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We study one-dimensional fermions with photoassociation or with a narrow Fano-Feshbach resonance
described by the boson-fermion resonance model. Using the bosonization technique, we derive a low-energy
Hamiltonian of the system. We show that at low energy, the order parameters for the Bose condensation and
fermion superfluidity become identical, while a spin gap and a gap against the formation of phase slips are
formed. As a result of these gaps, charge density wave correlations decay exponentially in contrast with the
phases where only bosons or only fermions are present. We find a Luther-Emery point where the phase slips
and the spin excitations can be described in terms of pseudofermions. This allows us to provide closed form
expressions of the density-density correlations and the spectral functions. The spectral functions of the fermi-
ons are gapped, whereas the spectral functions of the bosons remain gapless. The application of a magnetic
field results in a loss of coherence between the bosons and the fermion and the disappearance of the gap.
Changing the detuning has no effect on the gap until either the fermion or the boson density is reduced to zero.
Finally, we discuss the formation of a Mott insulating state in a periodic potential. The relevance of our results
for experiments with ultracold atomic gases subject to one-dimensional confinement is also discussed.
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I. INTRODUCTION

Since the discovery of Bose-Einstein condensation �BEC�
of atoms in optical traps, the field of ultracold atoms has
experienced tremendous developments in recent years �1�. A
first important step has been the use of Fano-Feshbach reso-
nances �2,3� to tune the strength of atom-atom interaction
�4–6�. Fano-Feshbach resonances take place when the en-
ergy difference between the molecular state in the closed
channel and the threshold of the two-atom continuum in the
open channel, known as the detuning �, is zero �7�. Near a
Fano-Feshbach resonance, the atom-atom scattering length
possesses a singularity. For ��0, atoms are stable, but the
existence of the virtual molecular state results in an effective
attraction. For ��0, the molecules are formed and possess a
weakly repulsive interaction. Since the value of � can be
controlled by an applied magnetic field, this allows one to
tune the sign and strength of the atomic and molecular inter-
actions �8–11�. In particular, the use of Fano-Feshbach reso-
nances has allowed the observation of pairs of fermionic
�12–15� or bosonic �16–19� atoms binding together to form
bosonic molecules. At sufficiently low temperature, for �
�0, these molecules can form a Bose-Einstein condensate.
In the case of a fermionic system, for ��0, due to attractive
interactions a BCS superfluid is expected. Since the BEC and
the BCS state break the same U�1� symmetry, a smooth
crossover between the two states is expected as � is tuned
through the resonance. Indeed, the BEC of molecules

�12,20,21� and the crossover to a strongly degenerate Fermi
gas �22–25� have been observed as a gas of cold fermionic
atoms is swept through the Fano-Feshbach resonance. Mea-
surement of the radio-frequency excitation spectra �26� and
of the specific heat �27� as well as observation of vortices in
a rotating system �28� on the ��0 side revealed the presence
of a superfluid BCS gap, thus proving the existence of a
BEC-BCS crossover. Such a crossover is naturally described
by the boson-fermion model �29–36�, first introduced in the
1950s in the context of the theory of superconductivity
�37,38� and later reinvestigated in the 1980s in the context of
polaronic �39� and high-Tc superconductivity theory �40–42�.
A second important parallel development has been the pos-
sibility to form quasi-one-dimensional condensates using an-
isotropic traps �43–46�, two-dimensional optical lattices
�47–52�, or atoms on chips �53�. In one-dimensional systems
interactions are known to lead to a rich physics �54�. In par-
ticular, strongly correlated states of fermions, where indi-
vidual particles are replaced by collective spin or density
excitations, are theoretically expected �54–56�. When the in-
teractions between the fermions are repulsive, both the spin
and density fluctuations are gapless with linear dispersion
and this state is known as the Luttinger liquid �54,57,58�. For
attractive interactions between the fermions, the spin degrees
of freedom develop a gap, yielding a state known as the
Luther-Emery liquid �54,59�. Similarly, bosons are expected
to be found in a Luttinger liquid state, with individual par-
ticles being replaced by collective density excitations
�54,55,60,61�. Moreover, strong repulsion can lead to the fer-
mionization of interacting bosons, i.e., the density matrix
becomes identical to that of a noninteracting spinless fer-
mion system, the so-called Tonks-Girardeau �TG� regime
�62,63�. Experiments in elongated traps have provided evi-
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dence for one-dimensional �1D� fluctuations �44–46�. How-
ever, in these systems, the bosons remain weakly interacting.
With two-dimensional optical lattices, it is possible to ex-
plore a regime with stronger repulsion. In particular, it was
possible to observe the TG regime with 87Rb atoms �49� by
increasing the transverse confinement. The TG regime can
also be reached by applying a 1D periodic potential along the
tubes to increase the effective mass of the bosons �50�. Using
a stronger 1D potential, it is possible to drive a one-
dimensional Mott transition between the superfluid state and
an insulating state �51�. Another characteristic of atoms in a
one-dimensional trap is that transverse confinement can give
rise to a type of Fano-Feshbach resonance as a function of
the trapping frequency called the confinement induced reso-
nance �CIR� �64–66�. Recently, experiments have been per-
formed on 40K fermionic atoms in a one-dimensional trap
forming bound states either as a result of Fano-Feshbach
resonances or of CIR �67�. Both types of bound states have
been observed and the results can be described using the
Boson-Fermion model �68�. This prompts the question of
whether a one-dimensional analogue of the BEC-BCS cross-
over could be observed in such a system. It is well known
that in one dimension, no long range BEC or BCS order can
exist �69–71�. However, quasi-long range superfluid order is
still possible. For fermions with attractive interactions, it was
shown using the exactly solved Gaudin-Yang model �72,73�
that for weakly attractive interactions, a Luther-Emery state
with gapless density excitations and gapful spin excitations
was formed, whereas for strongly attractive interactions the
system would crossover to a Luttinger liquid of bosons
�74,75�. The boson-fermion model was also considered in the
case of a broad Fano-Feshbach resonance �76�. In that case
only bosons or fermions are present �depending on which
side of the resonance the system is� and the results are analo-
gous to those obtained with the Gaudin-Yang model. In fact,
in the three-dimensional case, it is possible to derive a map-
ping of the boson-fermion model with a broad resonance to a
model with only fermions and a two-body interaction �77�.
In the narrow resonance case, such a mapping is valid only
very close to the resonance. It was therefore interesting to
investigate what happens in one dimension in the case of a
narrow resonance. Indeed, in the latter case, it has been
shown previously �78,79� that a richer phase diagram could
emerge with a phase coherence between a fluid of atoms and
a fluid of molecules at weak repulsion and a decoupling tran-
sition for stronger repulsion. Analogous effects have been
discussed in the context of bosonic atoms with a Fano-
Feshbach resonance in Ref. �80�. Due to the concrete possi-
bility of forming 1D Fermi and Bose gas with optical lattices
�52,61� some of the theoretical predictions in the narrow
resonance case may become testable experimentally in the
future. Experimental signature of the phase coherence be-
tween the two fluids include density response and momen-
tum distribution function. In the present paper, we investi-
gate in more detail the phase in which the atomic and the
molecular fluid coexist. In particular, we study the equilib-
rium between the atomic and the molecular fluid as the de-
tuning is varied. Also, we investigate the effect of placing the
system in a periodic potential and show that the phase coher-
ence between the atomic and molecular fluid hinders the for-

mation of the Mott state in systems at commensurate filling.
Such conclusion is in agreement with a study in higher di-
mension �81�.

The plan of the paper is the following. In Sec. II we
introduce the boson-fermion Hamiltonian both in the lattice
representation and in the continuum. We discuss its thermo-
dynamics in the limit of an infinitesimal boson-fermion con-
version term and show under which conditions atoms and
molecules can coexist. In Sec. III we derive the bosonized
expression for the boson-fermion Hamiltonian valid in the
region where atoms and molecules coexist. This Hamiltonian
is valid for a system in an optical lattice provided it is at an
incommensurate filling �i.e., with a number of atoms per site
which is not integer�. We show that for not too strong repul-
sion in the system, a phase where the atomic and the molecu-
lar superfluid become coherent can be obtained. This phase
possesses a spin gap. We show that in this phase the order
parameter for the BEC and the BCS superfluidity order pa-
rameter are identical, while charge density wave correlations
present an exponential decay. We discuss the phase transi-
tions induced by the detuning, the magnetic field, and the
repulsion. We also exhibit a solvable point where some cor-
relation functions can be obtained exactly. In Sec. IV, we
consider the case where the number of atoms per site in the
optical lattice is integer. We show that a phase transition to a
Mott insulating state can be obtained in that case. However,
there is no density wave order in this Mott state. Finally, in
Sec. V, we discuss the applicability of our results to experi-
ments.

II. HAMILTONIANS AND THERMODYNAMICS

A. Hamiltonians

We consider a system of 1D fermionic atoms with a Fano-
Feshbach resonance �4–6,30�. This 1D system can be ob-
tained by trapping the fermions in a two-dimensional or a
three-dimensional optical lattice. In the first case, the fermi-
ons are trapped into 1D tubes, in the second case, a periodic
potential is superimposed along the direction of the tubes. In
the case in which the fermions are injected in a uniform
potential, the Hamiltonian of the system reads

H = −� dx�
�

��
† �2

2mF
�� +� dx�b

†�−
�2

2mB
+ ���b

+ �� dx��b
†�↑�↓ + �↓

†�↑
†�b� +

1

2
� dxdx�	VBB�x − x��

��b�x��b�x�� + VFF�x − x��

� �
�,��

���x�����x�� + 2VBF�x − x���
�

���x��b�x��
 , �1�

where �b annihilates a molecule, �� a fermion of spin �, mF
is the mass of the isolated fermionic atom, mB=2mF the mass
of the molecule, VBB, VBF, VFF are �respectively� the
molecule-molecule, atom-molecule and atom-atom interac-
tions. Since these interactions are short ranged, it is conve-
nient to assume that they are of the form V	
�x�=g	
��x�.
The term � is the detuning. Finally, the term � allows the
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transformation of a pair of fermions into a Fano-Feshbach
molecule and the reverse process. This term can be viewed
as a Josephson coupling �82� between the order parameter of
the BEC of the molecules, and the order parameter for the
superfluidity of the fermions. As a result of the presence of
this term, pairs of atoms are converted into molecules and
vice-versa, as in a chemical reaction �37�. As a result of this,
only the total number of atoms �paired and unpaired�, N
=2Nb+Nf �where Nb is the number of molecules and Nf is
the number of unpaired atoms� is a conserved quantity.

In the case where atoms are injected in a periodic poten-
tial, V�x�=V0 sin2��x /d� it is convenient to introduce the
Wannier orbitals �83� of this potential. In the single band
approximation the Hamiltonian reads �84–87�

H = − t�
j

�f j+1,�
† f j,� + f j,�

† f j+1,�� + U�
j

nf ,j,↑nf ,j,↓

− t��
j

�bj+1
† bj + bj

†bj+1� + U��
j

�nb,j�2 + ��
j

bj
†bj

+ �̄�
j

�bj
†f j,↑f j,↓ + f j,↑

† f j,↓
† bj� + VBF�

j

nb,j�nf ,j,↑ + nf ,j,↓� ,

�2�

where f j,� annihilates a fermion of spin � on site j, nf ,j,�
= f j,�

† f j,�, bj
† creates a Fano-Feshbach molecule �boson� on

the site j, and nb,j =bj
†bj. The hopping integrals of the fermi-

ons and bosons are, respectively, t and t�. The quantity � is
the detuning. The parameters U, U�, and VBF measure �re-
spectively� the fermion-fermion, boson-boson, and fermion-
boson repulsion. The case of hard core bosons corresponds to
U�→
. The conversion of atoms into molecules is measured

by the term �̄. Again, only the sum N=2Nb+Nf is conserved.
We note that within the single band approximation, there
should exist a hard core repulsion between the bosons.

B. Thermodynamics of the boson-fermion model
in the limit of �\0

In this section, we wish to study the behavior of the den-
sity of unpaired atoms � f and of the density of atoms paired
in molecules �b as a function of the total density of atoms
�pair and unpaired� �tot. in the limit of �→0+. In such a limit,
the fermion-boson conversion does not affect the spectrum of
the system compared to the case without fermion-boson con-
version. However, it is imposing that only the total number
of atoms N=2NB+NF is conserved. Therefore, in this limit
there is a single chemical potential �=�F and the chemical
potential of the molecules is �B=2�. If we further assume
that VBF=0, the Hamiltonian of the system can be decom-
posed as H=Hf +Hb, where Hf is the Hamiltonian of the
unpaired atoms subsystem and Hb is the Hamiltonian
of the molecules subsystem, and the partition function
factorizes as Z���=Zf��F=��Zb��B=2��, where Z�����
=Tr�e−
�H�−��N��� for �=F ,B. Thus, in the limit �, VBF→0,
we obtain the following expression of the number of un-
paired atoms NF and the number of atoms paired in mol-
ecules NB:

NF =
1


ZF
� �ZF

��F
�

�F=�

, �3�

NB =
1


Zb
� �Zb

��B
�

�B=2�

. �4�

Equations �3� and �4� can be used to study the coexistence of
bosons and fermions as the detuning � is varied. Two simple
cases will be analyzed to illustrate this problem of coexist-
ence. First, we will consider bosonic molecules with hard
core repulsion and noninteracting fermionic atoms. In such a
case, the thermodynamics of the gas of molecules is reduced
to that of a system of spinless fermions by the Jordan-Wigner
transformation �62,63,88�, and the expression of the densities
of unpaired atoms and molecules can be obtained in closed
form. In this simple case, it is straightforward to show that
for sufficiently negative detuning all atoms are paired into
molecules, and for sufficiently positive detuning all the at-
oms remain unpaired. The case of intermediate detuning is
more interesting as coexistence of unpaired atoms with at-
oms paired into molecules becomes possible. The physical
origin of this coexistence is of course the molecule-molecule
repulsion that makes the chemical potential of the gas of
molecules increase with the density so that in a sufficiently
dense gas of molecules, it becomes energetically favorable to
create unpaired atoms. To show that the above-noted result is
not an artifact of having a hard core repulsion, we have also
considered a slightly more realistic case of molecules with
contact repulsion and noninteracting atoms. Although in that
case we can no longer obtain closed form expressions of the
density of molecules, we can still calculate numerically the
density of molecules using the Lieb-Liniger solution �89�.
We will see that having a finite repulsion between the mol-
ecules indeed does not eliminate the regime of coexistence.

1. The case of bosons with hard core repulsion

In that case we assume that the boson-boson repulsion U�
in the lattice case and gBB in the continuum case is going to
infinity. Using the Jordan-Wigner transformation �88�, one
shows that the partition function of these hard core bosons is
equal to that of free spinless fermions. At zero temperature,
the density of fermionic atoms �F and the density of bosonic
molecules �B in the ground state are given by: �F=NF /L
=2kF /� and �B=NB /L=kB /�, where kF is the Fermi mo-
mentum of the atoms and kB is the Fermi momentum of the
spinless fermions �i.e., the pseudo-Fermi momentum of the
molecules�. The chemical potential satisfies �=�F�kF�= ��
+�B�kB�� /2. Up to now, we have not specified the dispersion
of the atoms and of the molecules. In the lattice case, these
dispersions are obtained from Eq. �2� as �F�k�=−2t cos�k�
and �B�k�=−2t� cos�k�. As a function of the chemical poten-
tial � three different regimes can be obtained. In the first
one, for −2t���� /2− t�, only unpaired atoms are present.
In the second one for � /2− t����2t, unpaired atoms and
molecules coexist. In the last one, for 2t����2+ t�, all the
available levels of unpaired atoms are filled, and the avail-
able levels for molecules are partially filled. As a result, the
system behaves as if only molecules were present. This last
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phase is in fact a degenerate Tonks-Girardeau gas of mol-
ecules �62,63�. In the intermediate regime, the fermions form
a two-component Luttinger liquid �55,56� and the bosons
form a single component Luttinger liquid �61�. Similar cal-
culations can be performed in the case of fermions and
bosons in the continuum described by Eq. �1�. With free
fermions and hard core bosons in the continuum the condi-
tion on the chemical potential becomes: kF

2 /2mF=� and
kB

2 /4mF+�=2�, with the constraint �� /2��tot.= �kF+kB�
where �tot.=2�B+�F is the total density of atoms. As a result:

kF =
1

3
��2�2 + 12mF� −

�

6
� ,

kB =
2�� − ��2�2 + 12mF�

3
, �5�

and these solutions are physical when they give both kF�0
and kB�0. For ��0, kB�0 provided �tot.��tot.,c

�1�

= �2/���mF�. For ���tot.,c
�1� , the density of molecules is van-

ishing and �tot.=�F. Above the critical density �tot.,c
�1� , atoms

and molecules coexist. As � crosses the critical density, the
slope of kB versus � jumps from 0 to � /2. The Fermi wave
vector kF possesses a similar slope discontinuity at the criti-
cal density, with zero slope above the critical density. The
behavior of kF and kB as a function of the density is repre-
sented in Fig. 1.

For ��0, kF�0 provided ���tot.,c
�2� = �4/���mF���. For �

��tot.,c
�2� the density of unpaired atoms is vanishing, and �

=�B. Above the critical density, atoms and molecules coexist.
As before, the slope of the curve kF versus � is discontinuous
at the critical density, being zero below and � /3 above. The
behavior of kF and kB as a function of the density for ��0 is
represented in Fig. 2.

The slope discontinuities in kB and kF have important con-
sequences for the compressibility. Indeed, above the critical
density the chemical potential behaves as O��−�tot.c�2, so
that the compressibility �= ��2��� /����−1 becomes infinite as
the critical density is approached from above, signaling a
first-order phase transition. Such first order transitions asso-
ciated with the emptying of a band have been analyzed in the
context of Luttinger liquid theory in Refs. �90–92�.

2. The case of bosons with finite repulsion

We have seen in the previous section that in the case of
hard core repulsion between the molecules, both in the lattice
case and in the continuum case, that having ��0 did not
prevent the formation of unpaired atoms provided the total
density of atoms was large enough. This was related with the
increase of the chemical potential of bosons as a result of
repulsion when the density was increased. In this section, we
want to analyze a slightly more realistic case where the re-
pulsion between bosons is finite and check that coexistence
remains possible. In the lattice case, the problem is tractable
only with numerical approaches �93,94�. In the continuum
case, however, bosons with contact repulsion are exactly
solvable by Bethe ansatz techniques �89�. The density of
molecules can therefore be obtained by solving a set of inte-
gral equations �89,95�. After having introduced dimension-
less variables, they read:

2�g�x� = 1 + 2��
−1

1 g�y�dy

�2 + �x − y�2 , �6�

�̄�x� = x2 − 1 +
�

�
�

−1

1

dy�̄�y�	 1

�2 + �x − y�2 −
1

�2 + �1 − y�2
 ,

�7�

�B = � +
�2q0

2

2mB
	1 +

�

�
�

−1

1 1

�2 + �x − 1�2 �̄�x�dx
 , �8�

where

g�x� = ��q0x�; � =
c

q0
; � =

c

�B
, c =

mBgBB

�2 , �9�

�B = �
−q0

q0

��q�dq , �10�

� =
c

�B
, �11�

q0 is a pseudofermion momentum and gBB is the boson-
boson interaction defined in Eq. �1�. From �B, one obtains
�F= �2/���mF�B. Finally, using the definition of the total

FIG. 1. The behavior of kF and kB for positive detuning ��0 as
a function of the total density �. For low densities, only atoms are
present �kB=0�. At higher densities such that ���2�mF�, a non-
zero density of molecules appears. At the critical density, the slopes
of kF and kB versus � are discontinuous. We have taken mF�=1.

FIG. 2. The behavior of kF and kB for negative detuning ��0.
For low densities, only the molecules are present �kF=0�. For ��
�4�mF���, molecules coexist with atoms. At the critical density, the
slopes of kF and kB versus � are discontinuous.
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density �=2�B+�F one can map the molecule density and
the free atom density as a function of the total density of
atoms. The resulting equation of state can be written in terms
of dimensionless parameters as

�2�B

mBg1D
= F� �2�

mBg1D
,

�2�

mFg1D
2 � . �12�

The behavior of the boson density �B and fermion density
�F as a function of total density � can be understood in
qualitative terms. Let us first discuss the case of negative
detuning. For sufficiently low densities, only bosons are
present. However, in that regime, the boson-boson repulsion
is strong, and the boson chemical potential is increasing with
the boson density. As a result, when the density exceeds a
critical density �c, the fermion chemical potential becomes
positive, and the density of fermions becomes nonzero. The
appearance of fermions is causing a cusp in the boson den-
sity plotted versus the total density. When the density of
particles becomes higher, the boson-boson interaction be-
comes weaker, and the boson chemical potential barely in-
creases with the density. As a result, the fermion density
becomes almost independent of the total density. In the case
of positive detuning, for low density, only fermions are
present. Again, the increase of fermion density results in an
increase of chemical potential and above a certain threshold
in fermion density, bosons start to appear, creating a cusp in
the dependence of the fermion density upon the total density.
At large density, the detuning becomes irrelevant, and the
fermion density barely increases with the total density.

To illustrate this behavior, we have solved numerically the
integral equations �6�, and calculated the resulting fermion
and boson densities. A plot of the density of bosons as well
as the density of fermions for ��0 and for ��0 is shown in
Fig. 3. The slope discontinuities at the critical density remain

visible. This implies that the divergence of the compressibil-
ity at the critical density remains when the repulsion between
the molecules becomes finite.

We have thus seen that generally we should expect a co-
existence of fermionic atoms and bosonic molecules pro-
vided the repulsion between the molecules is sufficiently
strong. The repulsion between the molecules also results in a
nonzero velocity for sound excitations in the molecule Bose
gas. Thus, this gas will behave as a Luttinger liquid, and the
unpaired atoms will form another Luttinger liquid. The treat-
ment of the present section thus leads us to the prediction of
two decoupled Luttinger liquids describing the molecular
and the atomic gas. However, this treatment assumed that the
term converting atoms into molecules was so small that it did
not affect significantly the spectrum of the system. In the
following, we will treat the effect of a small but not infini-
tesimal conversion term in Eqs. �2� and �1� using bosoniza-
tion techniques. We will show that the conversion term can
lead to phase coherence between the atoms and the mol-
ecules, and we will discuss the properties of the phase in
which such coherence is observed.

III. PHASE DIAGRAM AND CORRELATION FUNCTIONS

A. Derivation of the bosonized Hamiltonian

In this section, we consider the case discussed in Sec. II
where neither the density of molecules nor the density of
atoms vanishes. As discussed in Sec. II, this requires a suf-
ficiently large initial density of atoms. As there is both a
nonzero density of atoms and of molecules, they both form
Luttinger liquids �55,56,61�. These Luttinger liquids are
coupled by the repulsion between atoms and molecules VBF
and via the conversion term or Josephson coupling �. To
describe these coupled Luttinger liquids, we apply bosoniza-
tion �54� to the Hamiltonians �2� and �1�. For the sake of
definiteness, we discuss the bosonization procedure in detail
only in the case of the continuum Hamiltonian �1�. For the
lattice Hamiltonian �2�, the steps to follow are identical pro-
vided the system is not at a commensurate filling. At com-
mensurate filling, umklapp terms must be added to the
bosonized Hamiltonian and can result in Mott phases �54�.
This case is treated in Sec. IV.

To derive the bosonized Hamiltonian describing the low-
energy spectrum of the Hamiltonian �1�, we need first to
consider the bosonized description of the system when all
atom-molecule interactions are turned off. For �=0, VBF=0,
both Nf and Nb are conserved and the bosonized Hamiltonian
equivalent to �2� and �1� is given by

H = Hb + H� + H�,

Hb =� dx

2�
	ubKb���b�2 +

ub

Kb
��x�b�2
 ,

H� =� dx

2�
	u�K������2 +

u�

K�

��x���2
 ,

FIG. 3. The density of molecules �B and unpaired atoms �F as a
function of the total density �. �a� The case of a repulsion c=100
and a positive detuning �=0.1. Inset: the behavior of the boson and
fermion densities near the origin. �b� The case of a repulsion c
=100 and a negative detuning �=−0.1. Inset: the behavior of the
boson and fermion densities near the origin. In both cases, at large
total density, the density of molecules is increasing more rapidly
than the density of unpaired atoms. At the critical density a cusp is
visible in the density of atoms �inset of �a�� for positive � and in the
density of molecules �inset of �b�� for negative �, as in the case of
infinite repulsion between the molecules.
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H� =� dx

2�
	u�K������2 +

u�

K�

��x���2

−

2g1�

�2�	�2 � dx cos �8��, �13�

where ����x� ,����x���= i��x−x����,��, �� ,��=b ,� ,��. In the
context of cold atoms, the Hamiltonian �13� has been dis-
cussed in Refs. �55,56,61�. The parameters K�, the Luttinger
exponent, and u�, u�, the charge and spin velocities, are
known functions of the interactions �72,96–98�, with K�=1
in the noninteracting case, g1� is a marginally irrelevant in-
teraction, and at the fixed point of the RG flow K�

* =1. For
the bosonic system, the parameters ub, Kb can be obtained
from numerical calculations �94� in the lattice case or from
the solution of the Lieb-Liniger model �89� in the continuum
case. In the case of noninteracting bosons Kb→
 and in the
case of hard core bosons Kb=1 �60,62,63�. An important
property of the parameters Kb and K� is that they decrease as
�respectively� the boson-boson and fermion-fermion interac-
tion become more repulsive. The bosonized Hamiltonian
�13� is also valid in the lattice case �2� provided that both Nf
and Nb do not correspond to any commensurate filling.

The fermion operators can be expressed as functions of
the bosonic fields appearing in Eq. �13� as �54�

���x� = �
r=±

eirkFn	�r,��x = n	� , �14�

�r,��x� =
ei/�2���−r��+����−r�����x�

�2�	
, �15�

where the index r=± indicates the right/left movers, 	 is a
cutoff equal to the lattice spacing in the case of the model
Eq. �2�. Similarly, the boson operators are expressed as �54�

bn

�	
= �b�x = n	� , �16�

�b�x� =
ei�b

�2�	
�1 + A cos�2�b − 2kBx�� . �17�

In Eqs. �14�–�16�, we have introduced the dual fields �54�
���x�=�
x���x��dx� ��=� ,� ,b�, kF=�Nf /2L, and kB

=�Nb /L where L is the length of the system. The fermion
density is given by �54�

�
�

nf ,n,�

	
= � f�x = n	� = −

�2

�
�x��

+
cos�2kFx − �2���

�	
cos �2��, �18�

and the boson density by �54�

nb,n

a
= �b�x� = −

1

�
�x�b +

cos�2kBx − 2�b�
�	

. �19�

The detuning term in Eq. �1� is thus expressed as

Hdetuning = −
�

�
� dx�x�b. �20�

We now turn on a small � and a small VBF. The effect of
a small VBF on a boson-fermion mixture has been investi-
gated previously �99,100�. The forward scattering contribu-
tion is

VBF
�2

�2 � dx �x�b�x��, �21�

and as discussed in Ref. �99�, it can give rise to a phase
separation between bosons and fermions if it is too repulsive.
Otherwise, it only leads to a renormalization of the Luttinger
exponents. The atom molecule repulsion term also gives a
backscattering contribution:

2VBF

�2�	�2 � dx cos�2�b − �2�� − 2�kF − kB�x�cos �2��,

�22�

however in the general case, kF�kB this contribution is van-
ishing. In the special case of kB=kF, the backscattering can
result in the formation of a charge density wave. This effect
will be discussed in Sec. III B 3. The contribution of the �
term is more interesting �78,79�. Using Eqs. �14�–�16�, we
find that the most relevant contribution reads:

Hbf =
2�

�2�3	3 � dx cos��b − �2���cos �2��. �23�

In the next section, we will see that this term gives rise to
a phase with atom-molecule coherence when the repulsion is
not too strong.

B. Phase diagram

1. Phase with atom-molecule coherence

The effect of the term �23� on the phase diagram can be
studied by renormalization group techniques �54�. A detailed
study of the renormalization group equations has been pub-
lished in Ref. �78�. Here, we present a simplified analysis,
which is sufficient to predict the phases that can be obtained
in our system. The scaling dimension of the boson-fermion
coupling term �23� is: 1 /4Kb+1/2K�+ 1

2K�. For small � it is
reasonable to replace K� with its fixed point value K�

* =1.
Therefore, the RG equation for the dimensionless coupling

�̃=�	1/2 /u �where u is one of the velocities u�, u�, ub� reads:

d�̃

d�
= �3

2
−

1

2K�

−
1

4Kb
��̃ , �24�

where � is related to the renormalized cutoff 	���=	e�. We
thus see that for 1 /2K�+1/4Kb�3/2, this interaction is rel-
evant. Since for hardcore bosons �62,63� Kb=1 and for non-
interacting bosons Kb=
, while for free fermions K�=1 and
in the lattice case for U=
 one has K�=1/2 �98�, we see that
the inequality is satisfied unless there are very strongly re-
pulsive interactions both in the boson system and in the fer-
mion system. When this inequality is not satisfied, for in-
stance in the case of fermions with nearest-neighbor
repulsion �101,102�, in which one can have 1/4�K��1/2
and hardcore bosons with nearest neighbor repulsion
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�58,103�, in which one can have Kb=1/2, the atoms and the
molecules decouple. This case is analogous to that of the
mixture of bosons and fermions �99,100� and charge density
waves can be formed if kB and kF are commensurate. The
phase transition between this decoupled phase and the
coupled phase belongs to the Berezinskii-Kosterlitz-Thouless
�BKT� universality class �104�. As pointed out in Ref. �78�,
in the decoupled phase, the effective interaction between the
fermions can be attractive. In that case, a spin gap is formed
�54,59� and the fermions are in a Luther-Emery liquid state
with gapless density excitations. Let us consider the coupled
phase in more detail. The relevance of the interaction �23�
leads to the locking of ��, i.e., it results in the formation of
a spin gap. To understand the effect of the term cos��b

−�2���, it is better to perform a rotation:

��−

�+
� = �

1
�3

−
�2
�3

�2
�3

1
�3

���b

��
� , �25�

and the same transformation for the ��. This transformation
preserves the canonical commutation relations between �±
and �±. Under this transformation, Hb+H� becomes

Hb + H� =� dx

2�
�
�=±

	u�K������2 +
u�

K�

��x���2

+� dx

2�
�g1���+����−� + g2�x�+�x�−� ,

�26�

where the coefficients u±, K±, g1,2 can be found in Appendix
A. The boson-fermion conversion term Hbf defined in Eq.
�23� becomes

Hbf =
�

�2�3	
� dx cos �3�− cos �2��. �27�

After the rotation, we see that when � is relevant, the field �−
is also locked, but �+ remains gapless. Since the field �− is
the difference of the superfluid phase of the atoms and the
one of the molecules, this means that when � becomes rel-
evant, unpaired atoms and molecules share the same super-
fluid phase, i.e., they become coherent. The gap induced by
the term � can be estimated from the renormalization group
equation �24�. Under the renormalization group, the dimen-

sionless parameter �̃��� grows until it becomes of order one
at a scale �=�* where the perturbative approach breaks
down. Beyond the scale �*, the fields �− and �� behave as
classical fields. Therefore, the associated energy scale
u / �	e�*

� is the scale of the gap. From this argument, we
obtain that the gap behaves as

� �
u

	
��	1/2

u
�1/�3/2−1/2K�−1/4Kb�

. �28�

The gapful excitations have a dispersion ��k�=��uk�2+�2

and are kinks and antikinks of the fields �− and �� �105�.

More precisely, since a kink must interpolate between degen-
erate classical ground states of the potential �27�, we find that
when a kink is present �−�+
�−�−�−
�= ±� /�3 and
���+
�−���−
�=� /�2. This indicates that a kink is carry-
ing a spin 1/2, and is making the phase �b of the bosons
jump by � /3 and the phase of the superfluid order parameter
�2�� of the fermions jump by −2� /3. Since the current of
bosons is jb=ubKb��b=ubKb�x�b and the current of fermi-
ons is jF=�2u�K����=�2u�K��x��, this indicates that coun-
terpropagating supercurrents of atoms and molecules exist in
the vicinity of the kinks. Therefore, we can view the kinks
and antikinks as composite objects formed of vortices bound
with a spin 1/2. We note that the kinks and antikinks may
not exhaust all the possible gapful excitations of the system.
In particular, bound states of kinks and antikinks, known as
breathers, may also be present �105�. However, these gapful
excitations present a larger gap than the single kinks. Let us
now turn to the gapless field �+. This field has a simple
physical interpretation. Considering the integral

−
1

�
�

−





dx�x�+ = −
1

��3
�

−





dx�x��2�b + ��� =
N
�6

,

�29�

showing that �+�
�−�+�−
� measures the total number of
particles in the system N. Thus ��+ ,�+� describe the total
density excitations of the system.

The resulting low-energy Hamiltonian describing the gap-
less total density modes reads:

H+ =� dx

2�
	u+

*K+
*���+�2 +

u+
*

K+
* ��x�+�2
 , �30�

where u+
* ,K+

* denote renormalized values of u+ ,K+. This
renormalization is caused by the residual interactions be-
tween gapless modes and the gapped modes measured by
g1 ,g2 in Eq. �26�. Since �+ measures the total density, the
Hamiltonian �30� describes the propagation of sound modes
in the 1D fluid with dispersion ��k�=u�k�. We note than in
Refs. �81,106�, dispersion relations similar to ours were de-
rived for the sound modes and the superfluid phase differ-
ence modes using different methods.

2. Effect of the detuning and applied magnetic field

Having understood the nature of the ground state and the
low excited states when � is relevant we turn to the effect of
the detuning term. Equations �20� and �25� show that the
detuning term can be expressed as a function of �+ ,�− as

Hdetun. = −
�

�
� �x��2

3
�+ +

�−

�3
� . �31�

This shows that the detuning does not affect the boson-
fermion coupling �23� since it can be eliminated from the
Hamiltonian by a canonical transformation �±→�±+�±x,
where �+=���2/3� and �−=� /�3. For a fixed total density,
changing the detuning only modifies the wave vectors kB and
kF. As discussed extensively in Sec. II B, for a detuning suf-
ficiently large in absolute value, only molecules or only at-
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oms are present, and near the critical value of the detuning,
the compressibility of the system is divergent. We therefore
conclude that in one dimension, the crossover from the Bose
condensation to the superfluid state, as the detuning is varied,
is the result of the band-filling transitions at which either the
density of the atoms or the molecules goes to zero. At such
band filling transitions,v�,�→0 �respectively, vb→0� and
bosonization breaks down �90–92�. The cases where only the
molecules or only the atoms are present have been analyzed
in Ref. �76�. Moreover, it was shown that in the case of a
broad Fano-Feshbach resonance, the zone of coexistence be-
comes very narrow �76�. In the narrow Fano-Feshbach reso-
nance case we are investigating, the zone of coexistence can
be quite important.

Application of a magnetic field can also induce some
phase transitions. The interaction with the magnetic field
reads

Hmagn = −
h

��2
� dx�x��. �32�

The effect of the magnetic field is to lower the gap for the
creation of kink excitations �remember that they carry a spin
1/2�. As a result, when it becomes larger than the gap, the
magnetic field induces a commensurate incommensurate
transition �107–110� that destroys the coherence between at-
oms and molecules and gives back decoupled Luttinger liq-
uids �111�. In that regime, the behavior of the system is de-
scribed by the models of Refs. �99,100�. Commensurate-
incommensurate transitions have already been discussed in
the context of cold atoms in Ref. �112�. In the problem we
are considering, however, since two fields are becoming gap-
less at the same time, �− and ��, there are some differences
�113,114� from the standard case �112�, in particular the ex-
ponents at the transition are nonuniversal.

To conclude this section, we notice that we have found
three types of phase transitions in the system we are consid-
ering. We can have Kosterlitz-Thouless phase transitions as a
function of interactions, where we go from a phase with
locked superfluid phases between the bosons and the fermi-
ons at weak repulsion to a phase with decoupled bosons and
fermions at strong repulsion. We can have band-filling tran-
sitions as a function of the detuning between the phase in
which atoms and molecule coexist and phases where only
atoms or only molecules are present. Finally, we can have
commensurate-incommensurate transitions as a function of
the strength of the magnetic field. In the following section,
we discuss the correlation functions of superfluid and charge
density wave order parameters in the phase in which mol-
ecules and atoms coexist with their relative superfluid phase
�− locked.

3. Quantum Ising phase transition for kF=kB

In the case of kF=kB, the backscattering term �22� is non-
vanishing. This term induces a mutual locking of the densi-
ties of the bosons and the fermions �99� and favors charge
density wave fluctuations. This term is competing with the
Josephson term �23� which tends to reduce density wave
fluctuations. For kF=kB the relevant part of the Hamiltonian

given by the combination of the terms �22� and �23� reads

HJosephson+CDW Lock. =� dx	 2�

�2�3	3
cos��b − �2���

+
2VBF

�2�	�2 cos�2�b − �2���
cos �2��.

�33�

Using a transformation �b= �̃b /�2, �b= �̃b
�2, and intro-

ducing the linear combinations

�1 =
�̃b + ��

�2
, �34�

�2 =
�̃b − ��

�2
�35�

and similar combinations for the dual fields, we can rewrite
the interaction term �33� as

HJosephson+CDW Lock. =� dx	 2�

�2�3	3
cos 2�2

+
2VBF

�2�	�2 cos 2�2
cos �2��.

�36�

From this Hamiltonian, it is immediate to see that a quantum
Ising phase transition occurs between the density wave phase
�2 and the superfluid phase �2 at a critical point �c

=VBF /�8�	 �115–117�. Indeed, the field �� being locked,
we can replace cos �2�� by its expectation value in Eq. �36�,
and rewrite �36� as a free massive Majorana fermions Hamil-
tonian �115–117�. At the point �c, the mass of one of these
Majorana fermions vanishes giving a quantum critical point
in the Ising universality class �118�. On one side of the tran-
sition, when ���c, the system is in the superfluid state dis-
cussed in Sec. III B, on the other side ���c, the charge
density wave state discussed in Ref. �99� is recovered.

C. Correlation functions

In order to better characterize the phase in which � is
relevant, we need to study the correlation function of the
superfluid and the charge density wave operators. Let us be-
gin by characterizing the superfluid order parameters. First,
let us consider the order parameter for BEC of the molecules.
As a result of the locking of the fields �− and ��, the boson
operator Eq. �16� becomes at low energy

�B�x� �
ei��2/3��+

�2�	
�e−i�−/�3� . �37�

An order of magnitude of �e−i�−/�3� can be obtained from a
scaling argument similar to the one giving the gap. Since the
scaling dimension of the field e−i�−/�3 is 1 /12K−, and since
the only length scale in the problem is e�*

, we must have
�e−i�−/�3��e−�*/12K− ���	1/2 /u�1/12K−. Similarly, the order pa-
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rameter for s-wave superconductivity of the atoms OSS
=���r,��−r,−� becomes

OSS =
ei�2��

�	
cos �2�� �

ei��2/3��+

�	
�e2i/�3�− cos �2��� ,

�38�

thus indicating that the order parameters of the BEC and the
BCS superfluidity have become identical in the low energy
limit �32,33�. This is the signature of the coherence between
the atom and the molecular superfluids. The boson correlator
behaves as

��B�x,���B�0,0�� � � 	2

x2 + �u��2�1/6K+

. �39�

As a result, the molecule momentum distribution becomes
nB�k���k�1/�3K+�−1. One can see that the tendency toward su-
perfluidity is strongly enhanced since the divergence of nB�k�
for k→0 is increased by the coherence between the mol-
ecules and the atoms. This boson momentum distribution
can, in principle, be measured in a condensate expansion
experiment �119,120�.

Having seen that superfluidity is enhanced in the system,
with BEC and BCS order parameters becoming identical, let
us turn to the density wave order parameters. These order
parameters are simply the staggered components of the atom
and molecule density in Eqs. �18� and �19�. In terms of �±,
the staggered component of the molecule density is reex-
pressed as

�2kB,b�x� � cos	2��−

�3
+

�2
�3

�+� − 2kbx
 , �40�

and the staggered component of the fermion density as

�2kF,f�x� � cos	�2�−
�2
�3

�− +
1
�3

�+� − 2kFx
 , �41�

where we have taken into account the long range ordering of
��. We see that the correlations of both �2kB,b�x� and �2kF,f�x�
decay exponentially due to the presence of the disorder field
�− dual to �−. In more physical terms, the exponential decay
of the density-wave correlations in the system results from
the constant conversion of molecules into atoms and the re-
ciprocal process which prevents the buildup of a well-
defined atomic Fermi-surface or molecule pseudo-Fermi sur-
face. The exponential decay of the density wave correlations
in this system must be contrasted with the power-law decay
of these correlations in a system with only bosons or in a
system of fermions with attractive interactions �54�. In fact,
if we consider that our new particles are created by the op-
erator �b��↑�↓, we can derive an expression of the density
operators of these new particles by considering the product
�b�↑�↓. Using the Haldane expansion of the boson creation
and annihilation operators �60�, we can write this product as

�b
†�↑�↓ � e−i�b	�

m=0




cos�2m� − 2mkBx�

�ei�2���cos �2�� + cos��2�� − 2kFx��

� �e−i��b−�2��� cos �2���cos��6�+ − 2�kF + kB�x� ,

�42�

where �kF+kB�=��2Nb+Nf� /2L=��pairs can be interpreted
as the pseudo-Fermi wave vector of composite bosons. As a
result, when there is coherence between atoms and molecule,
power-law correlations appear in the density-density
correlator near the wave vector 2kF+2kB and the
intensity of these correlations is proportional to the
��e−i��b−�2��� cos �2����2. The resulting behavior of the Fou-
rier transform of the density-density correlator is represented
in Fig. 4.

Another interesting consequence of the existence of atom/
molecule coherence is the possibility of having nonvanishing
cross correlations of the atom and the molecule density. In
the three-dimensional case such cross correlations have been
studied in Ref. �121�. If we first consider cross correlations
�T��2kB,b�x ,���2kF,f�0,0�� we notice that due to the presence
of different exponentials of �+ in Eqs. �40� and �41�, this
correlator vanishes exactly. Therefore, no cross correlation
exists between the staggered densities. However, if we con-
sider the cross correlations of the uniform densities, we note
that since they can all be expressed as functions of
�x�+ ,�x�−, such cross correlations will be nonvanishing.
More precisely, since

�F = −
�2

��3
�x�+ +

2

��3
�x�−, �43�

FIG. 4. Fourier transform of the static density density correla-
tions. In the decoupled phase �dashed line�, two peaks are obtained
at twice the Fermi wave vector of the unpaired atoms and at twice
the pseudo-Fermi wave vector of the molecules. In the coupled
phase �solid line�, the peaks are replaced by maxima at Q=2kF and
Q=2kB. A new peak at Q=2�kF+kB� is obtained as a result of
boson-fermion coherence.
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�B = −
�2

��3
�x�+ −

1

��3
�x�−, �44�

at low energy we have: �F��B�−��2/��3��x�+ and
��F�x��B�0���	2 /x2.

D. The Luther Emery point

In this section, we will obtain detailed expressions for
these correlation functions at a special exactly solvable point
of the parameter space. At this point, the kinks of the fields
�� and �− become free massive fermions. This property, and
the equivalence of free massive fermions in 1D with the
two-dimensional noncritical Ising model �122–127� allows
one to find exactly the correlation functions.

1. Mapping on free fermions

As we have seen, after the rotation �25�, if we neglect the
interaction terms of the form �+�− or �x�+�x�−, the Hamil-
tonian of the massive modes �− ,�� can be rewritten as

H =� dx

2�
	u�

*K�
*�����2 +

u�
*

K�
* ��x���2


+� dx

2�
	u−K−���−�2 +

u−

K−
��x�−�2


+
�

�2�3	3 � dx cos �3�− cos �2��, �45�

where K�
* =1. When the Luttinger exponent is K−=3/2, it is

convenient to introduce the field �̄=��3/2��− and its dual,

�̄=��2/3��−, and rewrite the Hamiltonian �45� as

H =� dx

2�
�u�

*�����2 + u�
*��x���2� +� dx

2�
�u−���̄�2

+ u−��x�̄�2� +
�

�2�3	
� dx cos �2�̄ cos �2��. �46�

If we neglect the velocity difference, i.e., assume that u�
*

=u−=u, and introduce the pseudofermion fields:

�r,� =
e�i/�2����̄−r�̄�+����−r����

�2�	
=

ei���−r���

�2�	
, �47�

we see immediately that the Hamiltonian �46� is the
bosonized form of the following free fermion Hamiltonian:

H = �
�
� dx	− iu�

r=±
r�r,�

† �x�r,� +
�

�2�	
�r,�

† �r,�
 .

�48�

As a result, for the special value of K−=3/2, the excitations
can be described as massive free fermions with dispersion
��k�=��uk�2+m2, where m= ��� /�2�	. This is known as
Luther-Emery solution �59,128�. One can see that the fermi-
ons carry a spin 1/2 and a jump of the phase �− equal to
� /�3. Therefore they can be identified to the kinks obtained

in the semiclassical treatment of Sec. III B. Also, making all
velocities equal and VBF=0 in Eq. �A1�, we find the relation
3/K−=1/Kb+2/K� and thus the gap given by the RG varies
as ���u /	���	1/2 /u�1/�3/2−3/4K−�. For K−=3/2 this expres-
sion reduces to the one given by the fermion mapping.

2. Density-density correlation functions

To obtain the density-density correlation functions of the
atoms and of the molecules at the Luther-Emery point, we
have to express the alternating components of the atom and
molecule density in terms of the field �+ and the pseudofer-
mion fields. The fermion density �2kF,f�x� is readily ex-
pressed in terms of these fields:

�2kF,f�x� = ei���2/3��+−2kFx���−,↑
† �+,↓

† + �+,↑
† �−,↓

† � + H.c.,

�49�

which enables us to find exactly its correlation functions. In
real space, the alternating density density correlation func-
tion of the unpaired atoms reads

�T��2kF,f�x,���−2kF,f�0,0��

= 2� m

2�u
�2� 	2

x2 + �u��2�K+/6

�	K0
2�m��2 + � x

u
�2� + K1

2�m��2 + � x

u
�2�
 ,

�50�

where K0 and K1 are modified Bessel functions �129�. At
long distances, expression �50� decays exponentially, with a
correlation length u /m=�, as expected from the general dis-
cussion of Sec. III C.

The calculation of the correlation functions of the alter-
nating component of the boson density, �2kB,b is more in-
volved. First, this component can be rewritten in terms of the
fields �↑/↓ from Eq. �47� as

�2kB,b�x� = ei���8/3��+−2kBx�ei��↑+�↓� + H.c. �51�

This expression cannot be written directly in terms of the
pseudofermion fields �47� as it is nonlocal with respect to
them. However, to obtain the correlation functions of �2kB,b,
we can use a well-known mapping of Dirac fermions in �1
+1� dimensions onto the noncritical two-dimensional Ising
model �122–127�. Using this mapping, the fields ei�� can be
reexpressed in terms of the order and disorder parameters of
four noncritical two-dimensional Ising models, respectively
denoted by �1,2,3,4 and �1,2,3,4. This leads to the following
expression for �2kB,b:

�2kB,b = ei���8/3��+−2kBx���1�2 + i�1�2���3�4 + i�3�4� + H.c.,

�52�

yielding:
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�T��2kB,b�x,���2kB,b�0,0��

� � 	2

x2 + �u��2�2K+/3

4���x,����0,0��2���x,����0,0��2,

�53�

where we have used ��i�x ,��� j�0,0��=�ij���x ,����0,0��
�i , j=1,2 ,3 ,4� and a similar relation for the disorder opera-
tors �i. The exact correlation functions ���x ,����0,0�� have
been obtained in Ref. �130�, in terms of Painlevé III tran-
scendants �131�. The correlation functions of the disorder
operators are immediately deduced from these by using the
Kramers-Wannier duality. Since we are interested in the low-
energy, long-distance properties of the system, it is enough to
replace the Painlevé transcendants with their approximation

in terms of modified Bessel functions. Then, one finds

�T��2kB,b�x,���2kB,b�0,0��

� � 	2

x2 + �u��2�2K+/3

K0
2�m��2 + � x

u
�2� . �54�

The structure factors are the Fourier transform of the Mat-
subara space density-density response functions �50� and
�54�. They are obtained from the integrals derived in Appen-
dix B. The response functions are then obtained by the sub-
stitution i�→�+ i0, and their imaginary parts yield the scat-
tering cross sections.

With the approximation �54�, the bosonic structure factor
is

���
B �±2kB + q,�� =

2�

u
�m	

u
�4K+/3�m

u
�2

����1 −
2K+

3
�3

4��3

2
−

2K+

3
� 3F2�1 −

2K+

3
,1 −

2K+

3
,1 −

2K+

3
;
3

2
−

2K+

3
,1;−

�2 + �uq�2

4m2 � , �55�

where ��x� is the gamma function and 3F2�. . . ; . . . ;z� is a generalized hypergeometric function �132�. Compared with Eq. �55�,
the imaginary part of the exact response function would possess thresholds at frequency integer multiples of 2m associated
with the excitation of more than one pair of kinks in the intermediate state. However, expression �55� is exact as long as �
�4m. For the fermions, the expression of the structure factor is exact and reads

���
F �±2kF + q,�� =

1

2�u
�m	

u
�K+/3���1 −

K+

6
�3

��3

2
−

K+

6
� 3F2�1 −

K+

6
,1 −

K+

6
,1 −

K+

6
;
3

2
−

K+

6
,1;−

�2 + �uq�2

4m2 �

+

��2 −
K+

6
���1 −

K+

6
���−

K+

6
�

��3

2
−

K+

6
� 3F2�2 −

K+

6
,1 −

K+

6
,−

K+

6
;
3

2
−

K+

6
,1;−

�2 + �uq�2

4m2 �� . �56�

Since the generalized hypergeometric functions

p+1Fp�. . . ; . . . ;z� are analytic for �z��1 �133�, the imaginary
part of the response functions is vanishing for ��2m. For
��2m, the behavior of the imaginary part above the thresh-
old is obtained from a theorem quoted in Ref. �134�. One
finds for ��2m:

Im ���
F �±2kF + q,�� � ��2 − �uq�2 − �2m�2�K+/3−1/2,

�57�

for the unpaired atoms, and

Im ���
B �±2kB + q,�� � ��2 − �uq�2 − �2m�2�4K+/3−1/2

�58�

in the case of the molecules. Therefore, for sufficiently
strong repulsion, the imaginary parts of both density-density

response functions have a power law divergence for �
→2m+0. For weaker repulsion, 3 /8�K+�9/8, the diver-
gence in the molecule density-density response is replaced
by a cusp which disappears if K+�9/8. Similarly, for 3 /2
�K+�9/2 the divergence in the unpaired atoms density
density correlator is replaced by a cusp, which disappears if
K+�9/2. The imaginary parts of correlation functions Eqs.
�55� and �56� can be measured by Bragg spectroscopy
�135–137�. In Fig. 5 we plot the imaginary part of density
correlation functions for the molecules with K+=1/4 �in
which case we have a divergence at the threshold� and K+
=1/2 �in which case there is only a cusp at threshold� as a
function of frequency.

3. Spectral functions of the fermions

At the Luther-Emery point, it is also possible to calculate
the spectral functions of the original fermions �r,� �not the
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pseudofermions �r,��. To obtain these spectral functions, we
express the operators �r,� as a function of the fields �+ ,�↑,↓
and their dual fields as

�+,��x� =
1

�2�	
e�i/�6���+−�+�ei�−�−�+�5/6��−��e−�i/6���,

�59�

�−,��x� =
1

�2�	
e�i/�6���++�+�ei���+�5/6����e−�i/6��−�. �60�

Therefore, the Green’s function of the fermionic atoms fac-
torizes as

− �T��+,��x,���+,��0,0�� = G+�x,��G−�
−1,5/6�x,��G�

0,1/6�x,�� .

�61�

The Green’s function G+ can be calculated by the standard
methods of bosonization �54�. Since the fields �� are long-
range ordered, the correlator G�

0,1/6 contributes a constant
prefactor.

Therefore, we are left with G−�
−1,5/6 to evaluate. This is

done following the method of Refs. �138–140�. In final form,
the Fourier transform of the Fermion Green’s function reads

Ĝ�q,�n� � 2F1�7

4
−

1

24
�K+ + K+

−1�,
13

12
−

1

24
�K+ + K+

−1�;2;

−
�uq�2 + �n

2

m2 � . �62�

When this Green’s function is analytically continued to
real frequency, it is seen �129� that it has a power law sin-
gularity for �2= �uq�2+m2, and is analytic for � below this
threshold. As a result, the fermion Green’s function vanishes
below the gap, as it would do in a superconductor �141�.
However the anomalous Green’s function is still vanishing
�142�, in accordance with the theorem of Mermin-Wagner-
Hohenberg �69,70�.

IV. MOTT INSULATING STATE

Until now, we have only considered the case of the con-
tinuum system �1� or incommensurate filling in the lattice
system �2�. We now turn to a lattice system at commensurate
filling. We first establish a generalization of the Lieb-
Schultz-Mattis theorem �143–148� in the case of the boson-
fermion mixture described by the Hamiltonian �2�. This will
give us a condition for the existence of a Mott insulating
state without spontaneous breakdown of translational invari-
ance. Then, we will discuss using bosonization the properties
of the Mott state. We note that Mott states have been studied
in the boson-fermion model in Refs. �81,106�, but not in a
one-dimensional case. Finally, we will consider the case
when the molecules or the atoms can form a Mott insulating
case in the absence of boson-fermion conversion, and we
will show that this Mott state is unstable.

A. Generalized Lieb-Schultz-Mattis theorem

A generalized Lieb-Schultz-Mattis theorem can be proven
for the boson fermion mixture described by the lattice
Hamiltonian �2� �143,144,146,147�. Let us introduce the op-
erator:

U = exp	i
2�

N �
j=1

N

�2bj
†bj + f j,↓

† f j,↓ + f j,↑
† f j,↑�
 , �63�

such that U†HbfU=Hbf. Following the arguments in Ref.
�147�, one has

�0�U†HU − H�0� = O� 1

N
� , �64�

U†TU = Tei2��, �65�

where �0� is the ground state of the system, T is the transla-
tion operator, and H is the full Hamiltonian. The quantity � is
defined by

� =
1

N
�
j=1

N

�2bj
†bj + �

�

f j,�
† f j,�� =

1

N
�2Nb + Nf� . �66�

For noninteger �, it results from the analysis of �147� that
there is a state U�0� of momentum 2���0�2�� which is
orthogonal to the ground state �0� and is only O�1/N� above
the ground state. This implies either a ground state degen-
eracy �associated with a spontaneous breaking of transla-
tional symmetry� or the existence of gapless excitations �if
the spontaneous translational symmetry is unbroken and the
ground state is unique�. For integer �, the ground state and
the state U�0� have the same momentum. In that case, a
gapped state without degeneracy can be obtained. This state
is analogous to the Mott insulating state in the half-filled
Hubbard model in one dimension �149� or the Mott insulat-
ing state in the Bose-Hubbard model with one boson per site
�94�. We note that for �=0 in the Hamiltonian �2� fermions
and bosons are separately conserved, and the respective
Fermi and pseudo-Fermi wave vectors are: kF=�NF /2N and
kB=�NB /N. The momentum of the state U�0� is thus equal to

FIG. 5. The imaginary part of the density-density correlation
function for the bosonic system with K+=1/4 ,1 /2.
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4�kB+kF�. The condition to have a Mott insulating state in
the Hubbard model, 4kF=2� is thus generalized in the
boson-fermion model to 4�kB+kF�=2�, i.e., 2Nb+Nf =N.

B. Umklapp term

In this section, we provide a derivation of the umklapp
term valid in the case of the lattice system �2�. Let us con-
sider the 2kF and 2kB components of the atom and molecule
charge density, given, respectively, by Eqs. �18� and �19�.
These terms yield an interaction of the form:

C

2
� cos�2�b + �2�� − 2�kB + kF�x�cos �2��

+
C

2
� cos�2�b − �2�� − 2�kB − kF�x�cos �2��.

�67�

In Eq. �67�, the last line is the backscattering term of Eq.
�22�, and the second line is the umklapp term. Let us con-
sider a case with kF�kB, and let us concentrate on the effect
of the umklapp term. Using the rotation �25�, we can reex-
press it as

C

2
� dx cos��6�+ − 2�kB + kF�x�cos �2��. �68�

In the following we will consider the cases corresponding to
one or two atoms per site.

1. Mott insulating state with one atom per site

Let us consider first the case of �kB+kF�=� /2	. Then, the
term �68� is oscillating. In second-order perturbation theory,
it gives rise to the umklapp term:

Humk.
1F =

2gU

�2�	�2 � dx cos �24�+. �69�

The condition for the appearance of the umklapp term �69�
can be seen to correspond to having one fermion atom per
site of the atomic lattice. Let us briefly mention two alterna-
tive derivations of Eq. �69�. A first derivation is obtained by
considering the combination of the 4kB term in the boson
density with the 4kF term in the fermion density in Haldane’s
expansion �60�. A second derivation is obtained by consider-
ing the effect of a translation by one lattice parameter on the
phases �� and �b �147,150�. The expressions of the densities
�18� and �19� imply that upon a translation by a single site
��→��−�2kF	 and �b→�b−kB	. Therefore, the combina-
tion �6�+=2�b+�2�� transforms as:�6�+→�6�+−2�kB

+kF�	. For 2�kF+kB�=� /	, the term cos 2�6�+ is invariant
upon translation, thus leading again to Eq. �69�. The presence
of the umklapp term �69� in the Hamiltonian can result in the
opening of a charge gap and the formation of a Mott insulat-
ing state provided the operator cos �24�+ is relevant. Since
the umklapp term is of dimension 6K+ this implies that a
Mott insulating state is possible only for K+�1/3, i.e., very
strong repulsion. By comparison, in the case of fermions, the
Mott transition would occur at K�=1, i.e., for weakly repul-

sive interaction �54�. Thus, the Josephson coupling �23� is
very effective in destabilizing the Mott state. In the Mott
insulating state, the superfluid fluctuations become short
ranged. Since CDW fluctuations are also suppressed, the sys-
tem shows some analogy with the Haldane gapped phase of
spin-1 chains �151� in that it is totally quantum disordered. In
fact, this analogy can be strengthened by exhibiting an ana-
log of the VBS �valence bond solid� order parameter
�152,153�. In Haldane gapped chains, this nonlocal order pa-
rameter measures a hidden long-range order in the system
associated with the breakdown of a hidden discrete symme-
try in the system. The equivalent nonlocal order parameter
for the atom-molecule system is discussed in Appendix C.

2. Mott insulating state with two atoms per site

Another commensurate filling, where a Mott insulating
state is possible is obtained for �kF+kB�=� /	. This case
corresponds to having one molecule �or two atoms� per site
of the optical lattice. In that case, the term in Eq. �68� is
nonoscillating, and it gives rise to an umklapp term of the
form:

Humk
1B =

2gU

�2�	�2 � dx cos �6�+ cos �2��. �70�

We notice that this umklapp term is compatible with the spin
gap induced by the Josephson term �23�. When the Joseph-
son coupling is large, we can make cos �2��→ �cos �2���
and we see that the term �70� becomes relevant for K+
=4/3. For weaker Josephson coupling, the dimension be-
comes 1/2+3/2K+, and this term is relevant only for K+
�1. Since K+=1 corresponds to hard core bosons, this
means that for weak Josephson coupling, the Mott state with
a single boson per site becomes trivial. Interestingly, we note
that increasing the Josephson coupling is enhancing the ten-
dency of the system to enter a Mott insulating state as a
result of the formation of a spin gap. If we compare with a
system of bosons at commensurate filling, we note however
that the Mott transition would obtain for Kb=2 �54�. There-
fore, the Josephson coupling still appears to weaken the ten-
dency to form a Mott insulating state. Such tendency was
also observed in Ref. �81�.

C. Commensurate filling of the atomic or molecular subsystem

When the atomic subsystem is at commensurate filling
�4kF=2� /a�, an umklapp term:

− 2g3

�2�	�2 cos �8��, �71�

must be added to the Hamiltonian. Such umklapp term can
create a gap in the density excitations of the unpaired atoms.
However, we must also take into account the term �23�. This
term is ordering �− and thus competes with the umklapp term
�71�. To understand what happens when �− is locked, it is
convenient to rewrite the umklapp term �71� as
�cos �8/3��2�+−�−�. The terms generated by the renor-
malization group are of the form cos n�8/3��2�+−�−�, with
n an integer. When �− is locked, replacing the terms ei
�− by
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their expectation values, we find that all these terms vanish.
Therefore, no term cos 
�+ can appear in the low energy
Hamiltonian. A more formal justification of the absence of
the cos 
�+ term in the low energy Hamiltonian can be given
by noting that when the Hamiltonian is expressed in terms of
�± it has a continuous symmetry �+→�++	 and �−→�−
+�2	. As a result, terms of the form cos 
�+ are forbidden
by such symmetry. The consequence of the absence of
cos 
�+ terms in the Hamiltonian when �− is locked is that,
even if the unpaired atom density is at a commensurate fill-
ing, the umklapp terms do not destabilize the coupled phase.
However, in the opposite case of a strong umklapp term and
a weak boson-fermion conversion term, it is the field �� that
will be ordered. The previous arguments can be reversed and
show that the formation of a Mott gap for the fermions will
prevent the formation of the coupled phase. Using the
method of Ref. �154�, one can show that the phase transition
between the coupled and the decoupled state is identical to
the phase transition that occurs in two nonequivalent coupled
two-dimensional XY models. This phase transition was stud-
ied by the renormalization group in Refs. �155,156�. It was
found that in the case of interest to us, this phase transition
was in the Ising universality class. Thus, one expects a quan-
tum Ising phase transition between the state where the fer-
mions are decoupled from the bosons and form a Mott insu-
lator and the state where the fermions and bosons are
coupled and form a superfluid.

Of course, the same arguments can also be applied to the
bosons at commensurate filling, the role of the fields �b and
�� being simply reversed.

V. RELATION WITH EXPERIMENTS

A. Without a potential along the tubes

To connect experiments in quasi-one-dimensional confin-
ing waveguides with theoretical models in 1D, it is necessary
to obtain estimates of the parameters that enter the Hamilto-
nians �2� and �1� and the bosonized Hamiltonian �13�, �23�,
and �20�. Since the parameters in the Hamiltonian �2� depend
on the periodic optical trapping potential, we will mainly
focus on the parameters that enter in the continuum Hamil-
tonian Eq. �1� and in the bosonized Hamiltonian, i.e., the
Luttinger exponent K�, the velocity, and the fermion-boson
coupling �. Before giving an estimate of the parameters we
need first to recall that, at the two-body level, there is a
connection between the 1D boson-fermion model and the
quasi-1D single channel model �76�, thus we will use one or
the other depending on the physical parameter wherein we
are interested. Experimentally, molecules have been formed
from fermionic atoms 6Li �12,14,15,21� and 40K �13,20,67�.
For 6Li, the mass of an atom is mF�6Li�=9.6�10−27 kg, and
for 40K it is mF�40K�=6.4�10−26 kg. In 6Li, a narrow Fesh-
bach resonance was obtained in a magnetic field of B
=543 G, with a width �B=0.23 G �14,157�. In the follow-
ing, we will focus on this resonance.

Before discussing the microscopic interactions, let us de-
termine the real space cutoff 	 in Eqs. �22� and �23�. Since
as long as the kinetic energy of longitudinal motion of the
particles is much smaller than the trapping energy ���, the

system behaves as a one-dimensional one, bosonization is
applicable for length scales � such that �vF /� ��� �158�.
The real space cutoff is thus 	�vF /��. Having found the
real space cutoff, we turn to the interaction parameters. The
interaction in an atomic gas is measured by a parameter
g3D=4��2as /m, as being the atom-atom scattering length. In
the case of 6Li, as=45a0 where a0�5�10−11 m is the Bohr
radius �159–162�. The effective one-dimensional interaction
has been derived in Refs. �66,163�. We can estimate the ef-
fective interaction strength from Eq. �43� in Ref. �66� to be:
g1D= �4�as /ma�

2 ��1−Cas /a��, where C�1.46. The confine-
ment induced resonance results in an enhancement of the
one-dimensional effective interaction by a factor �1
−Cas /a��−1. Using the measured scattering length, and esti-
mating a� from the harmonic oscillator formula with ��

�2��100 kHz, we find that the enhancement factor is of
order 1.04. Thus, CIR is not affecting strongly the effective
one dimensional interaction strength. We now turn to the
boson-fermion conversion factor. In the three-dimensional
case �7,164�, it is given by

�3D = ��4�as���B

m
, �72�

where abg is the atom-atom scattering length far from reso-
nance, �B is the width of the resonance, and �� is the dif-
ference of magnetic moment between atom and molecule. In
Ref. �165�, it was shown that in the case of a narrow reso-
nance, there is no renormalization of ��, so that ��=1 in
the case of 6Li. According to Eq. �44� in Ref. �66�, we have
�1D

2 = �2as�� /ma�
2 ��1−Cas /a��−2. Again, the enhancement

coming from the CIR is of order 1.
The condition for perturbation theory to be valid is that

the energy associated with the formation of molecules,
�1D	−1/2 is small with respect to the energy cutoff ���.
Therefore, perturbation theory is applicable when:
� /��vF���1/2 1, i.e.,

as��B

�vF
 1. �73�

Using the values given in Refs. �14,165�, we find that this
ratio is small for vF!3.2�10−2 m/s. Since vF can be ex-
pected to be of the order of 10−3 m/s, this is not unreason-
able. In fact, using the values of the trapping frequency given
by Moritz et al. �67� we find that: vF=4.6�10−2 m/s so that
in 6Li at the narrow resonance, the ratio is of order 0.7 and
we can expect our theory to be qualitatively valid.

Concerning K�, we find using Eq. �43� in Ref. �66� and
the perturbative expression of the Luttinger exponent �54�
that: K��0.995, i.e., interactions between fermions can be
neglected. Since the interaction between the molecules �166�
has a scattering length aBB=0.6aFF one sees that molecules
also are only weakly interacting. As a result, one expects that
without a potential along the tubes, only the phase with co-
herence between atoms and molecules can be observed.

B. With a potential along the tubes

As we have seen in Sec. V A, in the case of a two-
dimensional optical lattice without periodic potential along
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the tubes, the repulsion between the bosonic molecules is
weak, making the decoupling transition or the Mott transition
impossible to observe. To increase the effect of the repulsion,
one needs to increase the effective mass of the atoms by
adding a periodic potential along the tubes. In fact, it has
been shown in the case of bosonic 87Rb atoms that this en-
hancement could be strong enough to push the system in the
Tonks-Girardeau regime �50�. A periodic potential can be
imposed along the tubes by placing the atoms in a three-
dimensional optical lattice. The atoms experience a potential:

V�x,y,z� = Vx sin2�2�x

�l
� + Vy sin2�2�y

�l
� + Vz sin2�2�z

�l
� ,

�74�

where �l is the wavelength of the laser radiation, and Vx
 Vy ,Vz so that the system remains quasi one-dimensional.
The strength of the potential is measured in unit of the recoil
energy ER= ��2 /2m�� 2�

�l
�2 as Vx=sER. Typical values for s are

in the range 5 to 25. For lithium atoms �167�, the typical
value of ER is 76 kHz. If the potential is sufficiently strong,
the atoms tend to localize in the lowest trap states near the
minima of this potential. In our case, since the periodic po-
tential along the tubes has shallower minima than in the
transverse directions, the small overlap between the trap
states in the longitudinal direction yields the single band
Hamiltonian �2� �85,86�. An expression of the parameters of
the lattice model �2� in terms of the microscopic parameters
has been derived in Ref. �86�. On the lattice, the Fermi ve-
locity of the atoms and the pseudo-Fermi velocity of the
molecules can be reduced by increasing the depth of the
periodic potential in the longitudinal direction. This allows
one, in principle, to move the system near the decoupling
transition �78� or the Mott transition, by reducing K�.

A second possible setup �168� is to use a cigar shaped
potential:

Vcigar�x,y,z� = 1
2m�0

2�x2 + �2r�
2 � , �75�

with �!1, so that the atoms and the molecules are strongly
confined in the transverse direction, and to apply a periodic
potential:

Vperiodic = V0 sin2��x

d
� , �76�

in order to form the one-dimensional structure described by
the model �2�.

The main difficulty of experiments in optical lattices is
that the reduction of the bandwidth results in a reduction of
the Fermi velocity vF. Since the perturbative regime is de-
fined by �	1/2 vF, this implies that by increasing the depth
of the potential in the longitudinal direction one is also push-
ing the system in the regime where the boson-fermion con-
version term must be treated nonperturbatively �76�. How-
ever, in that regime there is no longer coexistence of atoms
and molecules and the decoupling transition does not exist.
Moreover, in that regime, the Mott transition becomes the
usual purely fermionic or purely bosonic Mott transition
�54�.

VI. CONCLUSIONS

We have studied a one-dimensional version of the boson-
fermion model using the bosonization technique. We have
found that at low energy the system is described by two
Josephson coupled Luttinger liquids corresponding to the
paired atomic and molecular superfluids. Due to the rel-
evance of the Josephson coupling for not too strong repul-
sion, the order parameters for the Bose condensation and
fermion superfluidity become identical, while a spin gap and
a gap against the formation of phase slips are formed. As a
result of these gaps, we have found that the charge density
wave correlations decay exponentially, differently from the
phases where only bosons or only fermions are present
�75,76�. We have discussed the application of a magnetic
field that results in a loss of coherence between the bosons
and the fermion and the disappearance of the gap, while
changing the detuning has no effect on the existence of the
gaps until either the fermion or the boson density is reduced
to zero. We have discussed the effect of a backscattering
term which induces mutual locking of the density of bosons
and fermions favoring charge density wave fluctuations re-
sulting in a quantum Ising phase transition between the den-
sity wave phase and the superfluid phase. We have found a
Luther-Emery point where the phase slips and the spin exci-
tations can be described in terms of pseudofermions. For this
special point in the parameter space, we have derived closed
form expressions of the density-density correlations and the
spectral functions. The spectral functions of the fermions are
gapped, whereas the spectral functions of the bosons remain
gapless but with an enhanced divergence for momentum
close to zero. Finally, we have discussed the formation of a
Mott insulating state in a periodic potential at commensurate
filling. We have first established a generalization of the Lieb-
Schulz-Mattis theorem, giving the condition for the existence
of a Mott-insulating state without spontaneous breakdown of
translational invariance. Then, we have discussed the prop-
erties of the Mott state in the case of one atom or two atoms
per site showing that in the first case the Josephson coupling
is very effective in destabilizing the Mott state. Finally, we
have considered the case when the atoms or the molecules
can form a Mott state in absence of boson-fermion conver-
sion and shown that this Mott state is unstable. To connect
our results with experiments in quasi-one-dimensional con-
fining waveguides we have derived estimates of the param-
eters that enter the bosonized Hamiltonian, as the Luttinger
exponents, using the values of the trapping frequency and
density used in experiments. We have seen that bosons are
only weakly interacting and the necessary small fermionic
Luttinger parameter required us to realize a strongly interact-
ing system, rendering the Mott insulating and decoupled
phases difficult to observe in experiments. A nontrivial chal-
lenge is the experimental realization of the coupled Luttinger
liquids phase with parameters tunable through the exactly
solvable point �the Luther-Emery point�. We suggest that a
Fano-Feshbach resonantly interacting atomic gas confined in
a highly anisotropic �1d� trap and subject to a periodic opti-
cal potential is a promising candidate for an experimental
measurement of the physical quantities �correlation func-
tions� discussed here. Finally we would like to comment on

PHASE TRANSITIONS IN THE BOSON-FERMION¼ PHYSICAL REVIEW A 73, 063611 �2006�

063611-15



the fact that an interesting edge states physics is expected
when open boundary conditions �or a cut one-dimensional
boson-fermion system� are considered. The existence of edge
states at the end of the system could lead to significant con-
tribution to the density profile that could be tested in experi-
ments. The physics of the edge states will be similar to the
one of Haldane gap systems, like the valence bond solid
model, and a study along this direction is in progress.
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APPENDIX A: EXPRESSION OF THE LUTTINGER
PARAMETERS OF THE ROTATED HAMILTONIAN

The Luttinger parameters of the rotated Hamiltonian �26�
can be straightforwardly obtained in the form:

u+K+ = 2
3ubKb + 1

3u�K�,

u−K− = 1
3ubKb + 2

3u�K�,

g1 =
�8

3
�ubKb − u�K�� ,

u+

K+
=

2ub

3Kb
+

u�

3K�

+
4V

3�
, �A1�

u−

K−
=

ub

3Kb
+

2u�

3K�

−
4V

3�
, �A2�

g2 =
�8

3
� ub

Kb
− u�K� −

V

�
� , �A3�

by substituting the expressions of �b, �b and �� ,�� in terms
of the new fields �± ,�± in the original quadratic Hamil-
tonian.

APPENDIX B: CALCULATION OF THE INTEGRALS
IN EQS. (55) AND (56)

In this appendix we will derive a slightly more general
integral than those of Eqs. �55� and �56�. Namely, we will
consider

g�y� = �
0




K��u�K��u�J��yu�u	du . �B1�

To find Eq. �B1� explicitly, we use the series expansion of
the Bessel function J� from Ref. �129� �Eq. �9.1.10��. We
find that

g�y� = � y

2
��

�
k=0


 �−
y2

4
�k 1

��k + 1���k + � + 1�

��
0




K��u�K��u�u2k+�+	du . �B2�

The integral that appears in the expansion in powers of y2 is
a well-known Weber-Schaefheitlin integral �169� with two
modified Bessel functions. Its expression is

�
0




K��u�K��u�u2k+	+�du =
22�k−1�+	+�

��2k + 	 + � + 1�
��k +

1 + � + � + 	 + �

2
���k +

1 + � − � + 	 + �

2
�

���k +
1 − � + � + 	 + �

2
���k +

1 − � − � + 	 + �

2
� , �B3�

The resulting expression of g�y� can be rearranged using the duplication formula for the Gamma function, Eq. �6.1.18� in Ref.
�129�. The final expression of g is

g�y� = � y

2
���1/2

4

��
k=0


 ��k +
1 + � + � + 	 + �

2
���k +

1 + � − � + 	 + �

2
� � ��k +

1 − � + � + 	 + �

2
���k +

1 − � − � + 	 + �

2
�

��k + 1 +
	 + �

2
���k +

	 + � + 1

2
���k + � + 1�

�
1

k!
�−

y2

4
�k

. �B4�

This series expansion is readily identified with the definition of the generalized hypergeometric function 4F3 given in �133�. So
we find finally that
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g�y� =
��

4
� y

2
����1 + � + � + 	 + �

2
���1 + � − � + 	 + �

2
���1 − � + � + 	 + �

2
���1 − � − � + 	 + �

2
�

��1 +
	 + �

2
���	 + � + 1

2
���� + 1�

� 4F3�1 + 	 + � + � + �

2
,
1 + 	 + � + � − �

2
,
1 + 	 + � − � + �

2
,
1 + 	 + � − � − �

2
;1 +

	 + �

2
,
	 + � + 1

2
,1 + �;−

y2

4
� .

�B5�

For �=�, the function 4F3 reduces to a simpler 3F2 function.
This leads to Eqs. �55� and �56�.

APPENDIX C: NONLOCAL ORDER PARAMETER
FOR THE MOTT STATE

The Mott insulating state can be characterized by the ex-
pectation value of a nonlocal order parameter as the Haldane
gap state in a spin-1 chain �153,152�. The nonlocal order
parameter is defined as follows:

O�k,l� =�bk
†bk�

j�k

l

e−i�2�/3��2bj
†bj+��f j,�

† f j,��bl
†bl� �C1�

The string operator:

Ostring�k,l� = �
j�k

l

e−i�2�/3��2bj
†bj+��f j,�

† f j,�� �C2�

is a product of exponentials. As a result of its definition, we
see that it is counting the number of fermions located be-
tween the sites k and l, either unbound or forming a mol-
ecule. To derive a bosonized expression of this operator, we
notice that exp�2i�bj

†bj�=1 since bj
†bj has only integer ei-

genvalues and rewrite the string operator as

�
j�k

l

ei�2�/3��bj
†bj−��f j,�

† f j,��. �C3�

Using bosonization and Eq. �C2�, we find

Ostring�x,x�� = exp	i
2�

3
��B − �F��x − x�� −

2
�3

��−�x�

− �−�x���
 . �C4�

Using Eqs. �40� and �C4� we obtain the nonlocal order
parameter �C1� as

O�x,x�� = �ei��8/3���+�x�−�+�x���−i2�/3�2�B+�F��x−x��� . �C5�

In the Mott insulating state with one fermion per site, we
have 4�kF+kB�=2��2�B+�F�=2n� where n is an integer.
Taking x ,x�→
, we see that the expectation value of the
order parameter is nonvanishing in the Mott state.

A related VBS type order parameter can be defined as

O��k,l� =���
�

fk,�
† fk,���

j�k

l

ei�2�/3��bj
†bj−��f j,�

† f j,��

���
�

f l,�
† f l,��� �C6�

In bosonized form, we have

O��x,x�� = �ei��4/3���+�x�−�+�x���+i�/3�2�B+�F��x−x��� , �C7�

and again this order parameter is nonvanishing. The physical
interpretation of the nonzero expectation value of these non-
local order parameters is that both bosons and fermions pos-
sess a hidden charge density wave order in the Mott insula-
tor. This charge density wave is hidden as a result of the
fluctuation of the density of fermions and the density of
bosons.
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