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A robust scheme for trapping and cooling atoms is described. It combines a deep dipole-trap which localizes
the atom in the center of a cavity with a laser directly exciting the atom. In that way one obtains three-
dimensional cooling while the atom is dipole-trapped. In particular, we identify a cooling force along the large
spatial modulations of the trap. A feature of this setup, with respect to a dipole trap alone, is that all cooling
forces keep a constant amplitude if the trap depth is increased simultaneously with the intensity of the probe
laser. No strong coupling is required, which makes such a technique experimentally attractive. Several ana-
lytical expressions for the cooling forces and heating rates are derived and interpreted by analogy to ordinary
laser cooling.
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I. INTRODUCTION

Optical dipole-force traps can be used to hold and ma-
nipulate atoms. They allow for a deep confinement of atoms
but provide no significant cooling �1�. Often, lifetimes of
particles in optical traps are limited by intensity fluctuations
of the trapping beam rather than by background gas colli-
sions. In order to lower the temperature and improve the
storage times of particles in optical traps, one can apply extra
cooling lasers. Here we show that the addition of only one
cooling laser and an optical cavity leads to cooling forces in
all directions. Those forces can be made independent of the
trap depth by increasing the intensity of the cooling laser
accordingly. This makes such a scheme particularly attractive
as it combines deep confinement of particles and a persistent
cooling mechanism. This configuration and related others
techniques �2–11� �see also references therein� are of particu-
lar interest for laser cooling and trapping of particles.

The simplest cooling mechanism works as follows. The
setup is depicted in Fig. 1, where two mirrors surround a
trapped atom that is directly excited by a laser. Although the
atomic resonances could be detuned from the pump laser, if a
cavity frequency �cav is close to that of the laser �L, the
atom will act as a mediator that efficiently transfers the ra-
diation field from the laser into the cavity. This gives rise to
a two-dimensional force acting along the laser and cavity
axis �2,3�. This force cools the particle’s motion if the cavity
accepts photons with a frequency that is higher than the ones
absorbed from the laser. We show here, the trap also induces
a cavity-dependent cooling force, mainly oriented along the
most tightly confining direction �i.e., the “trap axis”�. In
sharp contrast to a dipole trap alone, or a dipole trap with a
cooling laser �12�, such a cooling force can be made insen-
sitive to the trap depth. In the simplest picture, the trap spa-
tially modulates the internal energy levels of the atom �ac
Stark shifts�. An atom moving in the trap will hence see its
internal energy levels modified. This leads to a spatial varia-
tion of its dipole moment, resulting in a variation of the

radiation field being scattered into the cavity. This change in
the cavity field is sensed by the atom and gives rise to a third
cooling force, now directed along the trap axis.

Thus, with a three-dimensional arrangement of one pump
laser, a cavity and a trapping potential, one obtains cooling in
three dimensions. For a deep enough trap, these forces are
mainly determined by the cavity characteristics: The cooling
forces show a constant magnitude if one simultaneously in-
creases the trap depth and the power of the pump laser such
that the excitation probability is kept constant. This idea has
been applied to explain the very long trapping times reported
in a recent experiment �13�. The success of that experiment
essentially relies on the presence of the trap. The cooling
force along the standing wave dipole-trap axis has a major
contribution because the atom was loaded into the cavity
along that axis, and hence had the largest velocity compo-
nent. The reported storage times are much longer than those
obtained in a one-dimensional geometry, where the cavity is
excited and where a dipole trap is created by the intracavity
field �4,5,14–16�. In the experiment �13� an atom entering
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FIG. 1. �Color online� Sketch for the trapping of atoms at the
center of a cavity with a near-resonant pump laser. The atom excited
by the pump scatters photons into the cavity and experiences cool-
ing forces in three dimensions due to the trap and the cavity. Cool-
ing along the trap is cavity-induced and largely dependent on the
cavity characteristics.
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the cavity is caught and cooled by scattering photons at a low
but constant rate into the cavity, indicating a strong localiza-
tion.

This paper provides and extends the theory highlighted in
�13�. The extension takes into account all the higher orders in
the coupling g between the atom and the cavity field. Our
theoretical approach follows from a combination of �4,5,12�,
where a trap is introduced, and �7–9� where an extension of
Refs. �2,3� to all orders in the coupling is treated �but at low
atomic velocity�. A setup close to ours has been discussed
recently for the study of the quantum motion �11�. The dif-
ferences are, however, �i� that we consider a more general
trap �this distinction is at the origin of the above-mentioned
trap-induced cooling force�, and �ii� that we treat the motion
classically. The difficulty so far encountered in most works is
that the cooling forces and their fluctuations exhibit non-
trivial structures, making a quantitative understanding diffi-
cult. A general and simple solution for the diffusion �due to
light-force fluctuations� exists �17�. Here we provide a de-
tailed discussion specific to our scheme. Several approxima-
tions for the cooling forces are given with different pictures.
In particular, we give a straightforward equation for the cool-
ing force in the regime studied in �8� and show that the
resonance reported there has a natural correspondence to the
case where the cavity is excited. For those reasons the paper
draws a constant parallel to free-space laser cooling theory,
starting from the simplest limit �2,3,13� to extended ones as
we include higher orders in the coupling between atom and
cavity. The paper is thus organized as follows: After intro-
ducing the model in Sec. II, we focus on the low saturation
limit in Sec. III and write the needed Maxwell-Bloch equa-
tions. In Sec. IV we discuss in detail the steady-state quan-
tities for an atom at rest, photon number, excitation probabil-
ity, and forces. Those quantities are mathematically
manipulated and written in different ways, which makes Sec.
IV important for the understanding of the cooling forces.
Those cooling forces are then addressed in Sec. V, starting
from the simplest approximations to the exact �low satura-
tion� solutions. The momentum diffusion and attainable tem-
perature are then discussed.

Generalized cooperativity parameter

The cooperativity parameter C=g2 /2�� has an important
role in cavity QED. Here g is the coupling between atom and
cavity, 1 /2� the lifetime of the atom’s upper state, and 1/2�
that of a cavity photon. That parameter indicates how much
the atom reacts to the mode and vice versa. Since C is inde-
pendent of the frequency of any laser, it shows obvious limi-
tations when the system is explored as a function of the
atomic detuning �a and cavity detuning �c �those detunings
are properly defined in the next section�. It is more conve-
nient to introduce the dimensionless parameter �:

� =
g2�r�

��a�r� − i����c − i��
, �1�

which is a generalization of C. As we shall see, the advan-
tage is not only that the equations become transparent, but
they also lead to a straightforward understanding of the pres-

ence of the cavity. Although � is a complex number, its es-
timation is easy. For instance, for large detunings �a�� one
has �� � �g2 /�a� evaluated for �c=0. Therefore one can ne-
glect � for �a�g2 /�. As shown below, such a limit �� �
→0 of “low �generalized� cooperativity” corresponds to the
theories in �2,3,13�. The other limit we are concerned with is
��1. Ignoring �� ,��, the limit �→1 is reached for �a�c

→g2. But that condition corresponds to driving the lowest
manifold of the �atom-cavity� dressed states into resonance,
which means that higher orders in the coupling g are in-
volved �actually one can show that �=1 strictly implies
�a�c=g2 and �=�=0�. Those two limits lead to expressions
for the cooling forces that have a common form in all direc-
tions. The parameter � is discussed in more detail in Ref. �6�
where interpretations and general properties are described.

II. TRAPPED ATOM COUPLED TO A SINGLE CAVITY
MODE AND A NEAR RESONANT LASER

We begin with the Jaynes-Cummings Hamiltonian for a
two-state atom of momentum p and mass m, with lowering
operator �, coupled to a single cavity mode with creation
operator a†, and we add a trap and a laser which directly
excites the atom:

H/ � =
p2

2m�
+ �a�r��†� − 	�r��† − 	*�r�� + �ca

†a + g�r�


�a�† + a†�� + U�r� . �2�

Here, 2g is the atom-cavity vacuum Rabi frequency. We have
assumed the rotating wave approximation and written the
Hamiltonian in the interaction picture with respect to the
laser frequency �L. The atom is coherently excited by a laser
�running wave, standing wave, or other� where 2 �	�r�� is the
corresponding Rabi frequency. While we also treat the
standing-wave case, we focus more on a running wave laser
representing photons propagating with momenta �kL �	�r�
=	0eikL·r�. The optical lattice is generated by a far-detuned
laser standing wave. Such a trap is assumed unperturbed by
the presence of both the atom and the near resonant laser. Its
effect is to modulate in space the upper state energy by the
amount �Ve�r� and the ground state by �Vg�r� �4,5,12�. Rela-
tive to the ground state, such an ac Stark shift leads to a shift
��S= � �Ve�r�−Vg�r�� and to a conservative potential �U�r�
= �Vg�r�. If the detuning between the �unperturbed� atom
and the laser is �eg−�L, the effect of the trap is contained in
the effective total detuning �a�r�=�eg−�L+�S�r�. The laser
light is near resonant to a cavity mode of frequency �cav, but
can be detuned from it by the amount �c=�cav−�L. The
master equation describing the evolution of the reduced den-
sity matrix � for the atom-cavity-mode system accounts for
the loss mechanisms �atom and cavity decay�:

�̇ = L� = − i�H,��/ � + �La� + �L�� , �3�

with
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La� = 2a�a† − �a†a − a†a� ,

L�� = 2� d2k̂N�k̂�e−ik·r���†e+ik·r − ��†� − �†�� ,

where k̂=k /k �k=�eg /c, recall that �eg is an atomic transi-
tion frequency� is the direction of spontaneously emitted

photons, with the �dipole� angular distribution N�k̂�
��d2k̂N�k̂�=1�. The dissipative term �L�� describes the cou-
pling of the atom to a continuum of initially empty modes
other than the cavity one. The �spontaneous� emission into
the vacuum modes results in a force, which vanishes on av-
erage due to equal distribution of spontaneously emitted pho-

tons in opposite directions �d2k̂kN�k̂�=0. The fluctuations of
that force contribute, however, to the diffusion through the
so-called spontaneous emission term �18�. In the following
we evaluate the force �=−�H and the diffusion in the low
saturation regime by studying the Heisenberg equations of
motion.

III. MAXWELL-BLOCH EQUATIONS
AT LOW SATURATION

We focus on the low saturation limit, more precisely we
identify the internal state of the atom with a harmonic oscil-
lator �� ,�†�→1. Most of the experiments and theories have
dealt with that limit �otherwise see �6,19,20��. In that ap-
proximation the atom spends most of its time in the ground
state such that one can assume equally separated fictitious
higher states other than the ground and excited states. Notice
that even at low saturation, such an approximation of an
atom treated as a dipole oscillator might be insufficient. For
example, in �13� a Sisyphus mechanism has been identified,
and this is due to saturation effects. A general method to
obtain such kind of a saturation-induced force is presented in

�6�. By writing the time evolution of any operator O, 	Ȯ
�

=tr�O�̇�, the first two Maxwell-Bloch equations read:

d

dt
	�
� = − i�̃a�	�
� +

g

�̃a

	a
� −
	

�̃a
� , �4a�

d

dt
	a
� = − i�̃c�	a
� +

g

�̃c

	�
�� . �4b�

The approximation of a harmonic oscillator is here visible
only through the equation of evolution of 	�
�, where we
have substituted g	a��†�−��†�
�→−g	a
�. The complex
detunings

�̃a = �a�r� − i�, �̃c = �c − i� , �5�

lead to simplifications of the equations and will be used for
intermediate calculations.

Below we first assume the atom to be at rest and extract
the needed information about the light coming out through
the cavity mirrors, the emission rate into free space, and on
the forces. We then assume that the atom moves slowly

enough kLv� �� ,�� such that it is possible to expand the
force up to first order in the velocity v, to obtain the friction
force.

IV. STEADY STATE FOR AN ATOM AT REST

A. Excitation probability and cavity-photon number

For an atom at rest, the expectation values are labeled
without the index “�.” One can understand the effects of the
cavity by the following arguments. It is first assumed that the
cavity is absent g=0, and that there is no trap ��S=0,U�r�
=0�. The atom absorbs photons from the laser and emits
them in all directions. This scattering process leads to a sta-
tionary excitation probability Pe= 	�†�
 of the upper state
�e
. The dynamics are given by the familiar Bloch equations,
which in the harmonic limit reduce to Eq. �4a�, and hence
give the steady-state optical coherence 	�
 free=	 / �̃a and the
occupation probability Pe

free��	�
 free�2. The superscript
“free” refers to the absence of a cavity �free space�. If now
the trap is switched on and if the atom sits at the bottom of
the well, the excitation probability decreases due to an in-
crease of the �effective� Stark-shifted detuning ��a�r� � ��.
The excitation probability has, however, the same math-
ematical form as before, but accounts now for the position
dependence in �a�r�:

Pe
free =

�	�r��2

�a
2�r� + �2 . �6�

As a function of �a, this is the familiar Lorentz absorption
curve for an atom in free space �21�.

By adding the cavity g�0, the atom coherently emits and
absorbs cavity photons before either the atom irreversibly
emits the radiation into free space or a cavity photon escapes
from the mirrors. The excitation probability Pe� Pe

free is now
changed due to the presence of a field inside the cavity 	a

�0. From Eq. �4a�, in steady state the optical coherence is in
fact given by the total effective field 	−g	a
 the atom inter-
acts with: 	�
= �	−g	a
� / ��a− i��. The cavity field which is
created by the presence of the atom is in turn given by Eq.
�4b� 	a
=−g	�
 / ��c− i��. Eliminating the field amplitude
	a
 in the equation giving 	�
, leads to the simple equation:

	�
 = 	/�̃a + �	�
 . �7�

Since 	 / �̃a= 	�
 free, we conclude that the presence of the
cavity is entirely contained in the parameter �, Eq. �1�. Made
explicit, the atomic expectation values read:

	�
 =
	�r�

�a�r� − i�

1

1 − ��r�
, �8a�

Pe =
�	�r��2

�a
2�r� + �2

1

�1 − ��r��2
. �8b�

The cavity-field amplitude 	a
=−g	�
 / �̃c and cavity
photon number Ncav= 	a†a
��	a
�2 then read with the use of
Eqs. �8�:
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	a
 = −
g

��c − i��
	�r�

��a�r� − i��
1

1 − ��r�
, �9a�

Ncav =
g2�r�

�c
2 + �2 Pe. �9b�

In the limit of large detuning �a, ��1/�a�1, thus Pe
� Pe

free. This means that the emission rate of photons from
the cavity �2�Ncav is a Lorentz curve as a function of the
cavity detuning �c �9b� �the atomic excitation �8b� is unaf-
fected by the cavity as it reduces to Eq. �6��. The approxi-
mation �→0 is met if either �a is large, the cavity is far
detuned with respect to the laser, or dissipation is large
�� ,���g. Of course, this is relative to the strength of the
coupling g between atom and cavity. For example, for strong
coupling and a cavity on resonance with the laser �c=0, the
trap should be sufficiently deep ��a � �g2 /� in order to ne-
glect the back action �7� of the cavity-mode on the atom, and
vice versa �2,3,13�.

In order to get other physical pictures as well as transpar-
ent equations, one introduces the effective detuning �a,eff
=Re��̃a�1−��� and decay rate eff=−Im��̃a�1−���:

�a,eff�r� = �a�r� −
g2�r�

�c
2 + �2�c, �10a�

eff�r� = � +
g2�r�

�c
2 + �2� . �10b�

In that picture the excitation probability becomes Pe
= �	�2 / ��a,eff

2 +eff
2 �, which when compared to Eq. �6� indi-

cates that the presence of the cavity induces �i� a light shift,
i.e., one substitutes �a→�a,eff, and �ii� for a broadening of
the atom’s line width 2�→2eff. In particular, for �c=0,
eff=��1+2C� is expressed in terms of the Purcell factor
1+g2 /��. Similarly the effective cavity detuning
�c,eff=Re��̃c�1−��� and decay rate Keff=−Im��̃c�1−��� are
introduced:

�c,eff�r� = �c −
g2�r�

�a�r�2 + �2�a�r� , �11a�

Keff�r� = � +
g2�r�

�a�r�2 + �2� . �11b�

Notice that, with these new variables, the cavity photon
number Ncav=g2Pe

free / ��c,eff
2 +Keff

2 � refers to the free space
excitation probability Pe

free instead of Pe. In that picture the
atom acts like a refractive index which shifts the cavity reso-
nance �c→�c,eff, and broadens the Lorentz cavity profile �
→Keff. For �→0, ��c,eff ,Keff� reduce to ��c ,��. The cavity
photon number is plotted in Fig. 2. One sees that the main
difference between having cooperative effects or not �� large
or small� is that already for an atom at rest the scattering rate
into the cavity is no longer maximum for a cavity on reso-
nance �c=0.

B. Dipole-trap force, cavity force, and laser-pump force

The force acting on the atom has three components:
�=−�H=�trap+�pump+�cav,

�trap/ � = − ���a�r���†� − �U�r� ,

�pump/ � = + ��	�r���† + ��	*�r��� ,

�cav/ � = − ��g�r���a�† + a†�� . �12�

The naming of those forces should not bring to the conclu-
sion that they, respectively, act only along the trap, the pump,
and the cavity axis. The labeling only refers to the gradients
of the spatial modulations of the ac Stark shift, the coupling
	, and the cavity coupling g. However, those forces are
dominant along the respective axis; we shall refer to them in
that sense. The mean force F= 	�
 �Eq. �12�� for an atom at
rest can be obtained from the steady-state expectation values
�8� and �9�. The mean force along the trap reads

Ftrap = − ����a�Pe − � �U , �13a�

and is at low excitation Pe�1 largely independent from the
presence of the cavity Ftrap�−��U�r�, which confines the
atom.

The force along the near-resonant running-wave laser is
analogous to the familiar radiation pressure �1,21�. We here
write it in two ways, by using Eqs. �8a�, �10�, and �8b�:

Fpump = � kL2effPe = � kL�2�Pe + 2�Ncav� . �13b�

The first equation shows that the radiation pressure is pro-
portional to the enhanced decay rate eff �Eq. �10b��. The
picture is that of an effective atom experiencing only “spon-

FIG. 2. Cavity-photon count rate ��2�Ncav� at the output of one
mirror as a function of the cavity detuning �c. The vertical scaling
is arbitrary �Ncav� �	�r��2�. The count rate �solid� is centered around
g2�a / ��a

2+�2�, which corresponds to �c,eff=0, and is here shifted
by several cavity line widths �. Cooling occurs on the right side of
that curve �c,eff�0, and is optimum for �c,eff�Keff. The dashed
curve �2,3,13� reflects the limit �→0, reached for �a�g2 /�, rep-
resenting a Lorentz curve as if an empty cavity is excited through
one of the cavity mirrors.
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taneous emission,” occurring at a rate 2effPe, as in free
space �1�. The second equation shows that the radiation pres-
sure is proportional to the total photon loss rate 2�Pe
+2�Ncav. The difference between that expression and the
free space one �kL2�Pe

free is the presence of the cavity-
photon loss rate 2�Ncav, and the fact that Pe is evaluated
taking the cavity into account. Actually one can say that the
atom experiences a radiation pressure proportional to the
number of photons that are absorbed per unit time by the
atom-cavity system. That static force tends to expel the atom
out of the trap. It can be circumvented either by increasing
the trap depth, such that the atom oscillates in the trap, or it
can be balanced by a counterpropagating pump beam. For a
laser standing-wave 	�r�=	0 cos�kL ·r�, or for any real func-
tion 	�r�, one has Fpump=2�	��	��a,eff / ��a,eff

2 +eff
2 �,

which again presents a similarity with the dipole force in free
space upon the substitution ��a,eff ,eff�→ ��a ,��. To avoid
additional complexity due to the structure of a standing-wave
pump laser, it is reasonable to use orthogonal polarizations
for the two counterpropagating beams. In Ref. �13� the laser
is retroreflected with orthogonal linear-polarizations, i.e., in a
lin � lin configuration. With the present model it is possible
to understand quantitatively the basic features of the cooling
process in the initial stage, until a temperature of kBT
� �� /2 is reached.

There is also a simple analogy with respect to the dipole
force in free space for the force along the cavity axis:

Fcav = 2���g�g
�c

�c
2 + �2 Pe. �13c�

That force can be derived from a potential. For �→0, it can
be understood as follows. From Eq. �10a� the atom in the
cavity experiences a cavity-induced Stark shift �S

cav�r�
=−g2�r��c / ��c

2+�2�, which acts as a trap along the cavity
axis Fcav�−����S

cavPe
free� �Pe� Pe

free=const�. The cavity
thus provides a trap for �c�0, Ucav=�S

cavPe
free, where the

cooling also operates. That trap is deepest for �c=� where it
reaches the value Ucav=−g2 /2�Pe

free. Such a cavity-induced
light shift can take values in the range of megahertz, e.g., in
current cavities �19,22� Ucav /2�= �426,91�
 Pe MHz.

V. COOLING FORCES

For the cooling forces we use the label “v.” The friction
force is obtained by expanding the force up to first order in
the velocity. If the atom moves slowly, the internal variables
	�
� , 	a
� can be expanded 	�
�= 	�
+�v , 	a
�= 	a
+av,
where ��v ,av� are the displacements with respect to the val-
ues for an atom at rest. The equation for the friction tensor is
long and derived in Appendix A. Here we start from the low
cooperativity limit �→0 before proceeding to a higher co-
operativity, and focus on the diagonal elements of the friction
tensor. We then discuss the exact expressions of the forces
along the pump and trap axis and extract a picture in terms of
the dressed states. We then end with the case �c=0 where all
forces present a compact form. The reader interested on the
exact expressions of those cooling forces could therefore
jump directly to Secs. V E and V F.

A. Preliminary discussion

In free space an atom “sees” counterpropagating photons
with a higher frequency, i.e., they are blue to the atom. Oth-
erwise, the photons appear red. This is of course the familiar
Doppler effect which corresponds to shifting the photons fre-
quency �L by the amount kL ·v. In Doppler cooling the laser
is tuned below the natural frequency �eg of the atom, i.e.,
�a=�eg−�L�0. In this case the counterpropagating atom
resonantly absorbs the laser photons �a+kL ·v�0. The Lor-
entz absorption curve �6� is then expanded to first order in
velocity after the substitution �a→�a+kL ·v, giving a fric-
tion force scaling like the slope of the Lorentz profile,
��a / ��a

2+�2�2. Now, this simple substitution �a→�a

+kL ·v is an incorrect procedure when the laser light is a
standing wave �21�. This substitution makes sense only when
the force is averaged over a spatial period, and for vanishing
saturation. Physically, by averaging, interferences between
the two running waves forming the standing wave vanish,
and one can view the force by adding the independent con-
tributions of the two running waves. The same problem is
encountered if one considers the waist of the laser light.
When moving into the cavity setting, the same problem
arises, partly due to the standing wave structure of the cavity
mode. Regardless of this problem, for a dipole oscillator, and
in a standing wave, the friction force still scales like
��a / ��a

2+�2�2. We interpret below the cooling forces by ref-
erence to such a common structure.

B. Cooling forces in the limit �a  �g2 /�

Although in that limit one has Pe� Pe
free, for later gener-

alization the expressions below are written either in terms of
Pe

free or Pe. The friction force along the near-resonant laser
takes the simple form �neglecting the free-space term�

Fpump
v = − 4 � kL�kL · v�

��c

��c
2 + �2�2g2Pe

free. �14a�

If a laser standing wave is used, or for any real function 	�r�,
one would substitute in that equation kL→ ��	� /	 �notice
that Pe

free� �	�2�. Friction along the near-resonant laser is
caused by preferential absorption of photons traveling in the
direction opposite to the atom. The Doppler effect shifts
these photons towards the blue by kL ·v, such that the
coupled atom-cavity system resonantly absorbs counter-
propagating pump photons. This expression can be retrieved
with the substitution �c→�c+kL ·v in the photon number
�9b� ��→0, Pe� Pe

free�, which gives the slope of the cavity
photon loss rate 2�Ncav in Eq. �13b�.

A similar emission-based friction force acts along the
resonator axis. Photons emitted into the direction of motion
are blue detuned with respect to the laser. By recoil, these
forward emissions also cool the atomic motion. If now the
cavity is blue detuned, the emissions into the direction of
motion are favored, and hence the atom is cooled along the
cavity axis
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Fcav
v = − 4 � �g��g · v�

��c

��c
2 + �2�2 Pe. �14b�

This simple picture ignores interferences that are at the ori-
gin of the spatial modulation of the cavity field. It holds true,
however, if that equation is averaged over a spatial period of
the cavity axis.

The two above forces are seen as due to Doppler effects,
but they have a common origin, namely the dependency of
the amplitude of the cavity field on the atomic position. As
the atom moves slowly, both the amplitude 	a
�= 	a
+av of
the field and the atomic coherence 	�
�= 	�
+�v vary by the
small amounts av and �v, respectively, and vary faster than
the atomic external degrees of freedom. Neglecting the varia-
tion of the atomic dipole to the evolution of the cavity field,
the equation of evolution for 	a
� �4b� can be written as if the

atom is at rest 	a
˙
��−i�̃c�	a
�− 	a
�=−i�̃cav. The rate of

variation 	a
˙
� can also be expressed by the small displace-

ment of the atom’s center of mass 	a
˙
�=v ·�	a
��v ·�	a
.

The variation of the amplitude of the field thus reads av
=−v ·�	a
 / i�̃c. Since the atom is detuned, its internal vari-
ables oscillate so rapidly such that one can assume that they
adapt instantaneously to the variations of the cavity field, i.e.,
�v=−�g / �̃a�av �Eq. �4a��. By noting that 	a
=−g	�
 / �̃c,
	�
�	 / �̃a and for large �a, 1 / �̃a

2�1/ ��a
2+�2�, one obtains

from Eq. �12� the two friction forces above, depending on
which gradient is considered �	 or �g.

For the force along the trap the excitation prob-
ability 	�†�
� is linearized 	�
*�v+c.c., thus Ftrap

v =
−���a�	�
*�v+c.c.�. Isolating the variations along the trap
�	a
→��a� 	a
 /��a, one obtains the new force

Ftrap
v = − 4 � ��a���a · v�

��c

��c
2 + �2�2

g2Pe

�a
2 + �2 . �14c�

Notice that it acts along the steep trap-gradients, but is oth-
erwise governed by the cavity characteristics.

C. Orders of magnitude and comparison to Doppler cooling

All the forces above have the same order of magnitude
�for the evaluation ���a�2��a

2� and hence lead to symmetric
cooling for �c�0 in all three dimensions while the atom is
confined in the trap. It is clear from those equations that the
cooling forces can be maintained constant by increasing the
trap depth proportionally to the pump power such that Pe is
kept fixed. It is instructive to compare those forces with the
Doppler force:

Fv,free = − 4 � kL�kL · v�
��a

�a
2 + �2 Pe

free. �15�

In a trap and for �c=� the ratio between that force and the
ones above is on the order of g2�a / �4�2��=C�a /2�. This
factor is already 10 for reasonable parameters ��a ,�� /2�
= �100,5� MHz, C=1. This ratio becomes large in the strong
coupling regime. It makes explicit the fact that the free-space
cooling forces vanish for large detuning, while the cavity

forces are constant for a given excitation probability Pe.
Eventually, we compare the maximum free-space Doppler
cooling force, achieved for �a=� /�3, with that maximally
obtained in a cavity, for �c=� /�3. The ratio between the two
is now about g2 /�2, and could exceed unity by a large
amount.

D. Cooling forces for higher orders in g

We now consider the limits of strong coupling g
� �� ,� , ��c � � and small cavity detuning. Although not re-
stricted to, the approximations below are suited for regimes
�a�g. The equations above do not take into account the
complete structure of the atom-cavity system. Following
what is illustrated in Fig. 2, the presence of the atom can
significantly shift the cavity Lorentz curve and induce a
broadening, ��c ,��→ ��c,eff ,Keff� �Eqs. �11a� and �11b��. In
this limit one can simplify the equations from Appendix A to
obtain a new set of forces, now scaling with ��c,eff ,Keff�:

Fpump
v = − 4 � kL�kL · v�

Keff�c,eff

��c,eff
2 + Keff

2 �2g2Pe
free,

Fcav
v = − 4 � �g��g · v�

Keff�c,eff

��c,eff
2 + Keff

2 �2 Pe�1 + ��2,

Ftrap
v = − 4 � ��a���a · v�

Keff�c,eff

��c,eff
2 + Keff

2 �2

g2Pe

�a
2 + �2 . �16�

All these forces generalize the ones above, and apart from
the factor �1+��2, which reflects the fact that the force Fcav

v

depends on the mode and dipole operators, the forces present
the same structure as those before. In particular, cooling ap-
pears now for �c,eff�0, i.e., when the cavity detuning �c
exceeds the frequency shift induced by the atom Eq. �11a�.

Notice that the condition �c,eff=0 matches the normal-
mode resonance �a�c=g2 for large detuning �a��. Actu-
ally Fpump

v can be obtained if one uses the Doppler-shift ar-
gument in absorption as above �c→�c+kL ·v, and similarly
for �a. Here it is the Doppler shift affecting the cooperativity
parameter � which gives Fpump

v just above. This force can be
understood by saying that the atom-cavity system resonantly
absorbs laser photons as soon as it is excited near the
normal-mode resonances. When the cavity detuning is var-
ied, those forces are maximum for �c,eff=Keff /�3 �we ignore
the factor �1+��2�. The minimum temperature is obtained for
�c,eff=Keff �see below�. Assuming Keff�� �Eq. �11b��, one
obtains the extended condition �c��+g2 /�a, which is a
generalization of the condition �c�� �2,3,13� �see Fig. 2�.

We end by noting that the factor Keff�c,eff / ��c,eff
2 +Keff

2 �2

governs the cooling forces for large atomic detunings, up to
saturation effects �6�, also in case the cavity is pumped. A
general interpretation would be that a detuned atom oscil-
lates very fast such that it can be considered as stationary. Its
effect is then to dress the cavity mode by modifying its char-
acteristics. Since the cavity mode is a harmonic oscillator, it
follows that the force has a structure which mimics an effec-
tive two-state atom at vanishing saturation. In other words,
one would compare this factor with that of free space
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��a / ��a
2+�2�2. In �8�, the friction has been analyzed numeri-

cally in the far detuned field. This is well-approximated by
the analytical form Fpump

v just above. Thus the “polariton
resonance” as called in �8� actually gives a friction with a
structure that is traced back to the atom-cavity system where
the atom is far detuned, rather than a particular cavity setup.

E. General expression for the friction force
along the pump and trap axis

The friction force along the cavity axis has been derived
and discussed in detail via numerical plots in �7�. Above we
provided an efficient approximation for the force along the
cavity axis in a given limit. The full expression of that force
and actually the entire friction tensor is written in Appendix
A. Here we extract from Appendix A the full expressions for
the forces along the pump laser and along the trap:

Fpump
v = − 4 � kL�kL · v��	�2� eff�a,eff

��a,eff
2 + eff

2 �2

+
1

2g2 Im� �2

�1 − ��2�� , �17a�

and

Ftrap
v = − 4 � ��a���a · v�Pe� eff�a,eff

��a,eff
2 + eff

2 �2

+
1

2g2 Im� �2

�1 − ��2�� . �17b�

If a laser standing wave is used, or for any real function 	�r�,
one would substitute kL→ ��	� /	 in Fpump

v . One can see
that, apart from a global factor, the friction forces are iden-
tical. This originates from the fact that both forces depend on
the atom’s characteristics, the optical coherence � and occu-
pation �†�, and not on the cavity mode operators. The first
term in each of the expressions reduces to the free-space
limit �in the harmonic description� when the cavity is absent.
The important term is the second one, here expressed in
terms of � in order to show the symmetry upon the substitu-
tion ��a ,��↔ ��c ,��. For large �a one can approximate �2

=g4 / �̃a
2�̃c

2�g4 / ��a
2+�2��̃c

2, thus one remains with the
imaginary part of �̃c

2�1−��2= ��c,eff− iKeff�2 �see Eqs. �11a�
and �11b��, which immediately gives the corresponding two
forces in Eqs. �16�, themselves being a generalization of
Eqs. �14�.

Dressed state picture

This symmetry also allows us to extract a quantitative
picture in terms of the first two dressed-states �± 
 of the
atom-cavity system �actually they would be density matri-
ces�. The frequencies of the lowest two dressed states of the
atom-cavity system relative to the pump frequency �L read:

�± =
1

2
��a + �c� ±

1

2
Re�4g2 + ��ac − i�� − ���2, �18a�

and the corresponding decay rates are

± =
1

2
�� + �� �

1

2
Im�4g2 + ��ac − i�� − ���2, �18b�

with the atom-cavity detuning �ac�r�=�a−�c=�eg−�cav
+�S�r�. One then rewrites the symmetric contribution above
�2 / �1−��2=g4 / ��−− i−�2��+− i+�2, which gives the force
in terms of these decay rates and energies. Further approxi-
mations and interpretations are then possible. For example,
in a regime where the dressed states are well resolved, e.g.,
�+�+, one can follow the procedure of approximations
above, i.e., write �2 / �1−��2�g4 / ��−− i−�2��+

2 ++
2�. By

taking the imaginary part one obtains a force that now scales
with −�− / ��−

2 +−
2�. One can check that by symmetry there

is a contribution +�+ / ��+
2 ++

2� which is then small in that
limit. Hence one can add the two contributions with a good
approximation and obtain, for example, for the force along
the laser beam:

Fpump
v = − 4 � kL�kL · v�� −�−

�−
2 + −

2 +
+�+

�+
2 + +

2�Ncav.

�19�

That equation has a clear meaning when compared to the
free-space limit Eq. �15�. It shows that it is the atom-cavity
system which mimics a single atom in interaction with a
laser field, i.e., it is the composite system which now reso-
nantly absorbs the radiation field. A similar expression can
be written for the force along the trap direction, providing a
deeper understanding of the cooling force in that direction.
Since for large �a one has ��+ ,+����a ,�� and ��− ,−�
���c ,��, those expressions reduce to Eqs. �14� discussed
above �2,3,13�. Actually, the forces in Eqs. �16� are close to
Eq. �19�. Here cooling occurs for �−�0 �neglecting the con-
tribution due to the state �+ 
�.

F. General expression for the friction
in all directions for �c=0

The exact expressions in the case �c=0 �and hence
�a,eff=�a� can also be written compactly. First, the friction
force along the pump and trap axis follow from Eqs. �17�:

Fpump
v = − 4 � kL�kL · v��1 −

g2

�2� eff�a,eff

��a,eff
2 + eff

2 �
Pe,

�20a�

Ftrap
v = − 4 � ��a���a · v��1 −

g2

�2� eff�a,eff

��a,eff
2 + eff

2 �2 Pe,

�20b�

which clearly show cooling for �a�0 provided g��,
the forces then scaling like g2 /�2�1. Similarly, from Ap-
pendix A the exact friction force along the cavity axis reads
for �c=0
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Fcav
v = − 4 � �g��g · v�Pe� Keff�c,eff

��c,eff
2 + Keff

2 �2

−
g4

�4

eff�a,eff

��a,eff
2 + eff

2 �2� . �20c�

Since for �c=0 one has �c,eff=−g2�a / ��a
2+�2� ��a,eff=�a�,

the force along the cavity axis is now a cooling force for
�a�0 for any value of the coupling g. The force along the
pump is maximum for a detuning �a=−��1+g2 /��� /�3,
while the forces along the trap and along the cavity are maxi-
mum for �a=−��1+g2 /��� /�5 �maximizing only the last
term of Fcav

v �. Those values are quite close to each other. As
shown now this allows one to obtain optimized three-
dimensional cooling.

VI. DIFFUSION AND TEMPERATURE

All the forces acting on the atom fluctuate and hence lead
to heating of the atomic motion. This heating is expressed in
the diffusion coefficient 2D=d /dt	�p2
, which characterizes
the spread 	�p2
= 	�p− 	p
�2
= 	p2
− 	p
2 of the atomic mo-
mentum p. A global understanding for the diffusion has been
recently proposed, where a general and strikingly simple
form has been demonstrated �17�. The diffusion tensor is
provided in Appendix B. The sum of the diagonal elements
of this tensor define the diffusion coefficient 2D, which reads
the simple form �17�:

2D = ��k�22�Pe + � � �	�
�22� + � � �	a
�22� . �21�

The gradients can be easily computed with the help of Eqs.
�8a� and �9a�. The first term is the familiar contribution aris-
ing from the random direction of the spontaneously emitted
photons �with momentum norm �k� �kL�, occurring at a
rate 2�Pe. The second term stems from the fluctuations of
the atomic dipole coupled to a classical field �1,17�. Those
two terms are identical to the free-space expression �1,21�
except that 	�
 and Pe��	�
�2 take into account the presence
of the cavity �Eq. �8�, ��0�. The last term stems from the
fluctuations of the cavity field coupled to a classical atomic
dipole. This term has large contributions in experiments
�16,22,23� �also see �15� for a possible origin of the observed
heating�, in particular for strong coupling between the atom
and the cavity field. Equation �21� is invariant in the sense
that it is independent of whether the atom or the cavity or
both is/are probed, and independent of the structure of the
laser light �trap and/or near fields� which is/are used. In par-
ticular, notice that the gradient acting on 	�
 and/or 	a
,
when modulus-squared, generates terms that are proportional
to ��	�2, ���a�2, and ��g�2, but also cross terms like, for
example, ��	���g�. All these terms are contained in Eq. �21�
in such a way that the equation is invariant.

Beside the spontaneous emission term, the diffusion along
the probe beam �component ��	�2� can be interpreted as
being due to the random number of photons that are ab-
sorbed by the atom-cavity system per unit time. By ignoring
the spontaneous emission term, it can be written as 2Dpump
= ��kL�22effPe. For our purpose, the temperature evaluation

is similar in all directions. If we look at the diffusion along
the cavity axis, and focus only on the last term of Eq. �21�,
then one obtains in the limit �→0, which gave us the cool-
ing force �14b�, 2Dcav= ���g�22�Pe / ��c

2+�2�. In the same
way as for the friction force �14b�, this diffusion coefficient
can be interpreted if spatially averaged along the cavity axis.
In this case Dcav is due to the randomness in the number of
photons that leak out from the cavity. Such a randomness
induces a random force and hence a diffusion which has
precisely that form. The diffusion here has a Lorentz shape
and hence preserves the same structure as Doppler diffusion.
Thus the lowest temperature is reached for �c�� and is
limited by kBT� �� /2ū, where ū is a number that deter-
mines the degree of localization around an antinode of the
cavity mode �ideally ū→1 for an atom well-localized at an
antinode kBT→ �� /2�. Basically this temperature is obtained
in all directions.

In the limit of higher cooperativity �16� the friction along
the laser direction is maximum for �c,eff=Keff /�3, while the
fluctuations of the cavity mode give the diffusion
���	a
�2�= ��kL�2�Pe

freeg2 / ��c,eff
2 +Keff

2 �. Thus the tempera-
ture is now minimized for �c,eff=Keff where it reaches kBT
= �� /2. By using Eq. �11�, and for Keff�� the optimum
detuning between the cavity and the probe beam would
be around �c=�+g2�a / ��a

2+�2� �see Fig. 2�. Eventually
for �c=0 one obtains, for example, along the pump
kBT= �� /2�1+�� /g2� for �a=−��1+g2 /���.

VII. CONCLUSION

We have shown that a three-dimensional arrangement of
one pump laser, a cavity, and a trapping laser is promising
for cooling and trapping atoms. In particular, a strong cavity-
induced cooling force is also acting along the large gradients
of the trap. Such a force is not present in a isolated dipole
trap and has a similar structure as those in the other direc-
tions, i.e., along the laser and cavity axis. All forces in all
three directions can be made independent of the trap depth
by increasing the intensity of the cooling laser accordingly. It
follows that one obtains both a deep confinement of particles
and a persistent cavity-induced cooling mechanism. The
ideal temperature for a deep enough trap would be around
kBT� �� in all directions and does not require strong cou-
pling. Such a temperature follows from the fact that for large
detuning �a the atomic oscillator reacts poorly to the laser
while the cavity mode being close to resonance governs the
dynamics.
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APPENDIX A: FRICTION TENSOR IN THE HARMONIC
DESCRIPTION

The friction force is obtained by expanding the force up to
first order in the velocity. If the atom moves slowly, the
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internal variables �	�
� , 	a
�� can be expanded 	�
�= 	�

+�v , 	a
�= 	a
+av, where ��v ,av� are the displacements with
respect to the steady state values for an atom at rest. Those
values are determined by the Maxwell-Bloch equations for
the atom-cavity system written at first order in the velocity.
By using the hydrodynamic derivative d /dt=� /�t+v ·� in-
serted in Eq. �4� and from the stationary values for an atom
at rest �Eqs. �8a� and �9a��, the coupled equations for ��v ,av�
read:

v · �	�
 = − i�̃a��v +
g

�̃a

av� ,

v · �	a
 = − i�̃c�av +
g

�̃c

�v� ,

which by inversion give

�v = −
1

1 − �
�v · �	�


i�̃a

−
g

�̃a

v · �	a

i�̃c

� , �A1a�

av = −
1

1 − �
�v · �	a


i�̃c

−
g

�̃c

v · �	�

i�̃a

� . �A1b�

It is convenient to introduce the vectors u ,w, which include
all the information on the gradients:

u = �	 − 	�
��a − 	a
�g , �A2a�

w = 	�
�g . �A2b�

This gives for the variations of the expectation values:

�	�
 =
1

�˜a

�u +
g

�̃c

w� , �A3a�

�	a
 = −
1

�˜c

� g

�̃a

u + w� , �A3b�

with �˜a= ��a− i���1−��=�a,eff− ieff and �˜c= ��c− i���1
−��=�c,eff− iKeff. The velocity dependent force is obtained
by linearizing �harmonic limit� and expanding Eqs. �12� up
to first order in v:

Fv/ � = u*�v − w*av + c.c., �A4�

which is entirely known with the help of Eqs. �A1� and �A3�.
The cooling force has well-separated contributions, along the
pump �	, the trap ��a, and the cavity axis �g. However,
one should have in mind that the expectation values depend
on all the parameters �	 ,�a ,g�, and hence the friction force
includes cross contributions. For example, if the atom moves
along the cavity axis v ·�g�0 it experiences a friction force
along the near resonant laser, to be added to Fpump

v �term
���	��g ·v��. This term is not present in Ref. �3�, but it
vanishes after spatial averaging. Separating the contributions
due to the variation of the atomic dipole �	�
 from those due
to the variation of the amplitude of the cavity field �	a

gives the total cooling force acting on the atom Fv=Fv,atom

+Fv,mode

Fv,atom = −
�

i�˜a
2
�u* +

g

�̃c

w*�v · �u +
g

�̃c

w� + c.c.,

�A5�

Fv,mode = −
�

i�˜c
2
� g

�̃a

u* + w*�v · � g

�̃a

u + w� + c.c.

�A6�

That friction force is valid for any structure of the probe
beam, i.e., for any function 	�r�. If now the atom is far
detuned while the cavity mode is close to resonance with the
pump laser, the contribution Fv,atom can be typically ne-
glected, and hence the forces are mainly due to the variations
of the cavity field Fv�Fv,mode. The approximations pre-
sented in the body of the paper are all extracted from Fv,mode.

APPENDIX B: DIFFUSION TENSOR IN THE HARMONIC
DESCRIPTION

We first define the diffusion tensor such that it is symmet-
ric with respect to the spatial coordinates �i , j�, i.e., 2Dij

=Re d	�pi�pj
 /dt where �pi= pi− 	pi
. The real part is
needed because the momentum p is an operator. One can
show that �18�

2Dij = ��k�22�PeEij

+ Re�
0

�

d��	��i����� j�0�
 + 	��i�0��� j���
� ,

where �i is the component along the i-axis of the force op-
erator � defined in Eq. �12�, and where Eij

=�d2�̂�i� jN��̂ · d̂�, and d̂ is the orientation of the dipole-
moment. Notice that �iEii=1 �18�. In our general setup it is
difficult to justify the two-level approximation without hav-
ing restrictive assumptions on the nature of the polarization
of the beams and the cavity mode. However, considering a
�-transition and the quantization axis along the cavity axis z

one has N= �1− ��̂ · d̂�2�3/8�, thus Ezz=1/5 ,Eyy =Exx=2/5,

while for circularly polarized light N= �1+ ��̂ · d̂�2�3/16�,
giving Ezz=2/5 ,Eyy =Exx=3/10. The result showed in Ref.
�17� allows a simple writing of the integral above, giving the
diffusion tensor component Dij:

2Dij�r� = ��k�22�PeEij

+ Re��2�i	�
� j	�
*�2� + Re��2�i	a
� j	a
*�2� ,

where the partial derivatives are taken with respect to the
components ri of the atomic position r, �i=� /�ri. The diffu-
sion tensor enters the Fokker-Planck equation for the distri-
bution function f as �i,jDij�r��2f /�pi�pj. The diffusion coef-
ficient studied in the text is the sum of the diagonal elements
2D=�iDii �Eq. �21��. The diffusion tensor �and hence 2D
�Eq. �21��� is valid for any structure of the pump beam, i.e.,
for any function 	�r�. Moreover, the diffusion still has that
solution if any of the frequencies ��a ,	 ,�c ,g ,	� depends on
the atomic position r.
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