PHYSICAL REVIEW A 73, 063604 (2006)

Self-localized impurities embedded in a one-dimensional Bose-Einstein condensate
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We consider the self-localization of neutral impurity atoms in a Bose-Einstein condensate in a one-
dimensional model. Within the strong coupling approach, we show that the self-localized state exhibits para-
metric soliton behavior. The corresponding stationary states are analogous to the solitons of nonlinear optics
and to the solitonic solutions of the Schrodinger-Newton equation (which appears in models that consider the
connection between quantum mechanics and gravitation). In addition, we present a Bogoliubov-de Gennes
formalism to describe the quantum fluctuations around the product state of the strong coupling description. Our
fluctuation calculations yield the excitation spectrum and reveal considerable corrections to the strong coupling
description. The knowledge of the spectrum allows a spectroscopic detection of the impurity self-localization

phenomenon.
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I. INTRODUCTION

Recent work pointed out that neutral impurity atoms
immersed in a dilute gas Bose-Einstein condensate (BEC)
can spontaneously self-localize [1,2]. Repeated measure-
ments of the impurity position would observe this particle’s
wave function to have a finite extent, even if its average
position cannot be predicted a priori (at least if the
BEC were homogeneous in the absence of the impurity). In
three dimensions (3D), the BEC-impurity physics is akin to
that of an electron moving in a polar crystal (a polaron) [3].
In 3D, the self-localization of a neutral atom BEC impurity
occurs when the magnitude of the impurity-boson scattering
length exceeds a minimal value (regardless of the sign of
that interaction). The self-localized BEC impurity state re-
sembles that of a small polaron. Traditional (i.e., electronic)
small polarons have been successfully described in the
strong coupling limit by the Landau-Pekar treatment [4]
which assumes a wave function that is the product of a single
electron wave function and a bosonic phonon state. The
self-localized BEC impurity has been described similarly
[1,2] by the product of a single-particle impurity wave func-
tion and a BEC state. Linearizing the BEC response to the
impurity density then gives an effective impurity equation of
a single particle experiencing an attractive Yukawa self-
interaction potential [1]. While the ensuing analysis is el-
egant, the validity of the starting point (i.e., the product state)
is much more questionable than in the description of tradi-
tional polarons. In the latter case, the large mass difference
of crystal ions and electrons implies a clear separation of
time scales which justifies the product state — one can al-
ways think of the slow (boson) field adjusting itself to the
time-averaged field of the fast (electron) particle. In the cold
atom BEC impurity, the boson and impurity atoms tend to
have similar masses and the time scales do not separate.
Hence, we can expect the deviations from the product state,
the fluctuations that describe the entanglement of the impu-
rity and boson degrees of freedom, to become much more
significant.
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In this paper, we describe the one-dimensional analogue
of the BEC impurity, realizable in quasi-one-dimensional
BEC’s. For this system and for a specific choice of the
parameters, we find an exact solution to the strong coupling
equations and we solve for the quantum fluctuations as a
function of the impurity-boson mass ratios. The explicit so-
lution to the strong-coupling equations are parametric
solitons, which establishes that the one-dimensional (1D)
analogues of self-localized BEC impurities are optical
solitons. Specifically, the impurity soliton solutions resemble
the solitons that appear when a quadratic nonlinearity is re-
sponsible for second-harmonic generation [5,6]. The
Schrodinger-Newton equation that models the gravitational
interaction, while preventing the quantum-mechanical
spreading of the center-of-mass position of macroscopic
objects [7-9], as well as the mean-field equations of coupled
atomic-molecular BEC’s [10,11] possess similar parametric
soliton solutions. The connection with these very different
fields of physics further extends the scope of the BEC-
impurity physics.

The experimental realization of the BEC-impurity
systems requires the creation of distinguishable atoms in
BEC:s. This feat has been realized by converting a fraction of
the BEC atoms with a two-photon Raman transition to a
different spin state in order to observe the superfluid suppres-
sion of slow impurity scattering by the BEC [12], or by
trapping distinct species of atoms [13,14] or isotopes [15]. In
this paper, we describe a BEC trapped in a 1D box. Our
predictions apply to atomic traps with strong confinement in
the two transverse directions (quasi-1D). A 1D box potential
was recently achieved experimentally [16], but our calcula-
tions should also describe the physics of quasi-1D BEC’s
with trapping potentials that vary slowly in the longitudinal
direction.

The paper is organized as follows: In Sec. II, we introduce
the model and work within the product state description.
Section III presents a formalism that goes beyond the prod-
uct state ansatz by means of a Bogoliubov description of the
quantum fluctuations. In Sec. IV, we discuss our numerical
results, and we conclude in Sec. V.
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II. STRONG COUPLING APPROACH

We consider M impurity bosonic atoms immersed in a
homogeneous BEC in a 1D model. The Hamiltonian of the
system reads

. 12 .
H= f dx{ @T(x){— 2mx + %@T(XW(X) — pg | ¢x) + 4 (x)
B

h2 . e
X| =2 —E [f(x) +Np¢' (0)@x)J (0)glx), (1)

B 2m1

where @(x) and ;b(x) stand for the condensate boson and
impurity atom field operators, respectively; mg and m; are
the boson and impurity masses, while uz and E; represent
the chemical potentials of the BEC and impurity systems.
We assume contact boson-boson and impurity-boson interac-
tions characterized by Agg and A, respectively. We neglect
the mutual interactions of impurity atoms in the assumption
that their number and local density remains sufficiently
small.

In the strong coupling treatment [1,4], we describe the
system in terms of a product state,

W=y pya)dxy) - Lxy), (2)

where 7(x) is the wave function occupied by the M
impurity atoms and {(x) is the single particle state occupied
by the N bosons. The expectation value of the Hamiltonian
(1) for the product state (2) gives an energy that reaches
its minimal value when the following equations are
satisfied:

W2
{_ 4+ Nppe’(x) + )\1391’20()‘)] ¢(x) = upe(x),

sz
h2
[— + )\13<P2(x)} Po(x) = Eqihy(x), (3)
2m1
where
—
@(x) = VN{(x),
—
ho(x) = VM 7(x), 4)
and we have assumed that both ¢(x) and #(x) are real
valued — an assumption that is permitted since we wish

to describe a ground state. We also assume that M, the
number of impurity atoms is small, so that we may
expect only a slight modification of the boson wave
function ¢(x) with respect to the homogeneous BEC
solution \e‘”;, where p is the BEC density. Therefore, we
substitute

o(x) = \p+ dho(x), (5)

into Eq. (3) and keep linear terms in ¢(x) only,

ﬁzﬁi ~
ot 2Npgp | Pox) + NpVpyf(x) =0, (6)
mp
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where up=\ggp and E;=E;—\;zp [1]. This approximation is
valid provided,

b )

[
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Then, Eq. (6) can be solved in terms of the Green function of
the 1D Helmholtz equation,

mg\ V”; .
¢o(x)=—%fdy%(y)e Xkl 9)
where
2\mgh
=%’ (10)

represents the BEC-coherence length. The substitution
of Eq. (9) into Eq. (7) gives an equation that describes
impurity atoms self-interacting through an attractive
exponential potential. Note the difference with the three-
dimensional situation in which the self-interaction
takes place through a Yukawa (screened Coulomb) potential
[1].

Equations similar to Egs. (6) and (7) occur in nonlinear
optics [5,6], in mean-field descriptions of coupled
atomic-molecular BEC’s [10,11] and in the Schrodinger-
Newton model [8]. These equations are known to possess
parametric soliton solutions. In the present case, an analyti-
cal solution exists for a particular value of the condensate
density. For

22,4
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the Egs. (6) and (7) transform into

1/4

P 70 -
[— 3" + 2(%) \/ —L sgn(hp) ¢0(X)} o(x) = Edfry(x).
mpg

(12)
These coupled equations possess a solitonic solution,
M
E=-—,
3

3M3my M
(x) =—sgn(\;5) \| —=— cosh™> —x,
o gn{Ap 86, 6
3M3/2 ( M )
X) = cosh™? —x. 13
W=\ N (13)

In Egs. (12) and (13), we have scaled energy and length by
E, and x, where
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The soliton (13) describes a bound state of the impurity-BEC
system with an impurity extent of the order V6/M, which is
precisely the BEC-healing length since

¢ %

6
==/ (15)
X0 xoVmphppp M

The self-localization takes place for either sign of the
impurity-BEC interaction (\;3>0 and \;3<<0). In addition
to and caused by the impurity localization, the condensate is
deformed. The BEC exhibits a dip in the density if the im-
purity and BEC-particles mutually repel (A;5>0), and exhib-
its a hump if the they attract (\;5<<0).

We have shown there exists a class of analytical
solutions for a particular choice of parameters of the 1D
BEC-impurity system. In general, one can solve the coupled
equations numerically. Using the Gaussian ansatz for i(x),
one can also show that there is impurity self-localization
in the 1D model even as \;—0 [17]. This is markedly
different from the 3D situation for which the impurity-BEC
interaction must be sufficiently strong before self-
localization sets in [1].

(14)

III. QUANTUM FLUCTUATIONS

Hamiltonian (1) describes a small number of bosonic
impurity particles immersed in a BEC in a 1D-model with
interparticle interactions of the contact type. Assuming that
the presence of the impurity atoms does not significantly
perturb the condensate, we may decompose the bosonic field
operator into

$(x) = \p + d(x), (16)

— . .
where Vp denotes the stationary mean-field solution for a
condensate wave function in the absence of impurities, and

g?)(x) describes the small perturbations of the condensate
caused by the impurity (or impurities). We substitute Eq. (16)
into the Hamiltonian (1) and keep terms that are quadratic in

the ¢ operator only. Next, we replace the condensate boson-
boson interaction term in the Hamiltonian by

A A A N A A oAn PN
%p(¢¢+4¢‘¢+ ') =3INgppd’d.  (17)

This approximation implies that we neglect the depletion of
the BEC induced by the interactions between condensate
particles. The BEC depletion that we compute is then caused
entirely by the interactions with the impurities. We
expect that this approximation will not greatly affect the
impurity physics. It does, however, modify the description of
long-wavelength BEC excitations. In the absence of impuri-
ties, approximation (17) corresponds to the Hartree-Fock ap-
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proximation. This approach predicts a gap in the BEC-
excitation spectrum, contrary to the Goldstone (or
Hugenholtz-Pines) theorem, and different from the Bogoliu-
bov spectrum [18]. The final effective Hamiltonian in the
units (14) reads

= | dx{ ¢*<x>{— o a} Bx)+ w‘(x)[—

%
2

—E} I+ A ) + <2><x)]{ﬂ<x)&<x)}, (18)

2h )‘1333P
a=—>51\—,
)\IB mpg
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where
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=sgn(\
¥ =sgn( IB)( )\?BmB

We treat the resulting Hamiltonian (18) with a Bogoliu-
bov approximation [18]: First, we solve the mean-field
equations, then we construct the quantum fluctuations around
the mean-field solutions. To this end, we expand the field
operators as

B(x) = do(x) + 5h(x),

Jlx) = (%) + SY(x). (20)

In zeroth order in the 8¢ and 5;& operators, one obtains the
mean-field equations,

7.
[ o, a} bo(x) + Ah()* =0,

B 2mB

(92 *
{— ? + 7{¢0(x) + qﬁo(x)}} Yo(x) = Egy(x), 1)

identical to Egs. (6) and (7), written in the units of
Eq. (14).

While the mean-field description of coupled atomic-
molecular BECs gives solitonic solutions that are identical
to Eq. (13) [10,11], the Hamiltonian of the atomic-molecular
BECs is different from Eqg. (18). The coupled
atomic-molecular BEC Hamiltonian contains terms that
convert molecules into atoms and vice versa, rather than

the interaction term y[&*(x)+<$(x)]fﬂ(x) fﬂ(x). The latter
term can be found in models where bosonic particles 12/ feel a
long-range force caused by the exchange of a mesonlike
particle ¢ [11].

Given that i;(x) and ¢y(x) satisfy the mean-field equa-
tions (21), the first-order terms in the ¢ and 51;0 operators

cancel. The second-order term gives an effective Hamil-
tonian that takes the form
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The problem of diagonalizing Hamiltonian (22) reduces
to the problem of diagonalizing the non-Hermitian operator
L (i.e., to solving equations of the Bogoliubov-de Gennes
type). The L—operator possesses two symmetries (similar to
the symmetries of the original Bogoliubov-de Gennes
equations [19]),

Ml£M1 =- E*,
M3£l/l3 = ET, (25)
where
g 0 oy 0
up= , U= , (26)
0 gy 0 g3
and

01 1
7\ o) BT\

are the first and third Pauli matrices, respectively.
Suppose that all eigenvalues of the L—operator are real.
Symmetries (25) imply that if

0) )
) (27)

et
vl
uy |
[vl)

is a right eigenvector of the L-operator with eigenvalue g,
then [Wi)=us|WF) is a left eigenvector of the same eigen-
value &, and u, | \I’f*) is a right eigenvector with eigenvalue
—&;. Except for the eigenstates corresponding to zero eigen-
value, the eigenstates of the L—operator can be divided into
two families “+” and “-",

Ry = (28)
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(WRus| WEY = £ 840 (29)

We apply the Bogoliubov transformation,

Sp(x)

o

NS B+ B @1 G0
Olx) | kv

8/ (x)

with quasi-particle operators that can be written as

bi== P8 + w18 - F 19 + @l 18,

b= (ul|®) - wl1dH + @y - P, (31)

and that fulfill the
[l;k,l;z,]z s~ This transformation gives an effective Hamil-
tonian that is diagonal

bosonic commutation relation

A

Heffx E Skl;zgk' (32)

ke“s”

To obtain the energy eigenvalues and eigenstates of effec-
tive Hamiltonian (22), one has to solve mean-field equations
(21), then diagonalize operator (23). For a specific value of
the average BEC-density, given by Eq. (11), we obtain soli-
tonic solution (13) of the mean-field equations. In that case,
the eigenstates of the L—operator corresponding to the zero
eigenvalue take on the form

0 | m
0 2m1

M /
cosh_z( —x) , s
6 2m1

M sgn(A\
—cosh'z(\lgx) gn(m)

sgn(\p)

M
&xcosh‘z( —x) R
6

(33)

where the first eigenvector corresponds to the breaking of the
U(1) symmetry in the BEC-Bogoliubov theory [19], while
the second eigenvector corresponds to the breaking of the
translational symmetry, indicating that the translation of the
soliton costs no energy. There is another zero-momentum
eigenstate which has a nonzero eigenvalue. This eigenvalue
and its eigenvector take on simple analytical forms:
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sgn(A;p)

M 3 M 1
g=—d  wRe=| = \/ @cosh‘z( \/ —x) -,
3 IM
-— Ecosh_2< —x)
2 2m1 6
where L is the size of the 1D box. Other eigenstates can be

found numerically. In the next section, we present numerical
results for realistic parameter values.

(34)

IV. NUMERICAL RESULTS

We consider eight impurity Rb atoms, i.e., M=8, im-
mersed in a BEC of *Na atoms in an elongated trap that is a
box in the axial direction, while in the transverse directions
there is a harmonic trap of frequency w,. The transverse
w, -confinement is so strong that only the ground states of
the transverse degrees of freedom are relevant. In this
quasi-1D regime, the system is effectively 1D and confined
by a 1D-box potential. The coupling constants of Hamil-
tonian (1) read

1 1 1
g =27h%a <—+—>—=2ﬁw ag,
IB B m " my 77(0%+0'?) 14

4’7Tﬁ2aBB 1

ANgg = —=2h s 35
BB 2770% W, dpp (35)

mpg

where the s-wave scattering lengths agg=3.4 nm and
a;p=16.7nm [20]. The opz=\fi/mgzw, and o;=\h/mw,
lengths represent the ground state extents of a single BEC-
boson particle and of a single impurity atom confined by the
two-dimensional harmonic trap in the transverse direction
with frequency w,. We take the transverse trapping fre-
quency to be equal to w; =27 X500 Hz. Assuming that the
size of the box in the longitudinal direction is equal to
100 wm (in units (14), this length corresponds to a box size
L~ 80), we confine 11,000 atoms in the BEC. These param-
eters correspond to the specific value of the condensate den-
sity (11) and are well within the experimental range [16].

Figure 1 shows the excitation spectra that were calculated
numerically with periodic boundary conditions. Note that the
dispersion shows two branches. Each excitation of the lower
branch delocalizes an impurity atom, except for the very
lowest level, which corresponds to an excitation that leaves
the impurity atom localized, as shown in Fig. 2. The upper
branch corresponds to particlelike BEC excitations, in which
the impurity remains localized, as shown in Fig. 3. The high-
est curves of Fig. 3 show the mode of Eq. (34). In Fig. 1, we
have also plotted the BEC spectrum calculated within the
Hartree-Fock approximation [18],
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FIG. 1. Excitation spectrum of the quasi-1D 2Na BEC with
eight ®Rb atom impurities, in the energy units of Eq. (14). The
upper branch corresponds to BEC-particlelike excitations, while the
impurities remain localized. This branch coincides with the Hartree-
Fock spectrum of the BEC without the impurity atoms (diamonds)
given by Eq. (36). The lower branch corresponds to excitations that
delocalize the impurity atoms (except for the lowest-energy level,
as can be seen in Fig. 2). Circles denote even solutions and crosses
show solutions of odd symmetry.

SHF=ﬂ|:En2+M:|, (36)

where n=0,1,... Actually, to obtain Eq. (36), we have used
Hamiltonian (18) in which we neglected terms involving the
i(x) operator. The Hartree-Fock spectrum (36) provides the
relevant comparison for the model since the terms neglected
in Eq. (17) correspond to the Hartree-Fock description of the
single BEC. Figure 1 shows that the upper energy branch is
nearly identical to the Hartree-Fock BEC spectrum in the
absence of impurities. The lower energy branch describes
0.2 ‘ ‘ e 0.6 :

) J\, ) JV\ - (b)

-0.2 + + + -0.6 t t t
0.002+ J\( (c) o2t (d)
0

0
5
Z 00021 ; § § { -02F } } : &
g 0.0021 (e) o2} (f)
0 W{L 0
0,002+ { 02} 1
0.004 (g) o2k @
0 0
-0.004 + 1 02+ d
40 20 0 20 40 40 20 0 20 40
X X

FIG. 2. The eigenstates of the L-operator, Eq. (23), correspond-
ing to the lower-energy branch of the Hamiltonian (32), see Fig. 1.
Left column is related to condensate modes, i.e., u,‘f’ (solid lines) and
v,‘f’ (dashed lines — hardly visible behind the solid lines), while the
right column is related to impurities modes, i.e., u,'f’ (solid lines) and
v,‘f’ (dashed lines). There are four lowest-energy eigenstates pre-
sented in the figure, i.e., (a)-(b) is the lowest one, (c)-(d), (e)-(f),
and (g)-(h) are shown in order of increasing energy. The states
describe the excitation of eight self-localized 8Rb atoms embedded
in a quasi-1D *Na BEC.
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FIG. 3. The same as in Fig. 2 but for the upper energy branch of
the Hamiltonian (32), see Fig. 1. The modes shown in panels (a)-(b)
correspond to the solution given by Eq. (34).

impurity excitations with negligible excitation of the BEC,
see Fig. 2). We interpret the energy gap in the lower-energy
branch (as the wave number tends to zero) as the minimal
energy needed to break the self-localization bond of the
many-body BEC-impurity system. This gap is then a charac-
teristic feature of impurity self-localization. Its detection by
means of Bragg spectroscopy [21], for instance, can serve as
a smoking-gun signal for the observation of BEC-impurity
self-localization.

The ground state of the system is the Bogoliubov vacuum

state |0), i.e., the state annihilated by all I;k operators in Eq.
(31). We can estimate the quantum fluctuation corrections to
the product state by calculating the density of the impurity
atoms:

(0147 (x) g(x)]0) = ¥ (x) + (0| 8/ (x) 39x)[0) = Y (x)
+ > [P (37)

ke“y”

In Fig. 4, we plot %(x) and Ek[v,‘f’(x)]z. The quantum fluc-
tuation contribution to the impurity density is

7 160
67 1 T \i{ T (b)
g 1120 1
2
£y 80
27 40, -
1,
0z % % g')( 2040

FIG. 4. Panel (a): solid line denotes the density of the
impurity atoms, gl/g(x), calculated within the product state
ansatz, dashed line is the correction to this density, i.e.
(0] &,Af(x) &/A/(x) | 0>=Ek[vZ’(x)]2, obtained within the formalism that
goes beyond the product state approximation. Panel (b): BEC den-
sity given by Eq. (39). The results are related to eight %Rb atoms
immersed in a BEC of *Na atoms. The length is given in the units
of Eq. (14).
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FIG. 5. Integral (38) [panel (a)] and condensate depletion
[panel (b)] as a function of the impurity mass m;. Note that the
maximal values of the C,, and condensate depletion correspond to
m,/ mBZOS

C¢=fdx > [0 =0231, (38)

ke“s”

as compared to the value of 8§ for the integral of (ﬂzo(x), which
shows that the fluctuation corrections to the product state are
not insignificant. In the case of a single impurity, i.e., M=1,
keeping the other parameters fixed, C;,=0.30 and the fluctua-
tion corrections turn out to be more dramatic. The conden-
sate density (see Fig. 4) reads:

(0167 (x)$(0)|0) = [\xop + o) |* + (0] 5 (x) 5h(x) 0
~ xop + 2\xopeho(x), (39)

where we have introduced approximations due to the facts
that ¢y(x)/ Vxop=<0.083 [that also justify the linearization (5)
or (16)] and (0| 5¢7(0) 5¢(0)|0)/ $3(0) =0.03.

Decreasing the mass of the impurity atom, while
keeping all other parameters fixed, integral (38) and the BEC
depletion increase and reach their maximal values for
m;/mg=0.5, see Fig. 5. This shows that when the impurity
mass is half that of the BEC-bosons, the product state ap-
proximation needs the largest corrections. Qualitatively, this
behavior agrees with the time scale separation argument,
which predicts that the large and small mass ratio regimes
are well described by a product state [4].

V. CONCLUSIONS

We have considered the self-localization of neutral
bosonic impurity atoms embedded in a dilute gas Bose-
Einstein condensate in a 1D model. We have analyzed the
system within a Bogoliubov formalism that describes the
quantum fluctuations around the strong coupling product
state approximation previously made in the cold-atom litera-
ture [1,2]. Our description gives an excitation spectrum that
consists of two branches. The lower-energy branch corre-
sponds to excitations that delocalize the impurity atoms
(with the exception of the lowest-energy excitation). The
higher-energy branch corresponds to BEC-particlelike exci-
tations (and coincides, in our approximation, with the
Hartree-Fock spectrum of the BEC in the absence of the
impurity atoms), while the impurities remain self-localized.
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The energy gap in the lower-energy branch (i.e., the branch
that corresponds to the excitation of impurity atoms with
negligible excitation of the BEC) suggests a spectroscopic
means (Bragg spectroscopy [21]) for detecting BEC-
impurity self-localization.

The parameters of our calculation are well within the ex-
perimental range. An extension of this approach to the three-
dimensional BEC-impurity system appears straightforward.
One can extend the formalism to account for the presence of
a larger number of impurity atoms by including a nonlinear
term in Hamiltonian (1) to account for interactions among
the impurity atoms. Also, the depletion of the BEC caused by
the interactions among condensate particles (neglected in the
present calculations) can be included.

Furthermore, our calculations reveal the close analogy of
1D BEC-impurity self-localization with parametric solitons

PHYSICAL REVIEW A 73, 063604 (2006)

known in nonlinear optics [5,6], in the Schrddinger-Newton
model [7-9], and in the coupled atomic-molecular BEC sys-
tem [10,11]. The problem of impurity atoms immersed in an
atomic BEC offers intriguing opportunities for experimen-
tally realizing the phenomena predicted in these fields.
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