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The fluorescence light emitted by a four-level system in J=1/2 to J=1/2 configuration driven by a mono-
chromatic laser field and in an external magnetic field is studied. We show that the spectrum of resonance
fluorescence emitted on the � transitions shows a signature of spontaneously generated interference effects.
The degree of interference in the fluorescence spectrum can be controlled by means of the external magnetic
field, provided that the Landé g factors of the excited and the ground state doublet are different. For a suitably
chosen magnetic field strength, the relative weight of the Rayleigh line can be completely suppressed, even for
low intensities of the coherent driving field. The incoherent fluorescence spectrum emitted on the � transitions
exhibits a very narrow peak whose width and weight depend on the magnetic field strength. We demonstrate
that the spectrum of resonance fluorescence emitted on the � transitions shows an indirect signature of
interference. A measurement of the relative peak heights in the spectrum from the � transitions allows us to
determine the branching ratio of the spontaneous decay of each excited state into the � channel.
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I. INTRODUCTION

Since the emergence of quantum mechanics, quantum in-
terference has been regarded as one of the most exciting and
intriguing aspects of quantum theory �1�. Although interfer-
ence effects are present in almost all areas of quantum me-
chanics, some of them particularly attracted the attention of
many scientists. In the following, we will give two examples
of physical systems that are well known in the context of
interference effects and are both related to the work pre-
sented here.

First of all, we would like to mention the so-called V
system that has been intensively discussed by theoretical
means. This atomic level scheme is comprised of two near-
degenerate excited levels and one ground state, and many
authors demonstrated that a rich variety of interference ef-
fects should be observable in this system. These effects in-
clude the modification and quenching of spontaneous emis-
sion �2–5�, and several schemes to control spontaneous
emission by means of external fields have been suggested
�6–9�. Furthermore, it has been shown that quantum interfer-
ence leads to strong modifications of the spectrum of reso-
nance fluorescence, and for suitable parameters the complete
suppression of resonance fluorescence is achievable �10–13�.
The emitted fluorescence light also displays highly nonclas-
sical features like extremely strong intensity-intensity corre-
lations and squeezing �14,15�.

However, all these schemes rest on the existence of spon-
taneously generated coherences between the two upper levels
that can only arise if the dipole moments between the two
upper and the lower level are parallel or at least nonorthogo-
nal. This requirement is very hard to meet in an experiment,
since appropriate atomic systems are not known up to now.
In order to circumvent this problem, an experiment with a
molecular system has been performed �16�, but the experi-
mental results could not be reproduced yet �17�. A recent
experiment demonstrates the existence of spontaneously gen-
erated coherences between spin states in quantum dots �18�.

One of the most famous interference effects is certainly
Young’s double-slit experiment, especially because it allows

us to explore fundamental concepts of quantum mechanics
such as the principle of complementarity in a very simple
setup. Celebrated thought experiments like Feynman’s light
microscope �19� and Einstein’s recoiling slits �20� employ
the position-momentum uncertainty relation to demonstrate
that it is impossible to observe the wave and the particle
nature of the interfering quantities �for example, electrons or
photons� at the same time. In recent years, a proposal by
Scully et al. �21� gave rise to a lively debate �22–28� on the
interrelation between the principle of complementarity and
the position-momentum uncertainty relation.

A beautiful realization of Young’s two-slit experiment was
performed by Eichmann et al. �29� and subsequently dis-
cussed by several authors �30–32�. In this experiment, the
slits are represented by two 198Hg+ ions in a trap that are
irradiated by a coherent laser field, and the interference pat-
tern formed by the scattered light was observed. The level
scheme of each of the two atoms can be modeled by a J
=1/2 to J=1/2 transition that is also in the focus of the work
presented here; a schematic representation of this four-level
system is shown in Fig. 1 �33–35�. The transitions �1�↔ �4�
and �2�↔ �3� couple to �+ and �− polarized light, respec-

FIG. 1. Schematic representation of the four-level atom of inter-
est. The two upper and lower levels are Zeeman sublevels with
mj = ± 1

2 . Each upper state can decay by a dipole allowed transition
to both ground states. The Zeeman splitting of the magnetic sublev-
els is not to scale.
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tively, and will be referred to as the � transitions. By con-
trast, the � transitions �1�↔ �3� and �2�↔ �4� couple to light
linearly polarized along ez, and their dipole moments are
antiparallel. The four-level system of Fig. 1 is thus a realistic
level scheme with nonorthogonal dipole moments which can
be found in real atoms. However, it cannot be expected that
this four-level system displays the same interference effects
that were predicted for the V system with parallel dipole
moments since there is a striking difference between them. In
the case of the V system, both transitions from the upper
levels end up in the same ground state, while the two �
transitions of our four-level system start and end up in dif-
ferent states that are orthogonal to each other. Thus the ques-
tion arises whether interference effects can also be observed
in single J=1/2 to J=1/2 systems.

Recently we investigated the fluorescence light emitted on
the � transitions in the case of the degenerate system �B
=�=0 in Fig. 1� and for a monochromatic driving field po-
larized along ez. It has been shown �36� that the spectrum of
resonance fluorescence indeed exhibits a signature of
vacuum-mediated interference effects, whereas the total in-
tensity is not affected by interference. It has been demon-
strated that this result is a consequence of the principle of
complementarity, applied to time and energy.

Here we generalize our analysis to the nondegenerate sys-
tem depicted in Fig. 1 and include the fluorescence light
emitted on the � transitions in our discussion. Since it is
possible to discriminate between the fluorescence light that
stems from the �- and the � transitions simply by means of
a polarization-dependent detection scheme �Sec. II�, these
two contributions will be discussed independently in Secs.
III and IV, respectively.

We find that for the spectrum from the � transitions, the
degree of interference in the coherent and incoherent parts of
the spectrum strongly depends on the frequency difference �
between the two � transitions. The spectral properties of the
fluorescence light can thus be controlled by means of an
external magnetic field that determines the value of �. For
example, the relative weight of the Rayleigh line can be
completely suppressed for a suitable value of �, even for low
intensities of the coherent driving field �Sec. III A�. The de-
pendence of the incoherent spectrum of resonance fluores-
cence on the parameter � is discussed in Sec. III B. Section
III C demonstrates how the interference terms alter the fluo-
rescence spectrum emitted on the � transitions for different
regimes of the driving field strength. The experimental ob-
servation of the spectra including the interference terms
could provide evidence for vacuum-mediated interference ef-
fects in an atomic system.

The fluorescence spectrum emitted on the � transitions of
the degenerate system is discussed in Sec. IV. It only consists
of an incoherent part and shows an indirect signature of in-
terference since the relative peak heights depend on the in-
terference terms. The measurement of the relative peak
heights would also allow us to determine the branching ratio
of the spontaneous decay of each excited state into the �
channel.

Section V provides a detailed discussion of our results. In
our previous work �36�, we interpreted the interference effect
in the spectrum of resonance fluorescence in terms of inter-

ferences between transition amplitudes that correspond to
different time orders of photon emissions. Here we support
this explanation by a formal argument, and the continuous
transition from perfect frequency resolution to perfect tem-
poral resolution is studied in more detail. For a weak driving
field and certain values of the parameter �, the incoherent
spectra of the � and � transitions contain a very narrow peak
whose width is smaller than the natural linewidth. We ex-
plain these narrow structures in terms of electron shelving.
Finally, a brief summary of our results is given in Sec. VI.

II. EQUATION OF MOTION AND DETECTION
SCHEME

We now return to the level scheme in Fig. 1. Note that we
allow the Zeeman splitting of the excited and the ground
state magnetic sublevels to be different, since the Landé g
factors will not necessarily be the same for these two multi-
plets. For example, in the case of the 6s 2S1/2–6p 2P1/2 tran-
sition in 198Hg+ the g factor for the excited states is given by
2/3, and for the ground states it takes on its maximum value
of 2. The matrix elements of the electric-dipole moment op-

erator d̂ can be found from the the Wigner-Eckart theorem
�37� and are given by

d1 = �1�d̂�3� = −
1
�3

Dez, d2 = �2�d̂�4� = − d1,

d3 = �2�d̂�3� =�2

3
D��−�, d4 = �1�d̂�4� = d3

*. �1�

In this equation, the circular polarization vector is defined as
��−�= �ex− iey� /�2 and D denotes the reduced dipole matrix
element. We assign to each of the four dipole-allowed tran-
sitions a resonance frequency �i �i� 	1,2 ,3 ,4
�. If the split-
ting between the magnetic sublevels vanishes �i.e., B=�=0�,
these four frequencies are equal.

We are interested in the time evolution of our four-level
system driven by a monochromatic field of frequency �L that
is linearly polarized along the z axis,

E�t� = E0e−i�Ltez + c.c., �2�

and c.c. stands for the complex conjugate. With this choice
of polarization, the electric field couples only to the two
antiparallel dipole moments d1 and d2. In the rotating wave
approximation, the interaction Hamiltonian takes the form

V = �A13 − A24���e−i�Lt + h.c., �3�

where the atomic transition operators are defined as Aij
= �i��j�, and the Rabi frequency is given by �=E0D / ��3��.
The atomic Hamiltonian can be written as

H0 = ��1A11 + ���2 + B�A22 + �BA44, �4�

where �1 stands for the resonance frequency of the 1↔3
transition and �2=�1+� is the resonance frequency on the
2↔4 transition. In a rotating frame defined by the unitary
transformation

KIFFNER, EVERS, AND KEITEL PHYSICAL REVIEW A 73, 063814 �2006�

063814-2



W = exp��A11 + A22�i�Lt� , �5�

the master equation for the density operator �̃=W�W† reads

�̇̃ = −
i

�
�H,�̃� + L	�̃ . �6�

In this equation, the Hamiltonian is given by

H = − ��
A11 + �
 − ��A22 − B�A22 + A44��

+ ��A13 − A24��� + h.c.� , �7�


=�L−�1 is the detuning of the driving field from reso-
nance with the 1↔3 transition, 
−� is the detuning on the
2↔4 transition and the damping term L	�̃ takes the form

L	�̃ = −
1

2 �
i,j=1

2

	ij	�Si
+,Sj

−�̃� + ��̃Si
+,Sj

−�
 −
	�

2 �
i=3

4

	�Si
+,Si

−�̃�

+ ��̃Si
+,Si

−�
 . �8�

The transition operators Si
± are defined as

S1
+ = A13, S2

+ = A24, S3
+ = A23, S4

+ = A14, �9�

and Si
−= �Si

+�†. The decay constant on each of the � transi-
tions is denoted by 	�, the parameters 	ij are determined by

	ij =
di · d j

*

�di��d j�
�	i	 j, i, j � 	1,2
 , �10�

and 	1 and 	2 are the decay constants of the � transitions
�see Fig. 1�. For i= j, the parameters 	ij are equal to the
decay rates of the � transitions, 	11=	1 and 	22=	2. Al-
though 	1 and 	2 are equal in our setup, we will continue to
label them differently to facilitate the physical interpretation

later on. Since d̂1 and d̂2 are antiparallel, the cross-damping
terms are given by 	12=	21=−�	1	2. These terms allow for
the possibility of coherence transfer from the excited to the
ground state doublet.

The decay rates 	1, 	2, 	� can be related to the total decay
rate 	=	1+	�=	2+	� of each of the two excited states
through the branching probabilities b� and b�,

	1 = 	2 = b�	 and 	� = b�	 . �11�

According to the Clebsch-Gordan coefficients, we have b�

=1/3 and b�=2/3. Although we will keep the symbols b�

and b� in formulas, we will always assume these values
whenever a concrete evaluation is performed, e.g., in figures.

Next we employ the normalization condition Tr��̃�=1 to
eliminate the matrix element �̃44 from the master equation
�6� that can be cast into the form

�tR�t� = MR�t� + I . �12�

Here M represents a generalized 15�15 Bloch matrix, the
vector I is an inhomogeneity with components

I = �0,0,0,0,0,0,0,i�,0,0,0,0,0,− i�*,0�t, �13�

and the vector R contains the matrix elements �̃ij = �i��̃�j� of
the density operator,

R = ��̃11,�̃12,�̃13,�̃14,�̃21,�̃22,�̃23,�̃24,

�̃31,�̃32,�̃33,�̃34,�̃41,�̃42,�̃43�t. �14�

The stationary solution of Eq. �12� is formally given by

Rst = − M−1I , �15�

and an evaluation of the latter equation yields

�̃11 =
1

2

���2

	2/4 + �2/4 + �
 − �/2�2 + 2���2
,

�̃33 =
1

2

	2/4 + 
2 + ���2

	2/4 + �2/4 + �
 − �/2�2 + 2���2
,

�̃44 =
1

2

	2/4 + �
 − ��2 + ���2

	2/4 + �2/4 + �
 − �/2�2 + 2���2
,

�̃13 =
1

2

�
 − i	/2��
	2/4 + �2/4 + �
 − �/2�2 + 2���2

,

�̃24 =
1

2

�� − 
 + i	/2��
	2/4 + �2/4 + �
 − �/2�2 + 2���2

. �16�

The remaining nonzero components of Rst are determined by

�̃11 = �̃22, �̃31 = �̃13
* , and �̃42 = �̃24

* . �17�

In the case of the degenerate system, the population of the
two ground levels will be equal and we have �̃13=−�̃24. Note
that the minus sign arises since the dipole moments d1 and d2

are antiparallel, and the coherences �̃14 and �̃23 are equal to
zero because the driving field does not couple to the � tran-
sitions.

In this paper we focus on the total intensity and the spec-
tral distribution of the fluorescence light emitted by the atom
in steady state. The total intensity

Ist = �Ê�−��r,t� · Ê�+��r,t��st �18�

is given by the normally ordered first-order correlation func-
tion of the electric field, and the spectrum of resonance fluo-
rescence is determined by the Fourier transform of the two-
time correlation function of the electric field �38�,

S��� =
1

2�
�

−�

�

e−i�
�Ê�−��r,t + 
� · Ê�+��r,t��std
 . �19�

In these equations, Ê�−� �Ê�+�� denotes the negative �positive�
frequency part of the electric field operator. At a point r
=rr̂ in the far-field zone, the negative frequency part of the
electric field operator is found to be �2�

Ê�−��r,t� = Êfree
�−� �r,t� −

�

r
�
i=1

4

�i
2r̂ � �r̂ � di�S̃i

+�t̂�ei�Lt̂,

�20�

where t̂= t− r
c is the retarded time, �=1/ �4��0c2�, and

S̃i
±�t�=exp��i�Lt�Si

±�t�. The first term stands for the negative
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frequency part of the free field. It does not contribute to the
normally ordered correlation functions in Eqs. �18� and �19�
as long as the point of observation lies outside the driving
field �39�. The second term describes the retarded dipole field
generated by the atom situated at the point of origin.

Throughout this paper we assume that the point of obser-
vation lies in the y direction, where the z and x axes are
defined by the polarization and the direction of propagation
of the laser beam, respectively. An evaluation of the cross
products in Eq. �20� shows then that the light emitted on the
� transitions is linearly polarized along ez, whereas the light
emitted on the � transitions is linearly polarized along ex.
The advantage of this detection scheme is that one can easily
discriminate between the light emitted on the � and � tran-
sitions by means of a polarization filter. For this reason we
will discuss the fluorescence light of the �- and � transitions
separately.

III. SPECTRUM OF RESONANCE
FLUORESCENCE-� TRANSITIONS

We begin with a brief discussion of the steady-state inten-
sity recorded by a broadband detector that observes the light
emitted on the � transitions. According to Eqs. �18� and �20�,
we have

Ist
� = �� �

i,j=1

2

	ij�S̃i
+S̃j

−�st, �21�

where it was assumed that �1
�2 to obtain a common pref-
actor �� that we set equal to one in the following. The terms
	ij are defined in Eq. �10�, and 	12=	21=−�	1	2 describe the
cross-damping between the � transitions that arises as a con-
sequence of quantum interference. However, these interfer-
ence terms do not contribute to the total intensity, regardless
of what the steady-state solution might be, because the
ground states are orthogonal,

�S̃1
+S̃2

−�st = ��1��3��4��2��st = 0. �22�

Consequently, the intensity emitted on the � transitions is
not altered by interference terms and simply proportional to
the population of the excited states,

Ist
� = b�	��̃11 + �̃22� . �23�

We now turn to the the spectrum of resonance fluorescence
emitted on the � transitions. With the help of Eqs. �19� and
�20� we arrive at

S���̃� =
1

�
�
i,j=1

2

	ij Re �
0

�

e−i�̃
�S̃i
+�t̂ + 
�S̃j

−�t̂��std
 , �24�

where �̃=�−�L is the difference between the observed fre-
quency and the laser frequency. In contrast to Eq. �22�, the
terms proportional to 	12 are now determined by the two-

time averages �S̃1
+�t̂+
�S̃2

−�t̂��st rather than by the one-time
averages. Indeed, we find that the correlation function

G12�
� = − �	1	2�S̃1
+�t̂ + 
�S̃2

−�t̂��st �25�

is different from zero for 
�0; a plot of G12 is shown in Fig.
2. But this implies that there is quantum interference in the
spectrum of the light emitted on the � transitions, although
there is no interference in the total intensity. To illustrate this
result we decompose the transition operators in Eq. �25� in
mean values and fluctuations according to

S̃i
± = �S̃i

±�st1̂ + �S̃i
±. �26�

The correlation function G12�
� becomes then

G12�
� = − �	1	2���S̃1
+�t̂ + 
��S̃2

−�t̂��st + �S̃1
+�st�S̃2

−�st� .

�27�

The two-time average of the fluctuations can be calculated
from the generalized Bloch equations and the quantum re-
gression theorem �see the Appendix�. It decays exponentially
with a time constant on the order of 	−1 and does not con-
tribute to G12 in the long-time limit 
→�. The mean values

�S̃1
+�st= �̃31 and �S̃2

+�st= �̃42 are given by matrix elements of
the steady-state density operator in Eq. �16� and are both
different from zero. This is obvious from a physical point of
view since the laser field creates a coherence on both transi-
tions 1↔3 and 2↔4. Consequently, the long-time limit of

G12 reads G12���=−�	1	2�S̃1
+�st�S̃2

−�st. It follows that the in-
terference terms will affect the coherent and incoherent spec-
trum of resonance fluorescence.

Before we give expressions for the spectral distribution of
the emitted light, we calculate the respective contributions of
coherent and incoherent scattering to the intensity Ist

�. To this
end we apply the decomposition of the transition operators
Eq. �26� to Eq. �21�. This allows us to write Ist

� as the sum of
four terms,

Ist
� = Icoh

0 + Icoh
int + Iinc

0 + Iinc
int . �28�

The first two terms account for the contribution of coherent
scattering �subscript “coh”� and are given by

Icoh
0 = 	1��S̃1

+�st�2 + 	2��S̃2
+�st�2, �29�

FIG. 2. Plot of the correlation function G12 in relation to its

long-time limit G12���=−�	1	2�S̃1
+�st�S̃2

−�st for the degenerate sys-
tem. The parameters are �=3�107 s−1, 
=5�106 s−1 and 	
=107 s−1. G12 has to vanish at 
=0 since the ground states are
orthogonal.
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Icoh
int = − 2�	1	2 Re�S̃1

+�st�S̃2
−�st. �30�

In this equation, Icoh
0 stands for the contribution of terms

proportional to 	11 and 	22, and Icoh
int is the weight of the

interference terms that can be positive or negative. By con-
trast, the sum of Icoh

0 and Icoh
int is the weight of the Rayleigh

line that is always positive. The last two terms in Eq. �28�
denote the contribution of incoherent scattering �subscript
“inc”�,

Iinc
0 = 	1��S̃1

+�S̃1
−�st + 	2��S̃2

+�S̃2
−�st, �31�

Iinc
int = − 2�	1	2 Re��S̃1

+�S̃2
−�st. �32�

Since the ground states are orthogonal, Eq. �26� allows us to
establish the relation

��S̃1
+�S̃2

−�st = − �S̃1
+�st�S̃2

−�st. �33�

If this expression is applied to Eq. �32�, it follows from Eq.
�30� that the interference terms Icoh

int and Iinc
int are of opposite

sign, i.e.,

Icoh
int = − Iinc

int . �34�

This relation clarifies that the interference terms alter the
weights of the coherent and the incoherent part of the spec-
trum, whereas the total intensity remains unchanged. Note
that this is in contrast to the V system with nonorthogonal
transition dipole moments mentioned in the Introduction,
where both the fluorescence spectrum and the total intensity
show a signature of interference �1,3,12,13�.

We now turn to the spectral distribution of the fluores-
cence light and employ Eq. �26� to write the spectrum of
resonance fluorescence in Eq. �24� as the sum of the coherent
and the incoherent spectrum, S���̃�=Scoh

� ��̃�+Sinc
� ��̃�, where

Scoh
� ��̃� = �Icoh

0 + Icoh
int ����̃� , �35�

Sinc
� ��̃� =

1

�
�
i,j=1

2

	ij Re �
0

�

e−i�̃
��S̃i
+�t̂ + 
��S̃j

−�t̂��std
 .

�36�

These two contributions will be discussed in the following
sections.

A. Coherent spectrum of resonance fluorescence

The coherent part of the fluorescence spectrum consists of
the Rayleigh peak centered at �=�L. In order to get a better
understanding of how the weight of this line is affected by
interference, we write it as

Icoh
0 + Icoh

int = ��	1�S̃1
+�st − �	2�S̃2

+�st�2. �37�

In this equation, �S̃1
+�st is proportional to the scattering am-

plitude on the 1↔3 transition and −�S̃2
+�st corresponds to the

scattering amplitude on the 2↔4 transition. Note that the
minus sign arises since the dipoles d1 and d2 are antiparallel.
Depending on the relative phase and the absolute values of

the coherences �S̃1
+�st and �S̃2

+�st, there will be constructive or
destructive interference in the coherent part of the spectrum.
We will now demonstrate that the degree of interference in
the coherent spectrum can be controlled by means of the
difference � between the resonance frequencies of the � tran-
sitions. Therefore, we write Eq. �37� as

Icoh
0 + Icoh

int = Icoh
0 �1 + C� , �38�

where C= Icoh
int / Icoh

0 is the relative weight of the interference
terms. An explicit expression for C can be found with the
help of the definitions in Eq. �30� and the steady-state solu-
tion for �̃ in Eq. �16�,

C =
	2/4 + 
�
 − ��

	2/4 + �2/4 + �
 − �/2�2 . �39�

The absolute value of this quantity can be regarded as the
degree of interference in the coherent spectrum. Figure 3
shows a plot of C as a function of � for two different �nega-
tive� detunings 
. It is evident that C is equal to one in the
case of the degenerate system. Therefore, we have perfect
constructive interference for �=0. In this case, the detunings

on both � transitions are equal and hence we have �S̃1
+�st=

−�S̃2
+�st, the two transitions are now perfectly equivalent. In

addition, the weight of the Rayleigh line is then, apart from
the branching probability b�, identical to the corresponding
expression for a two-level atom �40�.

As ��� increases, C��� decreases monotonically and be-
comes zero at �0=
�1+	2 / �4
2��. Note that �0 can be either
positive or negative, depending on the sign of 
. In the case
of 
2�	2, we have �0

. This implies that the interference
term vanishes if the laser field is resonant with the 2↔4
transition. The minimum of the curve is reached at �min
=2
�1+	2 / �4
2�� and given by C��min�=−1/ �1+	2 / �2
2��.
Consequently, C��min� tends to −1 provided that 
2�	2. The
weight of the Rayleigh peak becomes then zero as a conse-
quence of destructive interference, and the emitted radiation
is solely incoherent. Note that this situation occurs if the
detunings on the 1↔3 and 2↔4 transitions are approxi-
mately equal and of opposite sign. In this case, the coher-

ences �S̃1
+�st and �S̃2

+�st cancel each other in Eq. �37�. Finally,

FIG. 3. Plot of the relative weight of the interference terms C���
for different values of the detuning 
 of the laser field from the
1↔3 transition. The parameters are given by 	=107 s−1, 
=−4
�107 s−1 �solid line�, and 
=−5�106 s−1 �dashed line�.
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C tends to zero as ��� becomes much larger than �
� and 	.
This is due to the fact that the interference term in Eq. �30�
consists of the product of �S̃1

+�st and �S̃2
+�st. If the detuning on

one of the two � transitions becomes very large, Icoh
int tends to

zero, whereas Icoh
0 remains different from zero.

B. Incoherent spectrum of resonance fluorescence

It is possible to evaluate the expression for Sinc
� in Eq. �36�

analytically, an outline of the calculation can be found in the
Appendix. However, the general result is too bulky to present
it here. We just mention that the spectrum does only depend
on the difference � between the Zeeman splittings of the
ground and excited states, but not on the parameter B �see
Fig. 1�. In the case of the degenerate system, we find

Sinc
� ��̃� = b�

	

�

	2 + 2���2 + �̃2

	2/4 + 
2 + 2���2
2	���4

�P�− i�̃��2
, �40�

where P�z� is a cubic polynomial as a function of z that is
defined as

P�z� =
1

4
�z + 	���2z + 	�2 + 4
2� + 2�2z + 	����2. �41�

Apart from the branching probability b�, this result is exactly
the same as the incoherent spectrum of resonance fluores-
cence of a two-level atom �40�.

As soon as � becomes different from zero, the incoherent
spectrum differs considerably from the two-level spectrum.
This is demonstrated in Fig. 4�a�, which displays Sinc

� for �
=0 �dashed line� and �=−4�106 s−1 �solid line�. For ��0,
an additional central peak occurs whose width is much
smaller than the decay rate 	.

Section III A provides a detailed discussion of the weight
of the interference term Icoh

int in the coherent spectrum. These

results can also be applied to the weight of the interference
term Iinc

int in the inelastic spectrum by means of Eq. �34�. For
example, it follows that the weight of the interference term
Iinc

int in the inelastic spectrum vanishes for �=�0. This situa-
tion is shown in Fig. 4�b�, where the width and the weight of
the additional peak are larger than in �a�. For �=�min and the
parameters of Fig. 4, we know from Sec. III A that the
weight of the Rayleigh line is approximately zero. The cor-
responding incoherent spectrum is shown in Fig. 4�c�. In-
stead of the elastic delta-peak in the coherent spectrum we
thus have a very narrow peak that occurs in the incoherent
spectrum.

Finally, Fig. 4�d� shows Sinc
� for a strong laser field. In this

case, the weight of the interference terms is negligible as can
be verified with the help of Eq. �30�. However, the incoher-
ent spectrum still deviates from the Mollow spectrum if �
�0. This can be easily understood with the aid of the
dressed states �38,41� of the system. If N denotes the number
of laser photons of frequency �L, the dressed states can be
expressed in terms of the bare states as follows,

�1�N�� = ei� sin �1�1,N� + cos �1�3,N + 1� ,

�2�N�� = ei� cos �1�1,N� − sin �1�3,N + 1� , �42�

where tan 2�1=2��� /
, and

�3�N�� = ei� sin �2�2,N� − cos �2�4,N + 1� ,

�4�N�� = ei� cos �2�2,N� + sin �2�4,N + 1� , �43�

with tan 2�2=2��� / �
−�� �0��1, �2�� /2, ei�=� / ����.
Figure 5 shows the relative position of the dressed states for
two manifolds with N and �N−1� laser photons, respectively.
Note that �1�N�� and �2�N�� are separated by a frequency
interval of �1=�4���2+
2, whereas the spacing between

FIG. 4. Incoherent spectrum of resonance fluorescence accord-
ing to Eq. �36�. Plot �a� shows Sinc

� for the degenerate system
�dashed line� and for �=−4�106 s−1 �solid line�, the other param-
eters are 	=107 s−1, 
=−4�107 s−1, and �=6�106 s−1. In �b�
and �c� the values of � are given by �=�0 and �=�min, respectively;
the other parameters are the same than in �a�. Plot �d� shows the
incoherent spectrum for the set of parameters 
=−5�106 s−1, �
=6�107 s−1, 	=107 s−1, and �=−8�107 s−1.

FIG. 5. Dressed state analog of the bare state system in Fig. 1.
The frequency of the laser field is labeled by �L. For ��0, the
detuning of the laser field will be different on each of the � transi-
tions. There are thus two effective Rabi frequencies �1 and �2

involved. The splitting of the dressed states for fixed N is not to
scale.
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�3�N�� and �4�N�� is given by �2=�4���2+ �
−��2. The side-
bands in the spectrum of the � transitions result from the
transitions �1�N��→ �2�N−1��, �2�N��→ �1�N−1��, �3�N��
→ �4�N−1��, and �4�N��→ �3�N−1��. Consequently, they will
be located at the frequencies �L±�1 and �L±�2. For ��0,
we thus expect four sideband peaks symmetrically placed
around the laser frequency �L, precisely as in Fig. 4�d�.

C. Influence of the interference terms
on the fluorescence spectrum

In this section we investigate how the interference terms
alter the fluorescence spectrum emitted on the � transitions.
Here we only consider the degenerate system that is distin-
guished by maximal constructive �destructive� interference
in the coherent �incoherent� part of the fluorescence spectrum
�see Sec. III�. If the interference terms in Eq. �24� are omit-
ted, the fluorescence spectrum reads

S0
���̃� =

1

�
�
i=1

2

	ii Re �
0

�

e−i�̃
�S̃i
+�t̂ + 
�S̃i

−�t̂��std
 . �44�

The fluorescence spectra with and without the interference
terms according to Eqs. �24� and �44� are shown in Fig. 6 for
different parameters of the laser field. If the saturation pa-
rameter defined in Eq. �49� is much larger than unity, the
weight of the interference terms goes to zero. However, Fig.
6�a� demonstrates that the interference terms still alter the
shape of the fluorescence spectrum in the region of the side-
band peaks. The spectrum S� with interference terms is iden-
tical to the fluorescence spectrum of a two-level atom �see
Sec. III�, and thus the ratio between the central and the side-
band peaks reads 1:3:1. For the spectrum without the inter-
ference terms and a branching probability of b�=1/3, this
ratio reads 7:15:7.

Figure 6�b� shows S� and S0
� for low saturation. In this

case, the spectrum without interference terms is distin-

guished by a narrow peak centered at the laser frequency that
occurs in addition to the elastic Rayleigh peak. A numerical
analysis shows that S0

� can be written as

S0
���̃� 
 Icoh

0 ���̃� + Sinc
� ��̃� + Speak

� ��̃� . �45�

In this equation, the first term represents the Rayleigh peak
whose weight misses the interference term Icoh

int that is present
in Eq. �35�. The second term stands for the incoherent spec-
trum according to Eq. �40�. The last term describes a Lorent-
zian of weight Icoh

int and width �� that is centered at the laser
frequency,

Speak
� ��̃� =

Icoh
int

�

��

�̃2 + ��
2 . �46�

The weight of the extra peak Speak
� is determined by the con-

straint that the total intensity is independent of the interfer-
ence terms �see Sec. III�. Therefore, Speak

� has to compensate
for the reduced weight of the Rayleigh line of S0

� as com-
pared to the spectrum with interference terms. In general, the
width �� of the extra peak Speak

� is smaller than the decay rate
	. If the saturation parameter s is much smaller than unity,
we find �b�=1/3�

Icoh
int 


	

12
�1 − 2s�s and �� 
 2

	

9
�3 − 5s�s . �47�

Figure 6�b� allows us to summarize the effect of the interfer-
ence terms on the fluorescence spectrum in the case of low
saturation as follows. The spectrum without interference
terms displays a narrow peak Speak

� of finite width at the laser
frequency that is absent if the interference terms are taken
into account. Therefore, quantum interference cancels the in-
coherent response of the atom at the laser frequency �L.

In conclusion, the experimental observation of the fluo-
rescence spectrum confirming the solid lines in Fig. 6 would
give evidence for vacuum-mediated interference effects as
described by terms proportional to 	12. So far, interference
effects of this kind have not been observed in atomic sys-
tems.

IV. SPECTRUM OF RESONANCE FLUORESCENCE-�
TRANSITIONS

This section is concerned with a brief discussion of the
fluorescence spectrum emitted on the � transitions. Since the
laser field does not couple to these transitions, the spectrum
contains only an incoherent part. We arrive at

S���̃� = ��

b�	

�
�
i=3

4

Re �
0

�

e−i�̃
��S̃i
+�t̂ + 
��S̃i

−�t̂��std
 ,

�48�

where �� is a geometrical factor that we set equal to one in
the following. It has been pointed out in Sec. II that the light
emitted on the � transitions is linearly polarized along ex if
the point of observation lies in the y direction. Therefore, the

cross terms ��S̃3
+�t̂+
��S̃4

−�t̂��st and ��S̃4
+�t̂+
��S̃3

−�t̂��st will, in
principle, contribute to the spectrum in Eq. �48�. However,

FIG. 6. Fluorescence spectrum for the degenerate system ac-
cording to Eq. �24�. The solid line �dashed line� shows the spectrum
with �without� the interference terms proportional to 	12, 	21. The
Rayleigh peak �the vertical line at �=�L� is present both with and
without interference terms. Note that its weight is larger if the in-
terference terms are taken into account. However, the sums of the
integrated coherent and incoherent spectra with and without the
interference terms are identical, making the total intensity indepen-
dent of the interference terms. In �a�, the parameters are �=5
�107 s−1, 
=0, and 	=107 s−1. For �b�, we have �=107 s−1, 

=2�107 s−1, and 	=107 s−1.
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we find that the latter two-time averages are equal to zero.
For different driving schemes where the laser field couples to
the � transitions, the cross-correlation terms have to be taken
into account as is the case in the work of Polder et al. �33�.
The exact analytical expression for S� is too bulky to display
it here. Instead we will discuss S� in the case of the degen-
erate system �B=�=0� and for different regimes of the driv-
ing field strength that will be characterized by means of the
saturation parameter

s =
2���2


2 + 	2/4
. �49�

In the range from a weak to a moderately strong laser field
�s�1�, a numerical analysis reveals that S� can be written as

S���̃� 
 b�/b�Sinc
� ��̃� + Speak

� ��̃� . �50�

In this equation, the first term stands for the incoherent spec-
trum of a two-level atom according to Eq. �40�. The prefactor
b� /b� accounts for the different branching probability of the
� transitions as compared to the � transitions. The second
term represents a narrow peak that is centered at the laser
frequency �=�L. It can be modeled as a Lorentzian of
weight W� and width ��,

Speak
� ��̃� =

W�

�

��

�̃2 + ��
2 . �51�

The weight of Speak
� is determined by the total intensity emit-

ted on the � transitions,

Ist
� = b�	��̃11 + �̃22� , �52�

and the weight of b� /b�Sinc
� . We arrive at

W� = 4b�	��̃13�2, �53�

where �̃13 is given in Eq. �16�. The width �� of the addi-
tional peak is smaller than the decay rate 	. If s is much
smaller than unity, the width and the weight of Speak

� are
given by

W� 
 b�

	

2
�1 − 2s�s ,

�� 
 b�

	

4
�2 − �2 + b��s�s . �54�

At the same time, the contribution of Sinc
� b� /b� to S� is small

such that the spectrum is dominated by the central narrow
peak Speak

� . If the field strength is increased, the weight of the
extra peak Speak

� gets smaller. Figure 7�a� shows S� �solid
line� and Sinc

� b� /b� �dotted line� for a moderately strong laser
field, the saturation parameter is on the order of unity. Nev-
ertheless, the spectrum S� is still dominated by the sharp
peak Speak

� that exceeds the central peak of the two-level
spectrum by one order of magnitude.

For a strong driving field �s�1�, the weight of Speak
� goes

to zero and the central peak of S� coincides with the corre-
sponding peak of the Mollow spectrum. However, the side-
band peaks of S� differ from those of a two-level atom as can
be seen from Fig. 7�b�. In the secular limit, it is advanta-

geous to employ the dressed state picture in order to obtain
analytic expressions for the sideband peaks, being well sepa-
rated from the central peak whose analytic form can be taken
over from the well-known results for a two-level atom
�38,40�. The fluorescence spectrum for a resonant driving
field can be achieved by a tedious but straightforward calcu-
lation that follows the procedure of Chap. VI.E in �38�,

S���̃� 
 	
b�

8�

�sb

�sb
2 + ��1 − �̃�2 + 	

b�

4�

	/2

	2/4 + �̃2

+ 	
b�

8�

�sb

�sb
2 + ��1 + �̃�2 , �55�

where �1=�4���2+
2. A comparison of the latter equation
with the corresponding expression for the Mollow spectrum
reveals that the weights of the sideband peaks differ only by
the branching probability b�. For the width of the sideband
peaks in Eq. �55� we find

�sb =
1

4
�	1	2 +

	

2
=

1

4
�3 − b��	 . �56�

Note that the second equality is obtained by virtue of Eq.
�11�. The ratio between the heights of the central peak at �̃
=0 and the sideband peaks at �̃= ±�1 is found to be 3−b�.
For b�=2/3, the peak ratio is thus 3:7:3. By contrast, the
peak ratio of the Mollow spectrum reads 1:3:1. A precise
measurement of the peak ratio would thus provide a means
of determining the branching probability b� of the degener-
ate system experimentally.

Note that the width of the sideband peaks in Eq. �56�
depends on the cross-damping terms �	1	2 that appear in the
master equation through the spontaneous emission term L	�̃
in Eq. �8�. If these interference terms were not present, the
peak ratio would not depend on the branching probabilities
and would be given by 1:2:1. The spectrum emitted on the �
transitions shows thus an indirect signature of interference.

V. DISCUSSION

In Sec. III we have shown that the interference terms
proportional to 	12 contribute only to the spectrum of reso-

FIG. 7. Spectrum of resonance fluorescence emitted on the �
transitions �solid line� in comparison with the fluorescence spec-
trum of a two-level atom �dotted line�. The parameters in �a� are
�=5�106 s−1, 
=6�106 s−1, and 	=107 s−1. In �b�, the param-
eters are �=6�107 s−1, 
=0, and 	=107 s−1. Note that S� devi-
ates slightly from the Mollow triplet in the region of the sideband
peaks.
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nance fluorescence, but not to the total intensity in Eq. �21�.
Here we demonstrate that this result is a consequence of the
principle of complementarity, applied to time and energy.

If the total intensity is measured, complementarity does
not impose any restrictions on the time resolution of the
measurement since the photon energies are not observed. It is
thus possible to observe the temporal aspect of the radiative
cascade, i.e., one could determine the photon emission times.
The time evolution of the driven atom is then most suitably
described in the bare state basis. For example, assume that
the atom is initially in ground state �3�. The laser field will
induce Rabi oscillations between the excited state �1� and �3�.
Immediately after the spontaneous emission of a photon, the
atom is found in ground state �3� �� transition� or �4� ��
transition�. Subsequently, this sequence of Rabi oscillations
and a spontaneous emission event is repeated. In this de-
scription, each emission process on one of the � transitions
is independent of the other � transition. However, quantum
interference does only occur if various indistinguishable
transition amplitudes connect a common initial state to a
common final state. Since the � transitions do neither share a
common initial nor a common final state, we must conjecture
that the total intensity is not affected by interference.

The lack of interference in the total intensity can also be
explained by drawing an analogy to the two-slit experiment.
It is well known that the interference pattern vanishes as
soon as it is principally possible to know through which of
the two slits each object �electrons or photons� has moved.
Similarly, the internal states of our atom can be regarded as a
which-way marker. Since the experimental conditions allow,
at least in principle, to determine the atomic ground state
immediately after the detection of a � photon, one could
decide on which of the two � transitions the photon was
emitted. Consequently, the observer could reveal the quan-
tum path taken by the system and hence there is no signature
of interference. Note that this argument requires that the re-
tardation between the times of emission and detection is
much smaller than the time between successive emissions.
This condition can typically be achieved in atomic systems.

A totally different situation arises if the detector measures
the spectrum of resonance fluorescence and hence the energy
of the emitted photons. First of all, it is advantageous to
illustrate the energy aspect of the cascade of spontaneously
emitted photons in the dressed state picture �see Fig. 8�
rather than in the bare state picture. The crucial difference
between the measurement of the total intensity and the fluo-
rescence spectrum is the following. In the latter case, the
observer decides to determine the photon energies precisely.
Since time and energy are complementary observables, the
temporal aspect of the radiative cascade is not accessible
simultaneously. Next we demonstrate that precisely this lack
of information about the temporal sequence of photon emis-
sions allows for the interference mechanism in the fluores-
cence spectrum.

A quantitative description of time-energy complementar-
ity is achieved via the time-energy uncertainty. If the photon
energies are determined with a precision of 
�, the time-
energy uncertainty relation enforces that the time of obser-
vation has to be at least on the order of 1 /
�. Since the
observer can only notice the detection of a photon after the

observation time has elapsed, the photon emission times are
indeterminate within a time interval of 
t=1/
�. For the
moment we envisage an ideal measurement of the fluores-
cence spectrum. In this case, the atom will emit �infinitely�
many photons during the �infinite� time of observation. In
addition, the photon emission times are indeterminate, and
thus the time order in which these photons have been emitted
is unknown. It follows that the transition amplitudes corre-
sponding to the various time orderings of the photons will
interfere.

We illustrate this interference mechanism on the basis of
Fig. 8 that shows a cascade of only two photons, one emitted
on a � transition and the other on a � transition. Assume that
the atom is initially in the dressed state �4�N��. In one of the
two cascades, the atom decays first to the state �4�N−1�� by
the emission of a � photon on the bare state transition �2�
→ �4�. The subsequent emission of a � photon takes the atom
to the state �1�N−2�� within the manifold with N−2 laser
photons. In the second cascade, the time order of the two
photons is reversed. The atom decays now first to the state
�1�N−1�� by the emission of a � photon, and then to the final
state �1�N−2�� under the emission of a � photon. In contrast

FIG. 8. Radiative cascade in the dressed states of the system
�see Eqs. �42� and �43��. The splitting of the dressed states for a
fixed number of laser photons N is not to scale. Each of the two
indicated cascades involves the emission of a � photon and a �
photon with wave vector k� and k�, respectively. Depending on the
time order of their emission, the � photon is either emitted on
transition �4�N��→ �4�N−1�� or �1�N−1��→ �1�N−2��, correspond-
ing to the bare state transitions �2�→ �4� and �1�→ �3�, respectively.
Since the final and initial states of the two cascades are identical,
the corresponding transition amplitudes may interfere.
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to the first cascade, this � photon is now emitted on the bare
state transition �1�→ �3�. Since the two cascades in Fig. 8
have the same initial and final states, and since it is in prin-
ciple impossible to determine the quantum path taken by the
system, the two transition amplitudes corresponding to dif-
ferent time orders of photon emissions interfere. In one of
the transition amplitudes the � photon stems from the �2�
→ �4� transition, and in the other from the �1�→ �3� transi-
tion. Exactly this mechanism gives rise to the interference
effects in the fluorescence spectrum that are mediated by the
cross-damping terms in Eq. �24�. Note that the difference �
between the resonance frequencies of the � transitions enters
the definition of the dressed states Eqs. �42� and �43� asym-
metrically, giving rise to different probabilities for the two
cascades. This explains why the degree of interference is
maximal only for �=0 and decreases with increasing ��� �see
Sec. III�.

The provided explanation can also be employed to illus-
trate why there is no interference in the fictitious situation of
perpendicular dipole moments d1 and d2. In this case, a pho-
ton can either stem from d1 or d2, but not from both transi-
tions. It is then impossible to realize both cascades in Fig. 8,
and hence there is no interference. Moreover, it becomes
now clear why the spectrum emitted on the � transitions
depends on the interference terms 	12 and 	21. For antiparal-
lel dipole moments d1 and d2 there are two transition ampli-
tudes that involve the emission of a � photon, and for per-
pendicular dipole moments there would be only one. We
emphasize that the discussion has been restricted to a cas-
cade of only two photons for the sake of simplicity. In prin-
ciple, all possible cascades with an arbitrary number of pho-
tons have to be considered, but the general idea remains the
same.

It is also possible to provide an explanation for the inter-
ference in the coherent spectrum, but the elastic scattering
events cannot be visualized in the dressed state basis. How-
ever, in the case of low saturation �s�1� the process of
elastic scattering can be illustrated in the bare state basis
such that the atom hops from one ground state to another by
the absorption of a laser photon and the emission of a scat-
tered photon. The excited states act as intermediate states and
can be adiabatically eliminated. Since it is impossible to tell
on which of the two � transitions the photon was scattered, it
is plausible that one has to sum the scattering amplitudes first
and then take the absolute value squared in order to obtain
the weight of the Rayleigh line in Eq. �38�.

Next we demonstrate how the interfering transition ampli-
tudes that correspond to different time orders of photon
emissions enter the expression for the spectrum of resonance
fluorescence in Eq. �24�. Let a� �a�

† � be the annihilation �cre-
ation� operator of a photon in a mode of the radiation field
that is actually observed by the detector, being sensitive only
to photons emitted on the � transitions. The rate at which the
photon number in this particular mode changes is given by

R��t� = �t�a�
† �t�a��t�� . �57�

If one follows the lines of Chap. 7 in �2�, one can show that
the steady-state value of R� is proportional to the spectrum
of resonance fluorescence,

lim
t→�

R��t� � S��c�k�� − �L� . �58�

In this equation, k� denotes the wave vector that corresponds
to the observed mode a�, and c is the speed of light. In order
to evaluate the left-hand side of Eq. �58�, we will label the
basis states �i�N� ; 	n
� of the total system �atom+laser field
+vacuum modes� by three quantum numbers, namely the
dressed states i, the number of laser photons N, and the state
of the vacuum modes 	n
. The mean value on the right-hand
side of Eq. �57� becomes then

�a�
† �t�a��t�� = �

i=1

4

�
N,	n


�CN,	n

i �t��2N��	n
� , �59�

where �CN,	n

i �t��2 is the probability to find the system at time

t in state �i�N� ; 	n
� and N��	n
� is the expectation value of
a�

† a� in this state. We assume that the system is in some
initial state ��0� at time t=0 with all vacuum modes being
empty. If the time evolution operator is labeled by U�t ,0�,
the transition amplitude from the initial state ��0� to the final
state �i�N� ; 	n
� can be written as

CN,	n

i �t� = �i�N�;	n
�U�t,0���0� . �60�

Let us assume that the final state contains q scattered photons
that are characterized by their wave and polarization vectors,
	n
= 	k��� ,k2�2 , . . . ,kq�q
. We do not attempt to evaluate
Eq. �60� explicitly, but in principle one would introduce q
−1 intermediate states and arrange the q scattered photons
into a certain order. But since there is no distinguished time
order of the scattered photons, there are, in principle, q! tran-
sition amplitudes involved in the evaluation of Eq. �60� that
will all interfere.

In conclusion, we demonstrated that the interference in
the spectrum from the � transitions can be explained in
terms of interference between transition amplitudes that cor-
respond to different time orders of photon emissions. If the
spectrum of resonance fluorescence is observed, the principle
of complementarity enforces that these transition amplitudes
are indistinguishable. If the total intensity is recorded by a
broadband detector, the temporal aspect of the radiative cas-
cade can in principle be observed. Consequently, the possi-
bility of interference between different time orders of photon
emissions is ruled out. The preceding discussion of our re-
sults also implies that the experimental setup—potentially
after the photon emissions—decides if interference takes
place, a feature that is also known from quantum eraser
schemes �42,43�.

We now refine our analysis and consider a detector with a
finite frequency resolution 
� that allows us to study the
continuous transition from perfect frequency resolution to
perfect time resolution. For simplicity, we consider only the
degenerate system �B=�=0�. If a filter of bandwidth � and
setting frequency � is placed in front of a broadband detec-
tor, the spectrum can be determined with an accuracy of �,
and the temporal resolution is on the order of �−1. The spec-
trum of resonance fluorescence emitted on the � transitions
reads then �44�
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S���̃,�� =
1

�
�
i,j=1

2

	ij Re �
0

�

e−i�̃
e−�
�S̃i
+�t̂ + 
�S̃j

−�t̂��std
 .

�61�

In the absence of interference terms the spectrum will be
denoted by S0

���̃ ,�� and is obtained from Eq. �61� by omit-
ting the terms proportional to 	12 and 	21. For the rest of this
section we assume that the saturation parameter s is much
smaller than unity. To a first approximation, the incoherent
contribution to the spectrum with interference terms can then
be neglected. In the presence of the filter, the coherent
�-peak becomes a Lorentzian of width � and weight Icoh

0

+ Icoh
int , and thus we obtain

S���̃,�� 

Icoh

0 + Icoh
int

�

�

�̃2 + �2 . �62�

Similarly, we neglect the contribution of Sinc
� to the spectrum

without interference terms in Eq. �45�, the �-peak becomes a
Lorentzian of width � and weight Icoh

0 , and Speak
� is replaced

by a Lorentzian of width ��+� and weight Icoh
int ,

S0
���̃,�� 


Icoh
0

�

�

�̃2 + �2 +
Icoh

int

�

�� + �

�̃2 + ��� + ��2 . �63�

Figure 9 shows the fluorescence spectrum according to Eq.
�61� �solid lines� for different values of the filter bandwidth �
and for low saturation. The dashed lines are the spectra with-
out the interference terms. In Fig. 9�a�, the bandwidth � is
much smaller than ��. Therefore, the widths of the lines
S���̃ ,�� and S0

���̃ ,�� are clearly distinct. If � is increased,
the differences between the spectra with and without the in-
terference terms diminish until both curves are virtually
identical for �=	 �Fig. 9�d��.

These results can be understood as follows. With an in-
creasing filter bandwidth �, the smallest time interval 
t that
can be resolved by the detector without violating the time-
energy uncertainty gets shorter. Therefore, the observer can
in principle obtain more information about the quantum path
taken by the atom. Consequently, we expect that the signa-
ture of interference in the fluorescence spectrum diminishes
for increasing �. This is in agreement with Fig. 9 and com-
pletely analogous to a two-slit experiment, where the visibil-
ity of the interference pattern is reduced at the cost of which-
path information and vice versa �45�.

Furthermore, we demonstrate that the time-energy uncer-
tainty relation allows us to estimate the smallest filter band-
width � for which the spectra with and without interference
terms should be indistinguishable. Since the total number of
photons emitted per unit time is equal to 	��̃11+ �̃22�, the
mean time between successive photon emissions is deter-

mined by �̄=1/ �	��̃11+ �̃22��. If the bandwidth � is chosen
such that the temporal resolution could be much better than
the mean time between successive photon emissions, i.e.,

�−1��̄=1/ �	��̃11+ �̃22��, we have

� � 	��̃11 + �̃22� 
 �1 − s�s	/2. �64�

Under these conditions, the radiative cascade of photons
could be observed in a time resolved way and it is extremely
unlikely that more than one spontaneous emission takes
place during the time of observation. Since this rules out the
interference mechanism as described in Sec. V, the signature
of interference in the fluorescence spectrum should disap-
pear. But if inequality �64� holds, it follows that ����, and
in this case S���̃ ,�� and S0

���̃ ,�� are indeed indistinguish-
able as can be seen from Eqs. �62� and �63�. This is con-
firmed by Fig. 9�d� that shows S0

���̃ ,�� and S���̃ ,�� for a
bandwidth � that is about ten times larger than the mean
number of photons emitted per unit time. The two spectra are
now virtually indistinguishable.

It remains to explain the sharp peaks in the incoherent
spectrum. To this end we return to Fig. 4 that shows the
incoherent spectrum Sinc

� for several values of the parameter
�. A narrow central peak occurs only in case of the nonde-
generate system ���0�, and thus only if the weight of the
Rayleigh line deviates from its maximal value attained at �
=0. Therefore, the narrow central peak in the incoherent
spectrum may be regarded as a �partially� broadened coher-
ent peak. This broadening can be understood as follows. Ex-
cept for �=0, the two � transitions are not equivalent since

the absolute value and the phase of the coherences �S̃1
+�st and

�S̃2
+�st will be different. The time that the atom spends on the

1↔3 transition can thus be regarded as a dark period with
respect to the 2↔4 transition and vice versa. This suggests
that the sharp peaks in the incoherent spectrum can be ex-
plained in terms of electron shelving �46–48�. This explana-
tion is also applicable to the sharp peak in the spectrum from
the � transitions. Figure 10 illustrates the scattering events
that give rise to this peak. If the atom is initially in state �3�,
a scattering event can bring it to state �4� �solid arrows�. The
scattered photon has then been emitted on one of the � tran-

FIG. 9. The solid lines show the fluorescence spectra recorded
with a finite frequency resolution �. The dashed curves are the
spectra without the interference terms proportional to 	12, 	21 in Eq.
�61�. The parameters are �=7�106 s−1, 
=2�107 s−1, 	
=107 s−1, and B=�=0. This corresponds to a saturation parameter
of s=0.235 and a mean number of photons per unit time of approxi-
mately 9.4�105 s−1. The filter bandwidths are given by �a� �
=102 s−1, �b� �=104 s−1, �c� �=1.9�106 s−1, and �d� �=107 s−1.
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sitions. Before the next photon can be scattered on that same
transition, a similar scattering process has to take place into
the 4→2→3 channel �dotted arrows�. Consequently, every
emission on one of the � transitions is followed by a dark
period on that same transition.

It should be mentioned that related interference effects
between transition amplitudes corresponding to different
time orders of photon emissions do also play a role in the
fluorescence spectrum of other systems �49�. However, the
distinguished feature of the system presented here is that this
mechanism gives rise to interference effects between the two
� transitions that do not share a common state.

We also point out that our system belongs to a class of
setups that display interference and complementarity in the
time-energy domain. In a conventional double-slit experi-
ment, spatially separated pathways result in an interference
pattern in position space. This is in contrast to our setup,
where different temporal paths lead to interference in the
energy domain. The work presented here is thus related to
recent double-slit experiments in the time-energy domain
�50,51�. In these experiments, ultra-short laser pulses of atto-
or femtosecond duration open different time windows for the
photoionization of an atom. If the energy spectrum of the
photoelectrons is measured, these time slits are indistinguish-
able and an interference pattern is observed. Moreover, it has
been demonstrated that interference in the time-energy do-
main can occur in the intensity correlations of different spec-
tral components in a two-level atom �52–54�.

VI. SUMMARY

The key result of this paper is that there is quantum inter-
ference in the spectrum of resonance fluorescence under con-
ditions of no interference in the total intensity, being en-
forced by the principle of complementarity. For the system
considered here, it claims that it is impossible to observe the
temporal and the energy aspect of the radiative cascade of
the atom at the same time. If the fluorescence spectrum is
observed, the photon emission times are indeterminate. The
interference in the fluorescence spectrum can thus be ex-
plained in terms of interferences between transition ampli-
tudes that correspond to different time orders of photon
emissions.

It has been shown that the degree of interference in the
fluorescence spectrum emitted on the � transitions can be
controlled by means of an external magnetic field. In particu-
lar, the degree of interference in the coherent part of the

spectrum can be adjusted from perfect constructive to perfect
destructive interference. Under conditions of perfect destruc-
tive interference, the weight of the Rayleigh line is com-
pletely suppressed. If the difference � between the resonance
frequencies of the � transitions is different from zero, the
incoherent spectrum emitted on the � transitions contains a
very narrow peak whose width is smaller than the decay rate
	. This peak has been identified as a partially broadened
coherent peak and can be explained in terms of electron
shelving.

The spectrum emitted on the � transitions contains only
an incoherent part. In the case of a weak driving field and for
the degenerate system, the fluorescence spectrum displays a
narrow peak that can be regarded as broadened coherent
peak. For a strong driving field, the widths of the sideband
peaks differ from the Mollow spectrum. We have shown that
the ratio between the peak heights of the central and the
sideband peaks display an indirect signature of interference.
In addition, a measurement of the relative peak heights al-
lows us to determine the branching probability b� of the
spontaneous decay of each excited state into the � channel.
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APPENDIX: CALCULATION OF THE TWO-TIME
AVERAGES

In this section we outline how the functions

Sij��̃� = Re �
0

�

e−i�̃
��S̃i
+�t̂ + 
��S̃j

−�t̂��std
 �A1�

can be evaluated by means of the quantum regression theo-
rem �55,56�. To this end we introduce the operators Aij that
are connected to the atomic transition operators Aij �taken in
the Schrödinger picture� by

Aij = W†AijW , �A2�

where the unitary transformation W is defined in Eq. �5�. In

particular, the operators S̃i
± introduced in Sec. II can be iden-

tified with the operators Aij according to

S̃1
+ = A13, S̃2

+ = A24, S̃3
+ = A23, S̃4

+ = A14. �A3�

The corresponding Heisenberg operators are then defined as

Aij�t� = U†�t,0�AijU�t,0� , �A4�

and the time evolution operator has been labeled by U. A
straightforward calculation shows that the mean values of the
these Heisenberg operators are directly related to the matrix
elements of the reduced density operator �̃ in the rotating
frame,

�Aij�t�� = TrA�Aij�̃�t�� = �̃ ji�t� . �A5�

In this equation, TrA�·� denotes the trace over atomic degrees
of freedom. Next we arrange the operators Aij in a column
vector

FIG. 10. Schematic representation of elastic scattering events
into the 3→1→4 �solid arrows� and 4→2→3 channels �dotted
arrows�. These processes account for the sharp peak in the fluores-
cence spectrum S� emitted on the � transitions.
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L = �A11,A21,A31,A41,A12,A22,A32,A42,

A13,A23,A33,A43,A14,A24,A34�t

such that �L�t�� coincides with the Bloch vector R�t� of Eq.
�14�, i.e., �L�t��=R�t�. It follows that the mean values �L�t��
obey the generalized Bloch equation �12�. If we decompose
each component of L in mean values and fluctuations accord-

ing to Aij =�Aij + �Aij�st1̂, we can cast �L� into the form

�L�t�� = ��L�t�� + �L�st, �A6�

where �L�st=Rst=−M−1I. If Eq. �A6� is plugged into Eq.
�12�, we obtain a homogeneous equation of motion for the
fluctuations,

�t��L�t�� = M��L�t�� . �A7�

The two-time correlation functions ��Li�t̂+
��Lj�t̂�� for i
� 	1, . . . ,15
 and fixed j can be written in vector notation as
g j�t̂ ,
�= ��L�t̂+
��Lj�t̂��. According to the quantum regres-
sion theorem, g j obeys the same equation of motion than the
one-time averages ��L�t��,

�
g
j = Mg j for 
 � 0. �A8�

If G j�t̂ ,z� denotes the Laplace transform of g j�t̂ ,
� with re-
spect to 
, it follows

G j�t̂,z� = �z1̂ − M�−1g j�t̂,0� . �A9�

We need the Laplace transform at z= i�̃ in steady state to
determine the functions Sij��̃� of Eq. �A1�. With the defini-
tions

R j = lim
t̂→�

g j�t̂,0� and K j��̃� = lim
t̂→�

G j�t̂,z = i�̃� ,

�A10�

we arrive at

K j��̃� = �i�̃1̂ − M�−1R j . �A11�

The relevant correlation functions that are needed for the
evaluation of Eqs. �36� and �48� are then given by

S11��̃� = Re�K3��̃��9, S21��̃� = Re�K3��̃��14,

S22��̃� = Re�K8��̃��14, S12��̃� = Re�K8��̃��9,

S33��̃� = Re�K7��̃��10, S44��̃� = Re�K4��̃��13.

�A12�

Finally, we remark that Eq. �61� can be evaluated if one
replaces i�̃ in Eq. �A11� by i�̃+�.
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