, LNL=15 km,
LD=2.2 km, �2

D=25 ps2 /km, �2
NL=−0.2 ps2 /km. For this set of pa-

rameters, b�−� / �2�100 GHz�.
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one reaches the situation where nonlinear effects dominate
close to B but become negligible compared to dispersion in
C. In between the two, there is thus a region where nonlin-
earity and dispersion balance. This is comparable to the situ-
ation encountered with the MI laser �27�, in which nonlin-
earity and dispersion act simultaneously everywhere in the
cavity. Just as in the MI laser, then, when the pump power is
increased, the self-pulsing dynamics quickly becomes irregu-
lar.

A typical loss figure is 0.2 dB/km. Hence, in our numeri-
cal simulations, we choose a 5-km-long nonlinear section.

C. Anomalous dispersion

The analysis presented in Sec. II C 2 showed that the dy-
namics of the modulation instability was strongly dependent

on the sign of the dispersion �2
NL. Considering Fig. 5, we see

that the mode with the highest gain does not correspond to
the lowest MI frequency �N	1 in �40��. Moreover, the gain
of the instability is almost the same for the main mode and
those surrounding it. Therefore, we expect that the numerical
simulations will reveal a complex dynamics, involving mul-
tiple modes, and that the monomode modulation instability
will be observed only over a very limited range of input
powers.

This is illustrated in Figs. 10 and 11 where the transition
form cw �Figs. 10�a� and 11�a�� to multimode self-pulsing
�Figs. 10�d� and 11�d�� occurs with an increase of the input
power by less than one percent. In between, monomode self-
pulsing can be found, but the instability gain is very small
�g−1�10−2�, so that saturation of the modulation is not yet
attained after 8000 roundtrips in the loop, for the parameters
of Figs. 10�b� and 10�c�.

FIG. 6. Evolution of the unstable modes, after �a� 10, and �b� 20
roundtrips. The parameters are those of Fig. 4, except the input
power, which is higher Pi=90 mW in order to observe the growing
of multiple modes. Vertical lines in the left of the two graphics, �a�
and �b�, show the positions of the growing modes in �a�. These
modes are not equally spaced. Their positions are predicted by �38�,
with less than 3% error. More precisely, the intermodal distances
are in the ratio �1,1.78,2.30�; while theory predicts �1,�3,�5�
��1,1.73,2.23�. On the right side of the central peak in �b�, verti-
cal lines indicate the growing modes in �b�. These lines are equally
spaced, and do not follow �38�.

FIG. 7. Numerical simulations of the two orthogonally polarized
slowly varying envelopes of the electric field, in the temporal do-
main �left� and in the spectral domain �right�. Same parameters as in
Fig. 4.

FIG. 8. Bifurcation diagram showing Po,max versus Pi with �
=1/ �W km�, �=2, LNL=15 km, LD=0.16 km, �2

D=25 ps2 /km,
�2

NL=0.2 ps2 /km. Full line: analytical approximation �50�; dots: nu-
merical simulation. For these parameter values the �exact� linear
stability analysis yields the instability threshold Pth=19.424 mW,
the most unstable frequency being � /2��100 GHz.
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In Sec. II C 2, we concluded that the gain formula �38�
does not depend on the sign of the dispersion in the disper-
sive section ��2

D�. Numerically, this property is conserved
when the losses and the nonlinearity in the dispersive section
are include in the model. In particular, the numerical results
presented in Figs. 10 and 11 were computed with �2

D�0. If
we compare these results with those obtained when the sign
of �2

D is reversed, no significant changes are observed. How-
ever, the MI power threshold is slightly diminished �about
1%�. This can be attributed to the additional scalar modula-
tion instability that can develop in an anomalously dispersive
section.

IV. CONCLUSION

In this paper, we have envisaged a temporal analog of the
Kerr-Slice with feedback mirror as a way to generate trains

of optical pulses. The scheme is promising for it allows us to
reach frequencies on the order of 100 GHz with parameter
values found in commercially available optical fibers. Of
course, optical fibers are only taken as an example; other
optical elements, such as photonic crystal fibers and gratings
could equally be used. What eventually limits the bandwidth
is the group velocity dispersion in the Kerr element, �2

NL. In
a practical experiment, one should work at optical frequen-
cies close to the zero of this dispersion, meaning that both
normal and anomalous dispersion would be experimentally
accessible. From the linear stability analysis, the normal dis-
persion regime appears to be the most practical, because the
global maximum of the gain is then given by �
=�� / ��2

D�LD and is thus independent of the input power. As
in the spatial case, the result does not depend on the sign of
�2

D. Perhaps more surprising is the fact that it is also inde-
pendent of �2

NLLNL. This results from the particular design of
the optical loop as well as the incoherence of the nonlinear
coupling between the two circularly polarized waves in the
nonlinear element. If, on the other hand, �2

NL is negative,
then the global maximum of the instability gain is fixed by
the balance between nonlinearity, �Pi, and the “nonlinear”
dispersion, �2

NL�2, as in the classical MI in fibers. In that
case, the oscillation frequency depends on the power and we
lose the advantage of this setup with respect to others, such
as the MI laser. In addition, we observed that this situation
more easily leads to multimode dynamics. This is confirmed
by our simulations, which clearly show a tendency to irregu-
lar spiking behavior in that case. By contrast, the self-pulsing
in the normal dispersion regime is quite regular, and is neatly
described by a weakly nonlinear analysis.

The incoherence of the coupling provides another techni-
cal advantage with respect to the MI laser: in the latter, the
optical phase of the waves has to be precisely controlled,
which imposes to maintain the cavity length constant down
to optical wavelength precision. Here, on the other hand,

FIG. 9. Self-pulsing in the presence of 0.2 dB/km losses. Pa-
rameters are the same as in Figs. 4 and 7, but the input power Pi is
raised to 88 mW.

FIG. 10. Temporal output for different input powers after 8000
roundtrips. �a� Pi=65.40 mW, �b� Pi=65.45 mW, �c� Pi

=65.85 mW, �d� Pi=65.95 mW. The other parameters are the same
as those of Fig. 9, except that the signs of the dispersion coefficients
are reversed: �2

NL=−0.2 ps2 /km, and �2
D=−25 ps2 /km. A variation

less than one percent of the input power leads from the stable re-
gime �a� to the multimode instability regime �d� �note the change of
scale�. As can be deduced from Fig. 5, there is a small range of
input powers for which only one mode is growing.

FIG. 11. Spectral intensities �in logarithmic scale� correspond-
ing to the temporal intensities of Fig. 10. The input power is: �a�
below instability threshold; �b� just above the instability threshold:
two narrow modes are growing; �c� just below multimode thresh-
old; �d� above multimode threshold. As expected from Fig. 5, addi-
tional modes are growing at lower and higher frequencies than the
main mode.

KOZYREFF et al. PHYSICAL REVIEW A 73, 063815 �2006�

063815-8



only the self-pulsing frequency comes into play. Therefore,
in order to observe the dynamical modes, one should only
stabilize the loop length down to the dynamical wavelength
2�v /�, i.e., to a few mm. Another practical point worthy of
consideration is the robustness of the scheme with respect to
imperfectly polarized beams. Suppose for instance that the
beam in section F of Fig. 1 is not orthogonally polarized
with respect to the entrance beam but has undergone a para-
sitic rotation of ±10°. We checked numerically that with the
polarizer PBSi having a standard 99% efficiency the dynam-
ics remains qualitatively the same.

As we have pointed out, taking into account the effect of
�2

NL amounts, in the spatial analog, to treating the diffraction
over the thickness of the Kerr-Slice. This with the difference,
though, that the waves are counterpropagating in the Kerr-
Slice. Nevertheless, it is by now clear that cut-off happens
when dispersion or diffraction balances with nonlinearity. To
be more specific, let us use Firth’s notation �7� and param-
etrize the Kerr effect by � �1/ �W m��. The role of �2

NL is
now played by the inverse optical wave number 1/k0. Hence,
the expression �c.o.���Pi /�2

NL translates into Kc.o.
���k0Pi for the cut-off spatial wave number and we note
that it does not depend on the thickness of the slice. While
this is a negligible effect in normal circumstances, it repre-
sents another limit to the size of fractal patterns predicted in
�20�, somewhere in between the optical wavelength and the
diffusion length.
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APPENDIX: DERIVATION OF THE NORMAL
MODES

We start by writing the linear evolution equations for the
perturbations in �17� in suitable time and space units. Having
already introduced a nondimensional time T in �18�, we still
have to rescale the space variable. This can be done differ-
ently in the nonlinear and in the dispersive elements. In the
latter, we define

Z = �z − zE�/LD, �A1�

so that, with VD=vD
��2

D /2LD, the perturbations satisfy

� �

�Z
+

1

VD

�

�T
��ay

�y
� =

�2

�T2� �y

− ay
� . �A2�

In the nonlinear element, on the other hand, it is more con-
venient to use the rescaling

� = 2�Pi�z − zB�, VNL = vNL�Pi
�2�2

DLD. �A3�

This yields

� �

��
+

1

VNL

�

�T
��

a+

�+

a−

�−


 =
��

2

�2

�T2�
�+

− a+

�−

a−


 +�
0

a+ + �a−

0

a− + �a+


 ,

�A4�

where

�� =
�2

NL

�Pi�2
DLD

. �A5�

From the continuity relations �11�–�14�, we must solve Eq.
�A2� in the domain 0�Z�1 with the boundary conditions

ay�Z = 0,T� = a+�� = �c,T − TCE� ,

�y�Z = 0,T� = �+�� = �c,T − TCE� , �A6�

where �c=2�PiLNL, and Eq. �A4� in the interval 0����c
with the boundary conditions

a+�� = 0,T� = 0,

�+�� = 0,T� = 0,

a−�� = 0,T� = ay�Z = 1,T − TFB� ,

�−�� = 0,T� = �y�Z = 1,T − TFB� . �A7�

In order to construct the normal modes, we now look for
solutions of Eq. �A2� of the form

�ay

�y
� = � ây�Z�

�̂y�Z�
�e−i�T. �A8�

The vector amplitude (ây�Z� , �̂y�Z�)T is generally a combina-
tion of exponentials exp�i�Z /VD+ iKZ� with K= ±�2, and
we find that

� ây

�̂y
� = �c1 cos��2Z� − c2 sin��2Z�

c1 sin��2Z� + c2 cos��2Z�
�ei��/VD�Z, �A9�

where c1 and c2 are arbitrary constants. Similarly, in the non-
linear section of the loop, the solution of Eq. �A4� can be
written as

�
a+

�+

a−

�−


 =�
â+���
�̂+���
â−���
�̂−���


e−i�T. �A10�

Here again, (â+��� , �̂+��� , â−��� , �̂−���)T is a combination of
exponentials v exp�i�� /VNL+ i���, this time such that

�
i� b 0 0

− 1 − b i� − � 0

0 0 i� b

− � 0 − 1 − b i�

v = 0 , �A11�

where we have introduced
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b =
���2

2
=

�2
NL�2

4�Pi
�A12�

to shorten the notations. The characteristic polynomial of Eq.
�A11� is

�4 − 2b�1 + b��2 + b2��1 + b2� − �2� �A13�

and has the four roots �= ±�±, where

�± = �b�1 + b ± �� . �A14�

The eigenvectors associated to �+, −�+, �−, −�− are v1, v2,
v3, and v4, respectively, with

v1 = �1,
�+

ib
,1,

�+

ib
�T

,

v2 = �1,−
�+

ib
,1,−

�+

ib
�T

,

v3 = �− 1,−
�−

ib
,1,

�−

ib
�T

,

v4 = �− 1,
�−

ib
,1,−

�−

ib
�T

. �A15�

Hence, the general solution of �A4� is

�
â+

�̂+

â−

�̂−


 = �d1v1ei�+� + d2v2e−i�+� + d3v3ei�−�

+ d4v4e−i�−��ei��/VNL��. �A16�

Expressions �A9� and �A16� allow us to follow the evolution
of a perturbation circulating in the loop. The constants of
integrations c1 ,c2 ,d1 , . . . ,d4 are obtained from the continuity
conditions. On the one hand, from �A6�, we find that c1 and
c2 are just given by

�c1

c2
� = ei�TCE� â+

�̂+
�C

. �A17�

This, with �A9� leads to Eq. �21�. On the other hand, from
�A7�, we obtain

�
d1

d2

d3

d4


 =
ei�TFB

4 �
ây + ib�̂y/�+

ây − ib�̂y/�+

ây + ib�̂y/�−

ây − ib�̂y/�−



F

, �A18�

which, with �A16�, yields Eq. �22�.
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