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We consider the Landau-Zener problem for a Bose-Einstein condensate in a linearly varying two-level
system, for the full many-particle system as well as in the mean-field approximation. Novel nonlinear eigen-
states emerge in the mean-field description, which leads to a breakdown of adiabaticity: The Landau-Zener
transition probability does not vanish even in the adiabatic limit. It is shown that the emergence of nonlinear
eigenstates and thus the breakdown of adiabaticity corresponds to quasi-degenerate avoided crossings of the
many-particle levels. The many-particle problem can be solved approximately within an independent crossings
approximation, which yields an explicit generalized Landau-Zener formula. A comparison to numerical results
for the many-particle system and the mean-field approximation shows an excellent agreement.
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I. INTRODUCTION

During the last years, a lot of work has been devoted to
the nonlinear Landau-Zener problem, which describes a
Bose-Einstein condensate �BEC� in a time-dependent two-
state system in the mean-field approximation �1–3�. As in the
celebrated original Landau-Zener scenario, the energy differ-
ence between the two levels is assumed to vary linearly in
time. This situation arises, e.g., for a BEC in a double-well
trap or for a BEC in an accelerated lattice around the edge of
the Brillouin zone. A major question in such a situation is the
following: Initially the two states are energetically well sepa-
rated and the total population is in the lower state. Then the
energy difference varies linearly in time, such that the two
levels �anti-� cross. Finally the states are energetically well
separated again, however they are just exchanged. What is
the probability of a diabatic time evolution, i.e., how much
of the initial population remains in the first �diabatic� state?

In the mean-field approximation, the time evolution is
given by the Gross-Pitaevskii equation

i
d

dt
��1

�2
� = Ĥ���1�2, ��2�2,t���1

�2
� �1�

with the nonlinear Hamiltonian

Ĥ���1�2, ��2�2,t� = �� + g��1�2 v

v − � + g��2�2
� �2�

and �=�t. The state vector is normalized to unity, thus the
effective nonlinearity is g= ḡN, where N is number of par-
ticles in the condensate and ḡ is the bare two particle inter-
action constant. Throughout this paper we use scaled units
such that �=1.

The Landau-Zener transition probability is defined as

PLZ
mf =

��1�t → + ���2

��1�t → − ���2
. �3�

The original linear problem can be solved analytically with
different approaches �4–7�. This yields the celebrated
Landau-Zener formula

PLZ
lin = e−�v2/� for g = 0 �4�

for the probability of a diabatic time evolution. In the non-
linear case g�0, things get quite complicated and the
Landau-Zener probability is seriously altered. New nonlinear
eigenstates emerge if the nonlinearity exceeds a critical value
�g�	gc=2v. A loop develops at the top of the lowest level

���, while the total energy

Emf = ����1�2 − ��2�2� +
g

2
���1�4 + ��2�4� + v��1

*�2 + �2
*�1�

�5�

shows a swallow’s tail structure �cf. the left-hand side of Fig.
1�. The system can evolve adiabatically along this level only
up to the end of the loop, where adiabaticity breaks down.
Consequently, the Landau-Zener probability does not vanish
even in the adiabatic limit �→0 �1,2�. For repulsive nonlin-
earities, g	0, the situation is just the other way round: The
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FIG. 1. Total energy �5� in the mean-field theory �left� and
eigenenergies of the many-particle Hamiltonian �6�, �right� for v
=0.2, g=−1 and N=20 particles.
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loop appears in the upper level, thus no adiabatic evolution is
possible in the upper level. In this paper we consider only the
lower level and thus the attractive case g�0. These consid-
erations have led to a reformulation of the adiabatic theorem
for nonlinear systems, based on the adiabatic theorem of
classical mechanics �3�. Note also that the emergence of
looped levels was previously studied for the quantum dimer
�8�.

Several approaches were made to derive a nonlinear
Landau-Zener formula for this problem using methods from
classical Hamiltonian mechanics �9,10�. For subcritical val-
ues of the nonlinearity �g��gc, standard methods of classical
nonadiabatic corrections yield good results for the near-
adiabatic case �� /v2�1�. For the case of a rapid passage
�v2 /��1� one finds a quantitative good approximation using
classical perturbation theory with v being the small param-
eter for the subcritical regime as well as for strong nonlin-
earities, as long as g�0. Furthermore, for strong nonlineari-
ties there is a simple formula which provides a good
approximation for the tunneling probability for an interme-
diate range of the parameter �. This approximation fails in
the rapid limit as well as in the near-adiabatic one. However,
there is no valid approximation in the critical regime �g�
	gc=2v for �→0 so far. Since one is interested in the
quasi-adiabatic dynamic in most applications this is an im-
portant deficit. Here we present a different approach which
yields good results especially in this region.

Going back to the roots of the problem, we consider the
original many-particle problem of an interacting two-mode
boson field instead of the mean-field theory. We consider the
many-particle Hamiltonian of Bose-Hubbard type,

Ĥ�t� = ��t��n̂1 − n̂2� + v�â1
†â2 + â2

†â1�

+
ḡ

2
�n̂1�n̂1 − 1� + n̂2�n̂2 − 1�� , �6�

where âj and âj
† are the bosonic annihilation and creation

operators in the jth well and n̂j = âj
†âj is the occupation num-

ber operator. The eigenvalues of the Hamiltonian �6� are
shown in Fig. 1 on the right-hand side in dependence of � for
g=−1, v=0.2, and N=20 particles. One recognizes the simi-
larity to the mean-field results shown on the left-hand side. A
series of avoided crossings with very small level distances is
observed where the mean-field energy levels form the swal-
low’s tail structure. Similar results were reported in �11�.

For t→−�, one has �=�t→−� and the first term domi-
nates the Hamiltonian. The ground state is ��0�
= �N!�−1/2�â1

†�N�0�, where N is the fixed number of particles.
In the spirit of the Landau-Zener problem we take this as the
initial state for t→−� and consider the question, how many
particles remain in the first well for t→ +�, i.e., the effective
Landau-Zener transition probability for the population,
which is given by

PLZ
mp =

	n̂1�t → + ���
	n̂1�t → − ���

. �7�

The superscripts mp and mf are introduced to distinguish
between the many-particle and the mean-field system. It will

be shown that this many-particle Landau-Zener probability
agrees well with the mean-field Landau-Zener probability
�3�. Furthermore, this “back-to-the-roots” procedure reduces
the problem to a linear multilevel Landau-Zener scenario,
which can be solved approximately in an independent cross-
ing approximation. In this way we derive a Landau-Zener
formula for an interacting BEC, which agrees well with nu-
merical results especially in the strongly interacting regime
�g�	gc=2v.

II. MANY-PARTICLE LANDAU-ZENER
PROBLEM AND THE ICA

We now consider the many-particle Landau-Zener sce-
nario �6� in detail, where the number N of particles is fixed.
We expand the Hamiltonian H in the number-state basis �k�
= �k!�N−k�!�−1/2�â1

†�k�â2
†�N−k�0�. Then the Hamiltonian is

given by the matrix 	��H�k�=H�,k for � ,k=0, . . . ,N with the
elements

H�,k = h��t��,k + v��,k−1 + vk�,k+1 �8�

and

h��t� = ��t��2� − N� +
ḡ

2
�2�2 − 2�N + N2 − N�

and the couplings v�=v
��+1��N−�� on the sub- and super-
diagonal. In the Landau-Zener scenario, all diabatic �i.e., un-
coupled� levels h��t� vary linearly in time as ��t�=�t, how-
ever with a different offset and slope ��2�−N�.

As stated above, we assume that initially all particles are
in the first well, ���t→−���= �N�. Consequently, one has
	n̂1�t→−���=N and in order to derive the Landau-Zener
probability �7� we are left with the problem to calculate
	n̂1�t→ +���. Thus we are not interested in the details of the
time evolution. We just need a few elements of the S matrix,
which is defined by

	k���t = + ��� = �
�

Sk�	����t = − ��� . �9�

With this definition and 	��n̂1�k�=k�,k, the Landau-Zener
transition probability �7� is reduced to

PLZ
mp =

1

N
�
k=0

N

k�Sk,N�2, �10�

so that only the squared modulus of the S-matrix elements
�Sk,N�2 are of importance.

The S-matrix elements �SN,k�2 are now evaluated in a
modified independent crossings approximation �ICA, see
Appendix for details�. One assumes that the system under-
goes a series of single, independent transitions between just
two levels. The probabilities of a diabatic resp. adiabatic
transition at a single anti-crossing are given pk,N
=exp�−�wk,�

2 / �bk,l�� resp. qk,�=1− pk,� according to the
Landau-Zener formula �4�. Here, wk,l denotes the level spac-
ing at the anti-crossing and bk,� is the difference of the slopes
of the two diabatic levels. The relevant S-matrix elements are
given by
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�Sk,N�2 = �1 − pk,N��
�=0

k−1

p�,N �11�

with the definition qNN=1Û pNN=0. The calculation of the
S-matrix elements by the ICA is illustrated in Fig. 2 for the
case N=3.

The ICA-Landau-Zener transition probability is then
given by

PLZ
ICA =

1

N
�
k=0

N

k�1 − pk,N��
�=0

k−1

p�,N =
1

N
�
k=0

N−1

�
�=0

k

p�,N. �12�

Note that the p�,N depend on the distance between the levels
� and N at the anti-crossing. Thus they have to be evaluated
at different times t�,N. However, the crossing time is easily
calculated by evaluating hN�t�,N�=h��t�,N�, where h��t� are
diabatic levels as defined above. This yields

t�,N = −
ḡ�

2�
. �13�

At all crossing times t�,N, the level spacings w�,N are calcu-
lated by diagonalizing the Hamiltonian matrix �8�. As H is
tridiagonal, this can be done very efficiently. Furthermore,
the difference of the slopes is simply given by b�,N=2��N
−��.

To test this approach we compare the ICA-Landau-Zener
formula �12� with the Landau-Zener probability �7� calcu-
lated by numerically integrating the many-particle
Schrödinger equation as well as the mean-field transition
probability �3�. The results are shown in Fig. 3 in depen-
dence of � for v=0.2, N=100 and three different values of g.
One observes a good agreement between the Landau-Zener
formula �12� �dashed line� and the numerical results for large
g. For small values of g the ICA �12� overestimates the tran-
sition probability. These issues will be further discussed in
Sec. V.

III. LIMITING CASES

The linear limit g→0 is analytically solvable in both
cases. The many-particle system �8� reduces to the so-called
bow-tie model, whose S matrix was calculated in �12�. The

mean-field dynamics reduces to the ordinary two-state model
of Landau, Zener, Majorana and Stückelberg �4–7�. Not only
the transition probability but also the whole dynamics is
known exactly in terms of Weber functions �5�. In the zero-
coupling limit v→0 the Hamiltonians become diagonal and
the evolution is fully diabatic. The Landau-Zener transition
probability tends to one.

Most interesting is the adiabatic limit �→0. As no sub-
diagonal element of the Hamiltonian matrix �8� vanishes, all
eigenvalues must be distinct �see, e.g. �13��. They may be-
come pathologically close, but they cannot be degenerate.
This is in fact the case: The splitting of the lowest levels at
the anti-crossings becomes really small for increasing �ḡ�.
Thus all wl,N are nonzero and in the extreme adiabatic limit
�→0 the Landau-Zener probabilities p�,N must vanish. This
seems to contradict the mean-field results �cf. Fig. 3�, which
predict a nonzero Zener tunneling probability even in the
adiabatic limit if �g�	gc.

However, the parameter regime, where the ICA predicts a
vanishing Zener tunneling probability in contrast to the
mean-field results, decreases rapidly with an increasing num-
ber of particles N. Figure 4 shows the Landau-Zener prob-
ability PLZ

ICA��� for very small �, calculated within the ICA

FIG. 2. The S-matrix elements �S�,N�2 in the independent cross-
ing approximation �ICA� for N=3 particles.

FIG. 3. Landau-Zener tunneling probability in dependence of
the parameter velocity � for v=0.2, N=100 particles and different
values of the interaction constant g. Numerical data �mean-field �
and many-particle theory �� are compared with the ICA �12�
�dashed line� and the resulting ICA-Landau-Zener formulas �25�
resp. �26� �solid line�.

FIG. 4. Landau-Zener transition probability PLZ
ICA��� in the adia-

batic limit �→0 for v=0.2, g=−1 and different numbers of par-
ticles: N=10, �· – ·� N=20 �– – –� and N=30 �—�.
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for different N, with g= ḡN=−1 fixed. The truly adiabatic
region �where PLZ

ICA���0� is negligibly small already for
these quite modest numbers of N.

The mean-field theory is valid for a BEC consisting of a
macroscopic number of atoms. In order to compare to the
mean-field results we thus have to consider the limit of a
large number of particles, N→� with g= ḡN fixed. In this
macroscopic limit, the contradiction vanishes. Furthermore,
this limit will prove itself as extremely convenient for the
evaluation of Eq. �12�, since all sums can be replaced by
integrals which can be solved explicitly �cf. Sec. V�.

IV. MANY-PARTICLE SPECTRUM

The only missing step towards an explicit Landau-Zener
formula is the evaluation of the squared level spacings
wk,N

2 �tk,N�. Thus one has to understand the spectrum of the
Hamiltonian �6�. We start with a discussion of the spectrum
for �=0, which provides an insight into the qualitative fea-
tures which will guide us in the following. To keep the cal-
culations simple, we introduce the operators

Jx =
1

2
�a2

†a2 − a1
†a1� ,

Jy =
i

2
�a2

†a1 − a1
†a2� ,

Jz =
1

2
�a1

†a2 + a2
†a1� , �14�

which form an angular momentum algebra with quantum
number j=N /2 �14–16�. The Hamiltonian �6� then can be
rewritten as

H = 2vJz +
g

N
Jx

2 �15�

up to a constant term.
In the subcritical case �g��2�v�, the interaction terms can

be treated as a small perturbation. The unperturbed eigen-
states are the Jz eigenstates �j ,mz� with mz=−j ,−j+1, . . . , j.
In second order this yields the levels

Emz
= 2vmz�1 −

g

2v

mz

2N
− � g

2v
�2 mz

2

4N2 + O�g3�� �16�

up to a constant. This spectrum is illustrated in Fig. 5 for g
=−0.1, v=0.2 and N=50 particles. The eigenenergies are
nearly equidistant, with a slight increase of the level spacing
for higher energies.

For �g�	2�v� and low energies, the interaction term gJx
2 /N

dominates the Hamiltonian. The eigenstates with quantum
numbers �j , ±mx� are doubly degenerate with eigenenergy
Emx

=gmx
2 /N. The perturbation 2vJz removes this degeneracy

only in the 2�mx�th order. Thus the low energy eigenstates
�corresponding to the high �mx� states� appear in nearly de-
generate pairs. However, this approach fails if the energy
scale of the perturbation 2vJz becomes comparable to the

unperturbed eigenenergy. Estimating the energy scale of the
perturbation as Emax/2=2vj /2, perturbation theory fails for
�g�mx

2 /N2�vN /2. Instead, Bogoliubov theory provides the
appropriate description for the high energy part of the spec-
trum. We are dealing with an attractive interaction g�0, so
that the highest state in the mean-field approximation is the
state with equal population in the two modes. So the standard
Bogoliubov approach is valid for the highest state instead of
the ground state. One finds that the high energy part of the
spectrum is given by En=EN−��N−n� with the Bogoliubov
frequency �17�

� = ��2v�2 − 2vg�1/2. �17�

To clarify this issue, the spectrum is plotted in Fig. 5 for g
=−2, v=0.2 and N=50 particles. One clearly sees the nearly
degenerate pairs of eigenvalues for low energies and the ap-
proximately equal spacing of the high energy eigenvalues.
The distance of the two highest levels is given by the Bogo-
liubov frequency �17�.

Now we come back to the squared level splittings
wk,N

2 �tk,N�, beginning with the supercritical regime �g�	2v.
Figure 6 shows an example of the squared level splitting for
v=0.2, N=100 particles and g=−0.1 resp. g=−1. Later, we
consider the macroscopic limit N→� , ḡ→0 with g= ḡN

FIG. 5. Spectrum of the many-particle Hamiltonian �6� for �
=0, v=0.2, N=50 particles and g=−0.1 and g=−2, respectively.

FIG. 6. Squared level splitting w2�x� in dependence of the scaled
index x=� /N for v=0.2 and g=−0.1 resp. g=−1. Numerical results
��� are compared to the approximate formulas �19� resp. �20� �solid
lines�.
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fixed. For this issue we plot the squared level splittings ver-
sus the rescaled index xª� /N� �0,1�. With increasing N,
the curve plotted in Fig. 6 remains the same, only the actual
points move closer together. Thus one obtains a continuous
function w2�x� in the limit N→�.

As argued above for �=0, the lower levels appear in ap-
proximately degenerate pairs. By the same arguments one
concludes that this is also true for the first level crossings.
Thus, w�,N

2 is effectively zero for ���c resp. x�xc. The
critical index xc can be estimated as described above for �
=0. It is found that this estimate gives the correct results up
to a numerical factor a of order 1. Thus we conclude that

xc  1 − a
2v/�g� . �18�

A very good agreement of this formula to the numerical re-
sults was found for a=1.14.

For x	xc the squared splittings increase approximately
linear. In the high energy limit corresponding to x→1, the
level splitting is given by the Bogoliubov frequency intro-
duced above. In conclusion, the squared level spacing can be
approximated by

w2�x�  �2 x − xc

1 − xc
H�x − xc� , �19�

where H�x−xc� denotes Heaviside’s step function.
In the subcritical regime �g��2v, one can use the results

from perturbation theory described above �cf. Eq. �16��. At
time t�,N=−ḡ� /2� one must evaluate the level splitting
E�−j+1−E�−j �note that the levels are labeled by mz=−j ,−j
+1, . . . , j with j=N /2�. Again we consider the limit N→�
with g= ḡN fixed. After a little algebra one finds that the
relevant level splitting is in linear order given by

w�x� =
16v2 + 4g − 3g2/4

8v
+ �3g2

8v
− g�x ¬ w0 + w1x

�20�

in terms of the scaled index x=� /N.
The approximate results for the squared level splitting

w2�x� for �g�	gc, Eq. �19�, and for �g��gc, Eq. �20�, are
compared with the numerical results for N=100 particles in
Fig. 6. One observes a good agreement.

V. TOWARDS AN EXPLICIT LANDAU-ZENER FORMULA

Using the formulas for the squared level splitting derived
in the previous section, the ICA-Landau-Zener transition
probability �12� can now be evaluated explicitly. In the spirit
of the macroscopic limit N→�, the sums are replaced by
integrals according to

1

N
�
�=0

k

→ �
0

k/N

dx . �21�

The difference of the slopes b�,N=2��N−��, which enters the
formula, is also rewritten in terms of the rescaled index x
=� /N

b�,N → 2�N�1 − x� ª Nb̄�x� . �22�

Thus one finds

PLZ  �
0

1

exp�− ��
0

y w2�x�

b̄�x�
dx�dy . �23�

In the supercritical regime �g�	gc we start by evaluating

the integral over x in Eq. �23�. Substituting w2�x� and b̄�x�
from Eqs. �19� and �22� and carrying out the integral yields

�
0

y w2�x�

b̄�x�
dx =

− �2

2�
� y − xc

1 − xc
+ ln� 1 − y

1 − xc
�� �24�

for y	xc and zero otherwise. The Landau-Zener transition
probability �23� is then given by

PLZ  xc + �
xc

1 � 1 − y

1 − xc
���2/2�

exp���2

2�

y − xc

1 − xc
�dy

= xc +
�1 − xc�eu

uu+1 ��u + 1,u� �25�

with the abbreviation u=��2 /2� and xc defined in Eq. �18�.
Here, � denotes the incomplete gamma function �18�.

In the subcritical regime �g��gc, one finds by substituting
Eq. �23� into Eq. �25�, that the Landau-Zener transition prob-
ability is given by

PLZ  �
0

1

�1 − y���w0�w0+2w1�� exp�2�w0w1y�dy

=
ec1

c1
c0+1��c0 + 1,c1� �26�

with the abbreviations c0=��w0
2+2w0w1� /2� and c1

=�w0w1 /�. To keep the calculations feasible, we kept only
terms linear in x resp. y in the exponent consistent with Eq.
�25�.

To test the validity of our approach we compare the ICA-
Landau-Zener formulas �25� and �26� to numerical results
obtained by integrating the Schrödinger equation for mean-
field Hamiltonian �2� as well as the many-particle Hamil-
tonian �6�. The Landau-Zener tunneling probability in depen-
dence of the interaction constant g is plotted in Fig. 7 for
�=0.01 in dependence of the velocity parameter � for dif-
ferent values of g in Fig. 3.

One observes a good agreement of the ICA-Landau-Zener
formula with the numerical results in the critical regime �g�
	gc. Especially, the increase of the tunneling probability
with increasing �g� for small � is well described by our
model. This problem could not be solved with previous ap-
proaches �9,10�. The approximation gets worse for larger
values of � because the assumption that the Zener transitions
are well separated becomes doubtful for such a large param-
eter velocity. The ICA thus underestimates the tunneling
probability.

In the subcritical case �g��gc, the proposed ICA-Landau-
Zener formula does not work as well. In fact the tunneling
probability is overestimated for small � because the ICA
itself is not a very good approximation in this case. The
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adiabatic levels do not show well separated avoided cross-
ings, instead the level splittings are nearly constant over a
long interval of the parameter �. For larger values of � one
faces the same problems as in the supercritical case and the
tunneling probability is underestimated. Another ansatz, us-
ing, e.g., perturbation theory with respect to the solution of
the noninteracting problem �19� should be better suited to
this problem. Note, however, that the deviations are mainly
due to the ICA itself and to the approximation of w2�x� made
in this section.

VI. CONCLUSION AND OUTLOOK

In conclusion, we have derived a Landau-Zener formula
for an interacting Bose-Einstein condensate from first prin-
ciples. To this end we considered the original two-mode
many-particle Landau-Zener scenario. It was shown that the
resulting Landau-Zener formula agrees well with the numeri-
cal results calculated for the many-particle problem as well
as within the mean-field approximation.

In the future, it would be of interest to relate our calcula-
tions to the respective problem in the Heisenberg pictures.
Here, complex eigenfrequencies may occur for the dynamics
of the creation or annihilation operators, leading to sponta-
neous production of quasi-particles and hence a dynamical
instability. For the noninteracting case, this problem has been
solved analytically �19�.

Another issue is the discussion of nonlinear Landau-Zener
problems for more than two levels. First results for three
level system were reported only recently �20�.
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APPENDIX: THE INDEPENDENT CROSSINGS
APPROXIMATION

Let us first briefly recall the dynamics of a two-level
Landau-Zener system described by the Hamiltonian

H0�t� = ��1t + b1 v

v �2t + b2
� . �A1�

The diabatic and adiabatic energy curves are plotted in Fig.
8. The S matrix in the sense of Eq. �9� is given by

S = �p q

q p
� �A2�

with p=exp�−�v2 / ��1−�2�� and q=
1− p2. The probability
of a diabatic passage is therefore given by the Landau-Zener-
formula PLZ= p2=exp�− 2�v2

��1−�2� �, and the adiabatic transition
probability by 1− PLZ=q2. They depend only on the relative
slope of the diabatic levels ��1−�2� and the coupling v,
which is equivalent to half of the gap between the adiabatic
energy levels at the avoided crossing.

The simplicity of the solution of the two-level system and
the observation that the transitions between two adiabatic
levels in a multilevel Landau-Zener system takes place only
in a very narrow region around the crossing of the two cor-
responding diabatic levels leads to a simple approximation.
If all crossings are well separated they can be considered as
independent of each other and each of them is described by
the two-level Landau-Zener model where the couplings be-
tween the relevant diabatic levels are given by the nondiago-
nal terms of the Hamiltonian. This approach is called the
“independent crossing approximation” �ICA� in the litera-
ture. It is of great importance for the study of multilevel
Landau-Zener dynamics because of a surprising feature: The
ICA turns out to give the exact results for all known exactly
solvable multilevel Landau-Zener scenarios �12,21�. Further-
more, it has been shown that the ICA always gives the cor-
rect results for the diagonal S-matrix elements with minimal
and maximal slope �22,23�.

Of course, there are also examples where the ICA fails,
as, for example, for the simple three level Hamiltonian

H�t� = ��t + a v w

v 0 0

w 0 − �t + a
� . �A3�

The adiabatic and diabatic levels are plotted in Fig. 9. The
diabatic transition probability for the third level S33 is exactly
given by the ICA. But if we look at the S-matrix element S32

FIG. 7. Landau-Zener tunneling probability in dependence of
the interaction constant g for a parameter velocity �=0.01. Numeri-
cal data �mean-field � and many-particle theory �� are compared
to the ICA-Landau-Zener formula �25� �solid line� for v=0,2.

FIG. 8. Diabatic �dash-dotted line� and adiabatic �solid line�
energy levels of the two-level Landau-Zener model �A1�.
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we find that the ICA predicts it to be zero, because the cou-
pling matrix element vanishes, 	2�H�3�=0, independent of �
and a, which is not true. The second and the third diabatic
levels do not couple directly, but for not too large values of a
the indirect coupling via the second diabatic level cannot be
neglected. This coupling manifests itself as an avoided cross-

ing between the two adiabatic levels, which turns into a real
crossing only in the limits a→� and a→0. For finite values
of a the transition probability between the third and the sec-
ond diabatic levels is small but nonzero.

To get a better approximation one should recall the two-
level system, where the coupling between two diabatic levels
is equivalent to half of the level splitting of the correspond-
ing adiabatic levels. Therefore one can use a modified ICA
where the couplings are not given by the nondiagonal ele-
ments of the Hamiltonian but half of the level splitting be-
tween the relevant adiabatic levels. This approximation does
not inherit the benefit of providing the exact results in the
special cases where the original ICA did, but provides a good
approximation even in the cases where the ICA fails. There-
fore, it is better suited for our purposes. The performance of
the approximation is limited by the fact that the single
avoided crossings must be well separated so that the transi-
tion regimes do not overlap. In the present case this is im-
proved with increasing nonlinearity. Note that to simplify
matters this modified ICA is denoted as ICA throughout the
paper.
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