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The quantum control of the ionization of potassium atoms using shaped intense femtosecond laser pulses is
investigated. We use sinusoidal phase modulation as a prototype for complex shaped pulses to investigate the
physical mechanism of the strong-field quantum control by shaped femtosecond light fields. The influence of
all parameters characterizing the sinusoidal phase modulation on strong-field-induced dynamics is studied
systematically in experiment and theory. Our results are interpreted in terms of the selective population of
dressed states �SPODS� which gives a natural physical picture of the dynamics in intense laser fields. We show
that modulated femtosecond pulses in combination with photoelectron spectroscopy are a versatile tool to
prepare and to probe SPODS. The decomposition of the excitation and ionization process induced by shaped
pulses into elementary physically transparent steps is discussed.
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INTRODUCTION

One of the intriguing aspects of quantum control is the
ability to manipulate quantum systems with suitably tailored
laser light fields almost at will. For instance, shaped pulses
are employed to guide a quantum system from an initial state
to a preselected final state with high efficiency. In recent
years, numerous quantum control schemes have been pro-
posed and successfully demonstrated which are reported in
recent monographs and reviews �1–5�. Besides quantum con-
trol schemes based on the detailed knowledge of the poten-
tials and the use of simple pulse sequences, adaptive pulse
manipulation using complex pulse shapes has opened new
perspectives for quantum control �6�. The combination of
pulse-shaping techniques �7� with closed loop adaptive feed-
back learning algorithms allows us to optimize virtually any
conceivable observable �8–18� with applications ranging
from laser science, quantum optics, atomic and molecular
physics, solid state physics, photochemistry to biophysics, or
quantum computing. However, it is not always possible to
deduce the underlying physical mechanism from the electri-
cal fields obtained by this procedure. Therefore, the need to
bridge the gap between the efficient “black box” closed loop
optimal control methods and detailed understanding of the
physical processes—especially in strong laser fields—is
quite evident.

Generally, weak-field control schemes are not applicable
for intense laser fields where perturbation theory is no longer
valid as exemplified on a generic example of ultrafast strong-
field coherent control �19�. However, some of the principles
of weak-field excitation are applicable to nonperturbative
control employing so-called real pulses �20�. In this context
real or complex pulses are defined by the properties of their
temporal phase which determines whether the pulse envelope
is real or complex valued. For example, in this context, lin-
early chirped pulses are complex whereas third order disper-
sion �TOD� produces real pulses. The implications of real or
complex pulses with respect to the manipulation of the sym-
metry of photoelectron spectra was recently discussed in �21�
in terms of selective population of dressed states �SPODS�. It
was found that the control of a dressed state population re-
quires the use of complex fields, i.e., fields which allow

phase changes in time domains be they either continuous
such as linear chirps �21� or noncontinuous such as the phase
jumps in a pulse sequence �3�.

In this contribution we investigate control of multiphoton
ionization of potassium atoms excited by well-characterized
intense phase-modulated laser pulses with regard to a de-
tailed analysis of the physical mechanism of strong-field op-
timal control. Atoms serve as a well-defined model system
for multiphoton excitation and can be considered as a first
approximation to more complex situations. Results obtained
for such model systems can be generalized to multiphoton
resonant excitation with no intermediate resonances �22,23�.
For excitation, we use femtosecond laser pulses sinusoidally
phase modulated in the frequency domain which allows us to
switch from real to complex pulses. By the choice of the
modulation parameters the temporal pulse structure varies
from simple pulse sequences with well-defined relative
phases to prototypes of complex shaped pulses reminiscent
of laser fields obtained by adaptive control. The frequent use
of sinusoidal spectral phase modulation in recent quantum
control experiments �14,20,24–29� underscores the impor-
tance of analyzing the physical mechanisms of quantum con-
trol exerted by sinusoidal spectral phase shaping in some
detail. To this end, we systematically study the influence of
all relevant control parameters of the sine function in a
strong-field experiment. In addition to previous experimental
studies using sinusoidal phase modulation �29�, the underly-
ing physical mechanisms are discussed in some detail using
different physical pictures such as the bare states, the dressed
states, and the Bloch vector in order to emphasize the diverse
aspects of the dynamics. We show that SPODS is operative
for off-resonant excitation, which indicates that this control
mechanism is robust with respect to the experimental param-
eters and, therefore, likely to be operative in many other real
applications. For instance, applications of SPODS to the con-
trol of chemical reactions were discussed on a generic model
molecule �30� and on potassium dimers �31�.

The paper is organized as follows. First, the idea of the
experiment is discussed in the theoretical Sec. I. Here we
discuss the excitation and ionization scheme along with the
simulations of the photoelectron spectra. In Sec. II the ex-
perimental strategy and the setup are described. The experi-
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mental results from quantum control exerted by sinusoidal
phase modulation in frequency domain are presented in Sec.
III and discussed for the idealized case of resonant excitation
in Sec. IV. The relation of the population of dressed states,
the photoelectron spectra, and the dynamics of the Bloch
vector are summarized in the Appendix.

I. PRINCIPLE OF THE EXPERIMENT

In this section we discuss the excitation and ionization
scheme of potassium atoms used in our experiment
�Sec. I A� and report how simulations of the dynamics and
the photoelectrons are performed. In view of a detailed
physical picture of the control mechanism the properties of
the temporal electrical field obtained by sinusoidal phase
modulation in frequency domain are described in some detail
in Sec. I B.

A. Excitation and ionization scheme

Figure 1 shows the excitation scheme used in this experi-
ment. Unlike conventional pump-probe scenarios in which
the first pump pulse initiates the dynamics which is probed
by a second pulse, in our experiment, the same pulse is used
to drive the dynamics in the neutral atom and to simulta-
neously cause ionization. Our experiments are described
theoretically by solving the time-dependent Schrödinger
equation for the light induced neutral atomic dynamics in
order to consider strong-field effects. Photoionization is
treated using perturbation theory since the neutral-to-
ionic transitions are much weaker than, for instance, the
K �4p←4s� transitions. The amplitudes c��e� for photoelec-
trons with kinetic energy ��e for the ionization from the 4p
excited state with an energy of ��4p read �32–34�

c��e� � �
−�

�

cb�t��E−�t��2ei��e+�IP−�4p�tdt , �1�

where ��IP describes the ionization energy, cb�t� the time-
dependent excited state amplitude, and E−�t� the �negative
frequency� analytic electrical field �35� used in quantum me-
chanics to describe the light absorption in the rotating wave
approximation. From Eq. �1� it is seen that the amplitudes
c��e� are the Fourier transform of the excited state amplitude
cb�t� windowed by the square of the electrical field �E−�t��2.
As a consequence, the quantum mechanical phase informa-
tion of the excited state amplitudes is preserved to some
extent in the photoelectron spectrum. Similar to the modifi-
cation of the laser pulse shape in time domain by phase
modulation in frequency domain the shape of the photoelec-
tron spectrum, i.e., �c��e��2 is modified by the temporal phase
of the amplitude cb�t�. The simultaneous excitation and
ionization technique therefore permits us to use photoelec-
tron spectra as a fingerprint of the quantum mechanical phase
imparted by the interaction with the shaped laser pulse and
therefore delivers detailed information on the dynamics
which is not available in conventional pump-probe experi-
ments. In particular, as will be shown below, the photoelec-
tron spectra map dressed state population. During the time
evolution, the dressed states are characterized by a time-
dependent energy splitting �� giving rise to the observed
Autler-Townes �AT� splitting �36� in the photoelectron spec-
tra. Employing two-photon ionization as the nonlinear probe
step precludes averaging over the intensity distribution
within the laser focus since the ionization probability is high-
est in the spatial region of highest laser intensity. This tech-
nique permits us to overcome the common problem of wash-
ing out intensity dependent strong-field effects.

B. Sinusoidal phase modulation

Since the physical mechanism of quantum control using
sinusoidal phase modulation in the frequency domain are
discussed in time domain as well, the important properties of
the modulated pulses are summarized in this section. We
start with the unmodulated �positive frequency� analytic
electrical E+�t�= �E−�t��* field used in ultrafast optics �35�

Ein
+ �t� = Ein

+ �t�ei�0t, �2�

where �0 is the carrier frequency and Ein
+ �t� denotes

the, in general, complex electric field envelope, i.e.,
Ein

+ �t�= �Ein
+ �t� �ei�in�t� which includes the time-dependent opti-

cal phase function �in�t�. In the frequency domain, the phase
function

���� = A sin��� − �ref�T + �� �3�

modulates the spectrum Ẽin
+ ��� such that

Ẽout
+ ��� = Ẽin

+ ���eiA sin���−�ref�T+��, �4�

where A describes the amplitude of the phase modulation
function, T the frequency of the sinusoidal oscillation, and �
an absolute phase offset. In view of the experimental imple-

FIG. 1. Energy level diagram for excitation of K atoms. Shaped
laser pulses with an electric field Eout�t� and a carrier frequency �0

�corresponding to 785 nm� detuned by 	 from the resonance fre-
quencies �767 and 770 nm� create a coherent superposition of the
lower 4s and the upper 4p states of K atoms �bold arrows�. Spectra
of the photoelectrons with a kinetic energy Ekin= ��e from simul-
taneous two-photon ionization �light arrows� of the 4p state are
measured. The shape of the photoelectron spectra, e.g., �a� slow or
�b� fast photoelectrons, is controlled by a variation of the pulse
structure. The inset illustrates the creation of fast photoelectrons
from the upper dressed state corresponding to �b�.
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mentation of spectral phase modulation by a phase mask,
�ref is introduced to describe the origin of the sine function
with respect to the laser spectrum. Using the Jacobi-Anger
identity �37�

eiA sin�
� = �
n=−�

�

Jn�A�ein
, �5�

where Jn describes the Bessel function of the first kind and
order n, the phase modulated electric field in the time domain
reads

Eout
+ �t� = ei�0t �

n=−�

�

Jn�A�Ein
+ �t + nT�ein���T+��, �6�

where ��=�0−�ref describes the difference between the la-
ser carrier frequency �0 and the reference frequency of the
phase modulation function �ref. From Eq. �6� it is seen that
sinusoidal phase modulations in frequency domain produce a
sequence of subpulses with a temporal separation determined
by the parameter T and well-defined relative optical phases.
Provided the individual subpulses are temporally separated,
i.e., T is chosen to exceed the pulse width, the envelope of
each subpulse is a �scaled� replica of the unmodulated pulse
envelope Ein

+ �t�. Figure 2 shows the amplitudes Jn�A� of the
subpulses as a function of the modulation parameter A and

some examples of modulated electrical field envelopes
Eout

+ �t�

Eout
+ �t� = �

n=−�

�

Jn�A�Ein
+ �t + nT�ein���T+��. �7�

Since the temporal optical phase of the light field is relevant
to quantum control, the phase �out�t� of the modulated field
envelope Eout

+ �t�= �Eout
+ �t� �ei�out�t� is depicted in Fig. 3 for dif-

ferent values of � and ��T, in addition. Again, we consider
fully separated subpulses such that the pulse envelope
�Eout

+ �t��

�Eout
+ �t�� = �

n=−�

�

J�n��A��Ein
+ �t + nT�� �8�

is not influenced by � and ��T. According to Eq. �7� the
absolute optical phase of the nth prepulse �n�0� envelope
reads �n=n���T+��. Therefore the relative phase between
the subpulses is determined by the phase ��=��T+�. In
particular, the phase difference to the adjacent prepulse is
��T+� as seen in Fig. 3�d�. For postpulses �n0�, the extra
phase jump of � due to the alternating sign of the Bessel
functions J−n�z�= �−1�nJn�z� needs to be taken into account in
addition. This results in a phase difference of adjacent post-
pulses of �− ���T+�� �cf. Fig. 3�c��. Accordingly, phase
jumps of �, i.e., the change of sign of the envelope Eout

+ �t�,
are introduced either by the phases � and ��=0 or the am-

FIG. 2. Envelopes Eout
+ �t� of spectrally modulated pulses. The

amplitudes of the subpulses for sinusoidal phase modulation in fre-
quency domain are described by the Bessel functions Jn�A�, cf.
lower panel. Assuming a real unmodulated field envelope Ein

+ �t� and
��T+�=0, the modulated electrical field envelope Eout

+ �t� is plot-
ted for the values 0, 1, and 2.4 of the modulation parameter A. For
A=1 the indices n=−3–3 are plotted on top of the subpulses enve-
lopes Ein

+ �t+nT�. The change of sign of the envelope of the odd
postpulses is due to the property J−n�z�= �−1�n Jn�z� of the Bessel
function. At the zero of the Bessel function J0 at A�2.4 the central
subpulse �n=0� vanishes. The time separation between the sub-
pulses T was chosen to exceed the pulse width. In this case, the
parameters �� and � which control the relative phase of the sub-
pulses do not influence the field envelope �Eout

+ �t��.

FIG. 3. Absolute temporal optical phase �out�t� �bold� and pulse
envelope �Eout

+ �t�� for a sinusoidally modulated 20 fs �FWHM�
Gaussian pulse. The parameters for the phase modulation function
����=A sin���−�ref�T+�� are A=1 and T=100 fs. The phase dif-
ference between adjacent prepulses is ��T+� �cf. �d�� and for
adjacent postpulses �− ���T+�� �cf. �c�� due to the extra � phase
jump from the alternating sign of the Bessel functions. �a� “Pure
sine” modulation with the origin of the sine function at the central
frequency, i.e., ��=0 and �=0. The temporal phase jumps of ±�
are exclusively due to the alternating sign of the Bessel functions as
illustrated in Fig. 2. �b� Pure cosine modulation, i.e., �=� /2 with
relative temporal phase jumps of ±� /2. In the right column the
modulation function is displaced from the central frequency by
��T=� /2 and absolute phases are �=� /4 �b� and �=� /2 �d�.
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plitudes of the Bessel functions. From Eq. �7� it is also seen
that if the origin of the sine function is located at the central
frequency, i.e., ��=0, the parameter T has no influence on
the phase of modulated field envelope Eout

+ �t�. If, in addition,
the absolute phase � is set to zero—which could be referred
to as “pure sine modulation”—the phase mask is antisym-
metrical with respect to the carrier frequency. Provided Ein

+ �t�
is real, the modulated field Eout

+ �t� is also real and the phase
between adjacent post subpulses jumps by � due to change
of sign introduced by the Bessel functions as shown in Fig.
3�a�. For ��=0, a “pure cosine modulation” is implemented
by �=� /2. In this case the modulation function is symmetri-
cal with respect to the carrier frequency and therefore the
modulated field Eout

+ �t� is complex even for a real unmodu-
lated field Ein

+ �t�. As an example, it follows from the Taylor
expansion of the cosine function cos����1−�2 /2 that in the
limit of low values of T but high values of A this type of
phase modulation mimics a linear chirp epitomizing pulses
with complex valued envelopes. Figure 3�b� shows that the
phase of the nth subpulse is n� /2 which introduces phase
factors of ein�/2= ±	±1, i.e., ±1 and ±i. Hence, the square of
the modulated field �Eout

+ �t��2 is real. This is only true if the
subpulses are fully separated in time. Otherwise the “pure
cosine” modulation leads to complex second harmonic fields.
Real cosine modulated second harmonic fields were em-
ployed in �20� to control a two-photon transition in strong
laser fields with a real second harmonic—but complex
fundamental—field. As soon as the sine function is shifted
from the central frequency ����0�, the parameter T con-
trols both the temporal separation and the phase via the
phase factor ei��T in Eq. �7�.

C. Numerical simulations

In order to compare our experimental results to simula-
tions, we model the excitation and ionization dynamics using
a three-level system weakly coupled to a flat continuum. In
Sec. III we consider the 4p1/2←4s1/2 and 4p3/2←4s1/2 tran-
sitions excited by linear polarized laser light. The initial un-
modulated electric field Ein

+ �t� has a Gaussian spectrum and
its phase is modulated in frequency domain to calculate
Eout

+ �t�. The strong-field dynamics in the off-resonant three-
level system is calculated by the numerical solution of the
time-dependent Schrödinger equation �TDSE� using a short
time propagator method �28�.

In order to extract the essential physical mechanisms, we
consider the resonant excitation of a two-level system in the
discussion �Sec. IV�. In this case analytic solutions of the
TDSE are available �38� provided the subpulses are fully
separated. In both cases Eq. �1� is employed to calculate the
photoelectron spectra using efficient Fourier techniques �33�.
In the theoretical considerations, ionization can be turned on
and off in certain time intervals to yield a partial photoelec-
tron spectrum due to ionization of a single subpulse. This
serves as a tool to analyze the structure of the observed pho-
toelectron spectra.

II. EXPERIMENT

In Sec. II A the experimental strategy to provide a com-
prehensive account to the control attainable using sinusoidal

phase modulation is presented. Details of the setup are pre-
sented in Sec. II B.

A. Experimental strategy

A complete investigation of the effect of sinusoidal phase
modulation of the form exp
iA sin���−�ref�T+��� requires
the measurement of photoelectron spectra for each point in
the three-dimensional parameter space spanned by A, T, and
� as shown in the inset to Fig. 4. In order to reduce the
amount of data we performed a series of measurements for
the independent control parameters time T, amplitude A, and
phase � along each dimension of the parameter space while
the intensity I0 and the reference frequency �ref =2.4 rad/ fs
were unchanged. The parameters for each scan were so cho-
sen that the three scans intersect at A=−0.2, T=170 fs, and
�=1.7 rad. This procedure allows us to check the reproduc-
ibility of our experimental results. The agreement of all spec-
tra shown in Fig. 4 demonstrates the fidelity of the phase
modulator as well as the stability of the laser parameters such
as intensity, pointing stability, and chirps during the course
of the experiments. The photoelectron spectra obtained in
each scan are discussed in Secs. III A–III C.

B. Experimental setup

The experimental setup is shown in Fig. 5. Femtosecond
laser pulses of 30 fs full width at half maximum �FWHM�
duration at a mean wavelength of �0=785 nm with a repeti-
tion rate of 1 kHz were generated by a Ti:sapphire multipass
amplifier. We employed our homebuilt pulse shaper �39� to
modulate the femtosecond laser pulses. A 128 pixels liquid
crystal spatial light modulator served as the computer-
controlled spectral mask in the pulse-shaping setup. The
modulated pulses were focused into a vacuum chamber by a
300 mm lens. Here, the femtosecond pulses interacted with a

FIG. 4. Measured photoelectron spectra for sinusoidal phase
modulation at the point of the intersection of the three scans of time
T, amplitude A, and phase � at A=−0.2, T=170 fs, and �
=1.7 rad. Each scan is indicated in the three-dimensional parameter
space as shown in the inset, i.e., the variation of T for fixed A and
� �dotted�, the variation of A for fixed T and � �bold�, and the
variation of � for fixed A and T �dashed�. The agreement of all
spectra demonstrates the reproducibility of the experimental results.
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potassium atomic beam generating photoelectrons. Kinetic
energy time-of-flight spectra of the photoelectrons were re-
corded by a magnetic bottle spectrometer. The potassium
atomic beam was generated using an oven at a temperature
of 360 °C with an exiting nozzle of 200 �m diameter. The
vacuum chamber pressure was 1.3�10−6 mbar. The femto-
second beam waist radius of 30 �m in the interaction area
was measured by a cutting knife method. In the experiment,
we set the pulse energy to 0.35 �J, corresponding to an in-
tensity of about 4�1011 W/cm2. In order to characterize the
shaped laser pulses we employed spectral �41�, temporal
�35�, and spectrogram-based �42� pulse characterization tech-
niques because a single method may not be sufficient to pro-
vide reliable results for the whole parameter range of the
sinusoidal spectral phase modulation. First, we ensure the
functionality of our pulse by measuring short pulses with a
duration adapted to the spectrogram window. To this end, the
phase function is set to ����=1.5 sin�60 fs��−2.4 rad/ fs�
+�. The results from the retrieval using spectrogram-based
techniques are depicted in Fig. 6�a�. In this figure the tem-
poral electric field and phase of a spectrally sinusoidally
shaped pulse are shown along with the calculated results us-
ing the measured spectrum and experimental phase modula-
tion parameters. It is seen that the sinusoidal spectral modu-
lation generates a pulse sequence in time domain with the
inter-subpulse-distance of T=60 fs as expected from the the-
oretical discussion in Sec. I B. The temporal phase shows
jumps between the subpulses in agreement with the calcula-
tions. A pulse with a duration exceeding the time window
of the spectrogram generated by ����=0.8 sin�200 fs��
−2.424 rad/ fs�� is characterized in the spectral domain.
Spectral interference of the modulated and unmodulated
pulse enable us to investigate the accuracy of the pulse
shaper since spectral characterization techniques measuring
the additional phase introduced by the shaper with high ac-
curacy. Figure 6�b� shows the power spectral density, the

sinusoidal spectral phase set by the pulse shaper, and the
spectral phase as retrieved by spectral interference. Good
agreement proves high accuracy of the spectral phase intro-
duced by the pulse shaper. However, spectral methods do not
give a direct picture of the temporal shape of the pulse par-
ticularly if the pulse spectra are distorted. In order to directly
map out the temporal structure of a pulse that spans 2 ps
created by the modulation function ����=sin�500 fs��
−2.4 rad/ fs�� we measure the second harmonic cross corre-
lation with the unmodulated 30 fs pulse. Measured and simu-
lated cross correlations of a sinusoidally shaped pulse de-
picted in Fig. 6�c� show good agreement.

III. RESULTS

The experimental photoelectron spectra obtained by varia-
tion of the control parameters of the phase modulation func-

FIG. 5. �Color online� Experimental setup: femtosecond laser
pulses from a Ti:sapphire amplifier were spectrally phase-
modulated using sinusoidal phase modulation functions of the form
����=A sin���−�ref� ·T+�� centered at the reference frequency
�ref in our pulse shaper. The inset shows phase functions ���� for
different A, �, and T on top of the laser spectrum �gray shaded�.
The modulated laser beam was focussed into a vacuum chamber to
interact with a potassium atomic beam. Photoelectron kinetic en-
ergy spectra were recorded employing a magnetic bottle spectrom-
eter �right�.

FIG. 6. �Color online� Characterization laser pulses subjected
to sinusoidal spectral phase modulation using �a� spectrogram-
based, �b� spectral, and �c� temporal techniques. �a� Retrieved tem-
poral signal from the spectrogram: normalized intensity �solid line
measured, white triangles calculated using measured spectrum and
experimental phase modulation parameters� and phase �dashed line
measured, black dots calculated as above� for ����
=1.5 sin�60 fs��−2.4 rad/ fs�+��, �b� spectral interference: spec-
trum �thin line�, measured �orange solid line� and applied �solid
line� spectral phase ����=0.8 sin�200 fs��−2.424 rad/ fs��, �c� sec-
ond harmonic cross correlation: measured �orange, upper� and
simulated �black, lower� for ����=sin�500 fs��−2.4 rad/ fs��.
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tion, i.e., the temporal separation of the individual subpulses
T, the absolute phase �, and the modulation amplitude A are
discussed in this section. The experimental results are com-
pared to simulations �cf. Sec. I C� in which the phase modu-
lation parameters, i.e., T, �, A, and �� were directly taken
from the experimental settings. The energy resolution of our
photoelectron spectrometer was taken into account by con-
volution of the calculated spectra with a 60 meV FWHM
Gaussian spectrum. In all the simulations the laser param-
eters such as the spectrum, the intensity, and the chirp pa-
rameters were identical. We derive the temporal pulse shape
from the measured laser spectrum and allow for a small re-
sidual uncompensated chirp �100 fs2 corresponding to the
chirp introduced by 2 mm BK7 glass� in the interaction re-
gion. The laser intensity is derived from the measured AT
splitting. Therefore, the residual uncompensated chirp is the
only free parameter to model the three independent two-
dimensional sets of measurements shown in Figs. 7–9. In
addition to the reproduction of the experimental data, the
simulations were used to assess the sensitivity of the results
with respect to the phase mask parameters and the laser pa-
rameters on the one hand, and the physical model, e.g., the
influence of the fine structure splitting, on the other. This
procedure serves to identify the physical origin of the ob-
served features.

A. Control exerted by the time T

First, we study the photoelectron spectra upon variation of
the control parameter T. In the range of T=0–300 fs time of
flight spectra are recorded in steps of �T=5 fs. These spectra

FIG. 7. �Color online� �a� Simulated and �b� measured photo-
electron spectra upon variation of the parameter T within 5–300 fs
for fixed values of A=−0.2 and �=1.7 rad. The dashed line in �a�
indicates the reference point at T=170 fs. In the lower panel �c�
sections through the photoelectron distributions of �a� and �c� at T
=120 fs �left� and T=175 fs �right� as indicated by the lines in �b�
show the experimental results �bold lines� and the simulated photo-
electron spectra �dashed lines�. In �b� the energy of the slow pho-
toelectrons at 0.35 eV, the fast photoelectrons at 0.50 eV, and the
excess energy for weak-field ionization ��e are also indicated. The
cross hairs in �b� indicates an additional structure in the photoelec-
tron spectra due to the fine structure splitting.

FIG. 8. �Color online� �a� Simulated and �b� measured photo-
electron spectra upon variation of the parameter � within
0.25–12.25 rad for fixed values of A=−0.2 and T=170 fs. The
dashed line in �a� indicates the reference point at �=1.7 rad. In the
lower panel �c� sections through the photoelectron distributions of
�a� and �b� at �=5.50 rad �left� and �=8.75 rad �right� as indicated
by the lines in �b� show the experimental results �bold lines� and the
simulated photoelectron spectra �dashed lines�.

FIG. 9. �Color online� �a� Simulated and �b� measured photo-
electron spectra upon variation of the parameter A within −0.8–0.8
for fixed values of �=1.7 rad and T=170 fs. The dashed line in �a�
indicates the reference point at A=−0.2. In the lower panel �c�
sections through the photoelectron distributions of �a� and �b� at
A=0.24 �left� A=−0.18 and �right� as indicated by the lines in �b�
show the experimental results �bold lines� and the simulated photo-
electron spectra �dashed lines�.
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were combined to yield a two-dimensional photoelectron dis-
tribution shown in Fig. 7 in a false color representation. For
comparison, simulated and measured photoelectron spectra
are shown in Figs. 7�a� and 7�b�. The energy splitting of the
two photoelectron maxima in the spectrum at around
0.35 eV �slow photoelectrons� and 0.50 eV �fast photoelec-
trons� of about 150 meV is due to the AT effect. The fine
structure splitting of the K 4p states of �E=7.1 meV is not
resolved in the photoelectron spectra. On the average, the
fast photoelectrons are slightly more intense than the slow
photoelectrons. In contrast to previous measurements using
pulse sequences where the intensities of slow and fast pho-
toelectrons oscillate with the optical period �2.6 fs� �19�, by
variation of T these oscillations occur with a period of about
110 fs. The intensity oscillations of the slow photoelectrons
are shifted by half the period, i.e., 55 fs, with respect to the
oscillation of the fast photoelectrons. Independent simula-
tions show that the oscillation period is very sensitive to the
exact position of ��. The above simulation results confirm
the values taken from the experimental setup. By a variation
of T we exert control on the population of the dressed states.
The oscillations in the photoelectron distribution show that
both dressed states are selectively populated. For instance,
sections through the photoelectron distribution along the en-
ergy axis at T=120 fs and T=175 fs yield the photoelectron
spectra shown in Fig. 7�c� which demonstrate the population
of the upper and lower dressed states, respectively. Calcu-
lated and measured photoelectron spectra are in good agree-
ment. In addition to these coarse features the detailed struc-
ture of the photoelectron spectrum is quite complicated.
Most notably, the maxima of either slow or fast photoelec-
trons are neither exactly equidistant nor do they have equal
intensity. Moreover, an additional structure at around T
=280 fs and 0.42 eV is observed �see cross hairs in Fig.
7�b��. The comparison with the simulation reveals that these
additional structures are real physical structures. Generally,
the deviations from symmetric AT spectra with equidistant
maxima are a consequence of both, the actual temporal struc-
ture of the laser pulse and the energy level structure of K
atoms which is not fully described by a two-level system.
For instance, off-resonant excitation leads to asymmetric AT
spectra. At the laser wavelength of 785 nm, which is red
detuned with respect to the 4p←4s resonances, one would
expect a higher ionization probability for the low energy
photoelectrons. However, the experimental spectra show
slightly higher intensities for the fast photoelectrons. Taking
into account a residual uncompensated chirp of only 90 fs2 in
the simulations reproduces the experimental results and fa-
vors the generation of fast photoelectrons. This is a conse-
quence of transient dressed state population due to chirped
excitation �21�. In addition, the actual temporal pulse enve-
lope, which is not perfectly Gaussian, leads to further devia-
tions from the idealized picture. Since the dipole moments
for the excitation with linear polarized light are different for
both transitions 4p1/2←4s1/2 and 4p3/2←4s1/2, which are ex-
cited within the laser bandwidth, a three-level system is con-
sidered in our simulations. Upon comparison with a simula-
tion using a two-level model, we find that the additional
structure at T=280 fs and 0.42 eV is a consequence of the
fine structure splitting. This is reasonable on the grounds that

the observed time of 280 fs roughly corresponds to half the
fine structure splitting of �=2�� /�E�580 fs.

B. Control exerted by the phase �

In this section, we investigate control exerted by the ab-
solute phase � of the sinusoidal modulation function. To this
end, the phase is varied in a range 0.25–12.25 rad for fixed
values of A=−0.2 and T=170 fs and the residual chirp of
90 fs2. False color representations of the simulated �a� and
measured �b� photoelectron spectra are presented in Fig. 8.
The intensity distribution alternates between slow and fast
photoelectrons upon the variation of �. Sections along the
kinetic energy axis at �=5.50 rad and �=8.75 rad as shown
in Fig. 8�c� demonstrate our ability to switch between selec-
tive population of the upper and the lower dressed state by a
variation of �. Due to the 2� periodicity of the phase mask
the period of the oscillatory dressed states population upon
variation of � is also 2�. Our simulations reproduce the
absolute values of � to selectively populate either dressed
state, e.g., �=5.50 rad for the maximum population of the
upper dressed state �cf. Fig.8�c��. These values are highly
sensitive to the value of �� as expected since the temporal
phase of the subpulses is determined by ��T+�
�see Eq. �7��. Similar to the time variation discussed in Sec.
III A, additional simulations show that the results are
strongly dependent on the residual chirp of the laser pulse.

C. Control exerted by the amplitude A

Photoelectron spectra upon variation of the modulation
amplitude A in a range of −0.8 to 0.8 for fixed values of �
=1.7 rad and T=170 fs are presented in Fig. 9. A value of
A=0 corresponds to the unmodulated pulse. With increasing
A the intensity of the prepulse and postpulses increases in the
same way for positive and negative values of A. However,
the phase of the subpulses is different in both cases. As a
consequence positive modulation amplitudes favor the popu-
lation of the upper dressed state whereas the lower dressed
state is preferentially populated for negative values of A as
confirmed by the sections through simulated �a� and mea-
sured �b� photoelectron distributions shown in Fig. 9�c� at
A=0.24 �left� and A=−0.18 �right�. Again, the simulations
show that the photoelectron distribution is very sensitive to
the residual chirp of the laser and the offset of the phase
mask ��.

IV. DISCUSSION

In this section we discuss the above observations in terms
of an idealized picture characterized by the resonant excita-
tion of a two-level atom. The parameters of the spectral
phase function are chosen to depict the physical mechanisms
of dressed state control with greatest clarity. This approach is
physically meaningful, because the photoelectron spectra are
well reproduced with our models based on the strong-field
interaction with a two- or three-level atom weakly coupled to
the continuum. Upon comparison of the three-level model
allowing for the fine structure splitting and the two-level
model, we found that the fine structure splitting does not
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influence the essential structures of the observed photoelec-
tron spectra. We start with the discussion of the light induced
dynamics of the neutral atoms induced by sinusoidally
phase-modulated 30 fs �FWHM� Gaussian laser pulses. The
intensity of the laser electric field E+�t� in the simulations
was chosen to reproduce the experimental AT splitting of
150 meV, i.e., the Rabi frequency ��=�E+ for the most
intense subpulse is about ��=150 meV. Figure 10 shows
the results of the simulations for the modulation parameters
T=100 fs, �=� /2, A=0.3, and ��=� /50 fs−1. This case
serves as a reference to study the effect of the variation of
each parameter, i.e., the time T �Fig. 11�, the phase � �Fig.
12�, and the modulation amplitude A �Fig. 13�. In all cases
the neutral dynamics is discussed in terms of time-dependent
Rabi frequency ��t�, the optical phase ��t� of the field, the
bare state population �ca�2 and �cb�2 of the lower and upper
states, and the population of the lower and upper dressed
states �d1�2 and �d2�2. Based on the strong-field-induced neu-
tral dynamics we interpret the resulting photoelectron spectra
in terms of the dressed state population. Because the Bloch
sphere picture is well suited to illustrate quantum control
exerted by the temporal phase and it provides a convenient
link between the bare state amplitudes and the dressed state
population we visualize the above quantum control scenarios
in the Bloch sphere picture in the Appendix.

Figure 10�a� shows the time-dependent Rabi frequency
��t�, which is proportional to the driving field envelope E�t�,
and the temporal phase ��t� of the laser electric field. As
discussed in Sec. I B the modulated electrical field envelope
�E+�t�� consists of a sequence of five subpulses temporally
separated by T=100 fs. The respective relative amplitudes of
the subpulses are J0�0.3�=0.98, J1�0.3�=0.15, and J2�0.3�
=0.01 and the absolute temporal phase of the electrical field
is determined by ��T+�. The above values of T, �, and ��
implement a pure cosine modulation of the form ����
=cos�100 fs��−�0��, which leads to a similar pulse shape as

FIG. 10. Simulation for resonant strong-field excitation using a
sinusoidal phase modulated 30 fs FWHM Gaussian laser pulse. The
modulation parameters are A=0.3, T=100 fs, �=� /2 rad, and
��=� /50 fs−1. �a� Envelope of the electrical field �E+�t�� in units of
the AT splitting ����t� � = ��E+�t�� �bold, left scale� and temporal
phase ��t� of the electric field �dashed, right scale�. The subpulses
are indicated with labels from n= 2 to −2. �b� Time evolution of the
bare state population �ground state �ca�2 dashed, and excited state
�cb�2 bold�. �c� Simulated photoelectron spectrum: the dashed line
indicates the kinetic energy of weak-field photoionization ��e and
the bar shows the AT splitting at the most intense subpulse (n=0,
compare value of ����t�� in �a� at t=0). Only the low kinetic en-
ergy AT component is present in the photoelectron spectrum reveal-
ing that the lower dressed state is selectively populated during the
subpulse of maximum laser intensity. The shoulders in the photo-
electron spectrum with an energy separation of 2�� /T arise from
the interference of free electron wave packets. �d� Population of the
dressed states �lower state �d1�2 dashed, and upper state �d2�2 bold�.

FIG. 11. Simulation for the modulation parameters A=0.3, T
=150 fs, and �=� /2 rad. Only the high kinetic energy AT compo-
nent is present in the photoelectron spectrum �c� revealing that the
upper dressed state is selectively populated during the subpulses of
the maximum laser intensity �n=0� as seen in �d�. For labels see
Fig. 10.

FIG. 12. Simulation for the modulation parameters A=0.3, T
=100 fs, and �=−� /2 rad. Only the high kinetic energy AT com-
ponent is present in the photoelectron spectrum �c� revealing that
the upper dressed state is selectively populated during the subpulses
of the maximum laser intensity �n=0� as seen in �d�. For labels see
Fig. 10.
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depicted in Fig. 3�b�. At each zero of the envelope, a phase
jump of ±� /2 takes place, i.e., the carrier jumps from cosine
to sine. In the following, we discuss the bare state dynamics
for each subpulse as shown in Fig. 10�b�. The first weak
subpulse �n=2� leaves the ground state population essen-
tially unchanged. Therefore, the dynamics is accurately de-
scribed by the perturbation theory. The second subpulse
�n=1� with a pulse area of � /2 creates a superposition state
of maximum coherence, i.e., equal population of both states
�ca�2= �cb�2=0.5. The phase jump of −� /2 between the first
and the second subpulses has no influence on the bare state
dynamics induced by the second nonperturbative interaction.
This is in sharp contrast to the effect of the third subpulse
�n=0�. Although this subpulse has by far the highest inten-
sity, it leaves the population unchanged �cf. Fig. 10�b� at t
�0�. This situation is reminiscent of spin locking known
from nuclear magnetic resonance �43� and phase control ex-
erted by cw lasers �44� termed photon locking �45�. It was
demonstrated in �19� that photon locking can be used for
ultrafast control the quantum mechanical phase of the in-
volved states. In the Appendix, Sec. 1 we show that this is
the case for phase jumps of ±� /2. The fourth subpulse
�n=−1� has the same temporal phase as the second subpulse
�n=1� �cf. Fig. 10�a��. As a consequence, the time evolution
during this � /2 pulse continues the time evolution induced
by the second subpulse leading to an inversion at the end of
the fourth subpulse. The final fifth subpulse is again weak
enough to leave the population essentially unchanged, irre-

spective of its relative phase. Since the measured photoelec-
tron spectra reveal the population of the dressed states �see
the Appendix, Sec. 1�, we consider the light-induced dynam-
ics of the population in the dressed states picture as shown in
Fig. 10�d�. Since the excitation starts from ground state at-
oms, both dressed states are equally populated �d1�2= �d2�2
=0.5 during the first subpulse. Though weak, the first sub-
pulse creates a superposition state and, therefore, the −� /2
phase jump of the second subpulse �at −150 fs� permits us to
exert control on the dressed state population, i.e., the unequal
population of both dressed states. The fact that the second
subpulse does not exhibit SPODS is not due to its �low�
intensity, but due to the low degree of coherence produced
by the first pulse. It is shown in the Appendix that besides the
proper relative phase, a state of maximum coherence is re-
quired as the initial state in order to achieve SPODS during
resonant excitation with a pulse of arbitrary intensity. This
condition is met for the third pulse. Here the initial state is
prepared in a state with �ca�2= �cb�2=0.5, and the phase jump
of −� /2 at −50 fs leads to the selective population of the
lower dressed state. Two-photon ionization is most probable
during this subpulse due to its highest intensity. As a conse-
quence, the photoelectron spectrum is largely determined by
the selective population of the lower dressed state during the
most intense subpulse. Indeed, the concept of the dressed
state population allows us to predict the photoelectron spec-
trum. To this end, we consider the fact that the photoelectron
spectrum maps the �transient� population of the dressed
states �cf. Appendix, Sec. 1�. The energy splitting ���� of the
dressed states is extracted from the time-dependent Rabi fre-
quencies depicted in Fig. 10�a�. For instance, the photoelec-
tron spectrum from ionizing a selectively populated lower
dressed state—as shown in Fig. 10�d�—consists of a single
AT component shifted towards lower energies by ��� � /2
=75 meV with respect to the kinetic energy obtained by
weak-field ionization ��e. This agrees well with the photo-
electron spectrum obtained in the simulation using Eq. �1� as
depicted in Fig. 10�c�. Ionization during the pulses with n
= ±1, where both dressed states are approximately equally
populated, also contributes �fewer� photoelectrons. The re-
spective maxima are displaced by ��� � = ±12.5 meV from
��e �cf. ����t�� at ±100 fs in Fig. 10�a��. Interferences of the
free electron wave packets �40� created during the ionization
by the subpulses before and after the central subpulse pro-
duce the shoulders in the photoelectron spectrum separated
by an energy of 2�� /T. The weak-field interaction during
the subpulses with �n= ±1� is irrelevant for the photoelectron
spectrum.

It turns out that the relative phase between the prepulse
which prepares the maximum coherent state �n=1� and the
subsequent central subpulse �n=0� is the decisive quantity
for strong-field dressed state control. In the following, this
issue is illustrated on three further examples. Using the same
parameters of the phase mask except for the value of
T—which is now set to 150 fs—a pulse sequence as depicted
in Fig. 11�a� is obtained. As discussed in Sec. I B, the sub-
pulses are separated by 150 fs. Since �� is nonzero, the
parameter T not only controls the temporal separation but the
absolute temporal phase in addition. With the values of ��
=� /50 fs−1, �=� /2, and T=150 fs, the modulation is of

FIG. 13. Simulation for the modulation parameters A=1, T
=100 fs, and �=� /2 rad. In order to compensate the reduction of
the peak intensity due to the higher modulation amplitude �cf. Fig.
2� the laser field was increased to 2.3�Ein

+ �t� resulting in a larger
AT-splitting ���� of 0.27 eV �c�. Predominantly, the low kinetic
energy AT component is present in the photoelectron spectrum �c�
revealing that the lower dressed state is more populated during the
whole excitation process �d�. Ionization during the prepulses and
postpulses �n�0� becomes more probable due to their increased
relative intensity and therefore the interference fringes with a spac-
ing of 2�� /T are more pronounced. Partial photoelectron spectra
due to the ionization during the central subpulse �n=0, dashed-
dotted� and the ionization during the adjacent pulse �n=1, dashed�
are shown in addition. For labels see Fig. 10.
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the form ����=−cos�150 fs��−�0��, i.e., a negative pure
cosine phase modulation, resulting in an absolute phase
n���T+��=−n� /2, i.e., phase jumps between adjacent
prepulses of +� /2. This means that by the variation of T the
phase jumps change their sign compared to Fig. 10�a�. The
time evolution of the bare state population shown in Fig.
11�b� is very similar to that shown in Fig. 10�b�, although the
phases of the subpulses are quite different. This demonstrates
that the bare state population is not always a suitable physi-
cal quantity to study strong-field quantum control. However,
the time evolution of the dressed state population is com-
pletely inverted �cf. Fig. 10�d��. Now, the second � /2 sub-
pulse �n=1�, which creates the coherent superposition state,
slightly favors the upper dressed state. Due to the � /2 phase
jump at −75 fs the central pulse �n=0� selectively populates
the upper dressed state which is mapped into the photoelec-
tron spectrum shown in Fig. 11�c�. The energy separation of
the shoulders in the photoelectron spectrum of 2�� /T is
reduced since the temporal separation T of the pulses is en-
larged to 150 fs. The above analysis demonstrates how the
dressed state population is controlled by the variation of the
parameter T. For a constant value of �, the phase jumps are
controlled by ��T which implies that the oscillation period
of the population of either dressed state as discussed in Sec.
III A is 2� /��. For example, the above value of ��
=� /50 fs−1 results in a period of 100 fs similar to the experi-
mental observations. As a consequence the oscillation period
is determined by the origin of the sine mask with respect to
the central frequency �0. This explains the sensitivity of the
experimental results with respect to the laser beam pointing
stability because in the experiment �� is determined by the
position of the spectral phase mask with respect to the laser
spectrum.

An alternative way to change the relative phase between
adjacent subpulses is shown in Fig. 12. Here, we use the
reference parameters of Fig. 10 except for the change of
sign of �. By setting �=−� /2 we implement again a
negative pure cosine phase-modulation function
����=−cos�100 fs��−�0�� but leave the temporal separa-
tion of the subpulses at 100 fs. Since the relative phase
��T+� is again −� /2 the phase jumps are identical with
those shown in Fig. 11�a� but the field envelope �E+�t�� is
identical with Fig. 10�a�. In spite of the opposite phase jumps
of the field, the time evolution of the bare states shown in
Fig. 12�b� is identical with the one presented in Fig. 10�b�.
The control mechanism can be inferred from the dressed
state population shown in Fig. 12�d�. Again by virtue of the
positive phase jump at −50 fs the upper dressed state is se-
lectively populated during the central subpulse. Because the
temporal separation between the subpulses is 100 fs, like in
the reference case, but the time evolution of the dressed state
population is inverted, the photoelectron spectrum depicted
in Fig. 12�c� is a mirror image of the spectrum shown in Fig.
10�c�. These considerations show how the variation of the
phase is used to exert control on the dressed state population.
For a given value of�� the absolute phase � directly con-
trols the relative phase between the subpulses and therefore
the oscillation period of the dressed state population is 2� in
accordance with the experimental findings presented in Sec.
III B.

Another way to manipulate the relative phase of the sub-
pulses and hence the dressed state population would be the
change of the sign of the modulation amplitude A as dis-
cussed in Fig. 9�c� for the experimental results. The fact that
the Bessel functions are either symmetric or antisymmetric,
i.e, Jn�−A�= �−1�nJn�A�, implies that the change of sign of
the amplitude only introduces additional phase jumps of �.
Therefore, instead of considering the change of the sign of A,
we discuss a change of the absolute value of A leaving the
other phase-modulation parameters unchanged as shown in
Fig. 13. When A is increased to 1, more energy is transferred
to the prepulses and postpulses at the expense of the main
pulse leading to a sequence of seven subpulses. To compen-
sate for the attenuation of the central pulse as a result of the
higher value of A, i.e., J0�1��0.76, and in order to present a
clear physical picture of the dynamics, we rise the field Ein

+ �t�
by a factor of f =2.3. This results in a larger AT splitting of
about 0.27 eV as shown in Figs. 13�a� and 13�c�. As a con-
sequence, the AT splitting for the higher intensity does not
directly scale with f but rather with fJ0�1.0� /J0�0.3�=1.8 due
to the alternation of the modulation amplitude. This pulse
sequence gives rise to a rather complicated bare state dy-
namic shown in Fig. 13�b�. For none of the subpulses a sta-
tionary bare state population—characteristic for photon
locking—is obtained. Instead, the bare state dynamic is char-
acterized by strong Rabi oscillations typically for strong-field
quantum control. In contrast to the involved features of the
bare state dynamics, the dressed state time evolution is rather
simple. Figure 13�d� shows that throughout �almost� the
whole excitation process the population of the lower dressed
state is favored. This results in a photoelectron spectrum in
which the lower AT component is strongly enhanced. Details
of the photoelectron spectrum are analyzed in terms of the
interference of multiple free electron wave packets resulting
in multiple partial photoelectron spectra which are coher-
ently added up to yield the observed spectrum. Each wave
packet arises from the ionization during different subpulses
with different AT splittings, different weights of the AT com-
ponents, and different quantum mechanical phases due to the
time delay T. Partial photoelectron spectra from the sub-
pulses with �n=0� and �n=1� are shown in Fig. 13�c�. The
main contribution to the photoelectron spectrum—which is
strongly asymmetric—originates from the central subpulse,
whereas the adjacent prepulse delivers only a small—more
symmetric—contribution. However, due to the coherent su-
perposition of both spectra, the interference structures due to
the weak heterodyned signal are very pronounced. Again the
fringe spacing 2�� /T is determined by the temporal separa-
tion of the subpulses as indicated in Fig. 13�c�. Generally, the
detailed physical mechanism of how the modulation ampli-
tude A controls the photoelectron spectrum is intricate but
traceable. As shown in Sec. I B the modulation amplitude
controls the relative intensities of the subpulses. As far as the
strong-field dynamic is concerned, for a given optical phase
of the pulse sequence, variations of the pulse area of each
subpulse introduce changes of the quantum mechanical
phase. An increase of the pulse area by �, i.e., half a Rabi
cycle, introduces a change of the relative quantum mechani-
cal phase of the amplitudes ca and cb by �. Control on the
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quantum mechanical phase exerted by the laser intensity was
experimentally demonstrated in �19�. Therefore, the modula-
tion amplitude A controls dressed states population via the
pulse intensity. As far as the photoelectron spectrum is con-
cerned, each subpulse produces a partial photoelectron spec-
trum, as shown above for one particular choice of A, whose
symmetry properties are determined by the dressed state
population, and whose energy splitting ���� is determined by
the absolute subpulse intensity. These partial photoelectron
spectra interfere to produce the measured spectrum where the
fringe spacing is given by the temporal separation of the
subpulses and the modulation depth of the fringes depends
on the relative intensities of the subpulses. Control of the AT
doublet via the modulation amplitude A demonstrates that
transient SPODS is sustained over many subpulses. This ex-
ample shows that an exact realization of SPODS is not re-
quired in order to exert control on the AT doublet. This em-
phasizes the robustness of the scheme also from the
theoretical perspective in accordance with the experimental
observations.

V. CONCLUSION

In this contribution we presented a systematic study of
strong-field quantum control using sinusoidal phase modula-
tion as a prototype for complex shaped pulses. The influence
of all the parameters characterizing this type of phase modu-
lation on the dynamics in the neutral atoms and photoelec-
tron spectra was studied theoretically and experimentally.
The dynamics induced by these pulses is particularly inter-
esting because strong-field laser matter interaction with
pulses featuring time varying temporal phases can neither be
described by perturbative techniques nor using the pulse area
as in the case of so-called real fields. A natural physical
interpretation of the strong-field dynamics was given in
terms of the dressed states. Control was achieved by SPODS.
In the experiment the free electron wave packets served as
convenient target states to map SPODS. The physical mecha-
nism of SPODS by pulse sequences was decomposed into
elementary steps. Besides some weak-field interaction with
pre-pulses and postpulses SPODS relies on a two-step
strong-field process in which the first pulse prepares a state
of maximum coherence, whereas the subsequent �most in-
tense� pulse populates a single dressed state. Control is ex-
erted by the relative phase between these pulses. Sinusoidal
phase modulation is particularly suitable to realize SPODS
because it naturally delivers pulse sequences with adjustable
relative intensity and phase. Because virtually all photoelec-
trons are generated during the most intense pulse, a simple
interpretation of the resulting photoelectron spectra could be
presented. Unlike the well-known AT spectra, SPODS-
photoelectron spectra consist of a single peak at high �low�
energies if the upper �lower� dressed state is selectively
populated. Numerical studies confirm the applicability of co-
herent control of molecular dynamics via SPODS on a ge-
neric model system �30� and on K2 dimers �31�. Similar to
the experimental findings on atoms these simulations showed
that strong-field quantum control by SPODS applied to mol-
ecules combines high selectivity �in the order of 80%� and

tunability �in the order or 2000 cm−1� with efficient ultrafast
population transfer. Just as in atoms, the discontinuities of
the optical phase studied in this contribution act as an ul-
trafast switch among different final states of the molecule.
Experiments on larger systems are currently investigated in
our labs.
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APPENDIX: DRESSED STATE ANALYSIS

In this Appendix we specialize the established theoretical
framework of coherent excitation of two-state atoms
�22,38,46–51� to the interaction with shaped intense laser
pulses with regard to SPODS. So far, our experimental re-
sults are interpreted in terms of the bare state and the dressed
state dynamics. The Bloch picture—connecting both
pictures—is discussed in Sec. 1. Because the dynamics of the
Bloch vector is particularly suited to study the influence of
the temporal phase of the driving field, a detailed analysis of
the excitation process with sinusoidally spectrally modulated
femtosecond laser pulses in the Bloch picture is given in Sec.
2. This example shows how control is exerted by phase
jumps rather than a continually varying temporal phase as
discussed in �21�. The coherence properties of the light field
and quantum system required for SPODS are discussed in
Sec. 3. The observed photoelectron spectra are interpreted in
terms of SPODS. Hence, in Sec. 4 we show that in our ex-
periment the photoelectron spectra map the population of the
dressed states rather than the bare states.

We start with a summary of the notation used to describe
the interaction of shaped pulses with two-state atoms. The
temporal �analytic� electric field E+�t�=E+�t�ei�0t is charac-
terized by its �complex� envelope E+�t� and the laser carrier
frequency �0 �35�. The envelope is written as E+�t�
= �E+�t� �ei��t�, where ��t� is the temporal phase function. In
general, the laser frequency �0 is detuned from the transition
frequency by 	=�ba−�0. The Rabi frequency ���t�
=�E+�t� is used to define the pulse area �=�−�

� ��t�dt. Using
the above definitions the bare state Hamiltonian of a two-
level atom is written as

H = −
�

2
 	 ���ei�

���e−i� − 	
� . �A1�

The explicit time dependence of the temporal phase ��t� and
the Rabi frequency ��t� is suppressed in this shorthand no-
tation. The dressed state picture is obtained from the bare
state picture using the unitary transformation

T��,�� =  e−i�/2 cos��� ei�/2 sin���
− e−i�/2 sin��� ei�/2 cos���

� , �A2�

with the mixing angle �
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tan�2�� =
���
	

, �A3�

i.e., the lower and upper dressed state amplitudes dl�t� and
du�t� are connected to the bare state amplitudes ca�t� and
cb�t� by

dl�t�
du�t�

� = T��,��ca�t�
cb�t�

� . �A4�

1. Bloch vector indicates the dressed state population

First, we recall that SPODS is equivalent to a stationary
Bloch vector ��t� during the laser interaction which implies
that the angular velocity vector �B is �anti-� parallel to the
Bloch vector throughout the laser pulse. To this end, we con-
sider the system in a single dressed state ��du�t��2=1�. For
instance, in the dressed state basis, the time evolution in the
upper dressed state reads

dl�t�
du�t�

� =  0

e−i�ut � , �A5�

where ��u describes the upper dressed state energy. The
transformation to the bare state basis is obtained by multipli-
cation with T†�� ,��

ca�t�
cb�t�

� = T†��,��dl�t�
du�t�

� . �A6�

The bare state amplitudes ca�t� and cb�t� obtained from Eq.
�A6� are used to yield the Bloch vector

��t� = � ca
*cb + cacb

*

i�ca
*cb − cacb

*�
�cb�2 − �ca�2

� = �− cos���sin�2��
− sin���sin�2��

cos�2��
� , �A7�

which is time independent ��̇=0� throughout the interaction
with the laser field if the optical phase � and the mixing
angle � are constant. With the equation of motion for the
Bloch vector �̇�t�=�B�t����t� it follows that the angular
velocity vector �B is �anti-� parallel to the Bloch vector �
since �B �� implies �̇=0. Upon comparison of the angular
velocity vector

�B = �− ���cos���
− ���sin���

	
� �A8�

with the Bloch vector of Eq. �A7� and using the definition of
the mixing angle of Eq. �A3� we find that the vectors ��t� and
�B are parallel if the upper dressed state is selectively popu-
lated. Accordingly, the lower dressed state is selectively
populated if ��t� and �B are antiparallel. The condition for
SPODS, i.e., �B � ±� shows that SPODS can be realized with
off-resonance pulsed excitation as well. We can use Eq. �A8�
to design shaped off-resonant SPODS pulses considering that
	 needs to be proportional to ��� throughout the whole exci-
tation process which implies largest detuning at the peak

intensity. Generally, pulsed SPODS requires a constant value
of the mixing angle during the pulse which is always true for
resonant excitation because the mixing angle is � /4 irrespec-
tive of the laser intensity. As a consequence, resonant selec-
tive population of a single dressed state can be maintained
with shaped laser pulses of any �time varying� intensity as
long as the optical phase remains constant �or jumps by ��.
As an example, shaped pulses generated by TOD realize
�B � ±� throughout the complete pulse once �Band � have
been aligned prior to the TOD pulse.

2. Excitation with sinusoidally phase modulated
pulses in the Bloch picture

In this section, we use the Bloch sphere picture in order to
analyze the two-level dynamic induced by shaped intense
pulses. Since pulses generated by the sinusoidal phase modu-
lation can be decomposed into a sequence of subpulses—
provided an appropriate choice of the modulation
parameters—the dynamics induced by the nth subpulse will
be discussed in terms of the angular velocity vector �n pro-
portional to the peak electrical field of the nth subpulse and
its �constant, cf., for instance, Fig. 10� optical phase �n. The
Bloch sphere representation allows us to consider the bare
state dynamics via the inversion w= �cb�2− �ca�2 component of
the Bloch vector and the atomic coherence through the posi-
tion of � in the u -v plane, and, simultaneously, to envisage
the dressed state dynamics via the relative orientation of the
angular velocity vector �n with respect to the Bloch vector
�. To this end, the trace of the Bloch vector ��t� and the
angular velocity vectors �0 and �±1 for the central subpulse
�n=0� and the adjacent subpulses �n= ±1� are indicated in
Fig. 14. The dynamics of the Bloch vector is determined by
the equation of motion �̇�t�=�B�t����t�, and hence, the an-
gular velocity vector �B defined in Eq. �A8� controls the
motion of ��t�. The orientation of the angular velocity
vector—which is always confined to the u -v plane for reso-
nant excitation—is determined by the optical phase ��t� as
indicated in Fig. 14�a�.

We start with the analysis of the reference case shown in
Fig. 14�b� for sinusoidally modulated resonant femtosecond
laser pulses using the modulation parameters A=0.3, T
=100 fs, �=� /2 rad, and ��=� /50 fs−1. In Sec. IV, this
case was analyzed using both the bare state picture �cf. Fig.
10�b�� and the dressed state picture �cf. Fig. 10�d��. The first
subpulse �n=2� leads to a weak-field excitation. Since the
ground state is not significantly depleted, i.e., �ca�2�1, im-
plying w�−1, the Bloch vector stays at the south pole. Dur-
ing the second subpulse �n=1�, the angular velocity vector
�1 is aligned along the −v direction due to the optical phase
of �1=� /2. The phase jump leads to the sharp bend of the
Bloch vector trace in the vicinity of the south pole. Since this
subpulse has a pulse area of � /2, the Bloch vector comes to
a rest close to the +u direction. During the central subpulse
�n=0�, the angular velocity vector �0 points in the −u direc-
tion due to the optical phase of �0=0, i.e. �approximately�
antiparallel to the Bloch vector. In this configuration, the
equation of motion for the Bloch vector reads �̇�t�=�B��
�0, which implies that ��t� is �approximately� stationary
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during this subpulse. Note that the initial conditions prepared
by the n=1 subpulse have been set slightly besides the exact
realization of �B��=0 in order to emphasize the rotation
about the u axis during the central subpulse. As a conse-
quence of � being stationary, the population is constant dur-
ing this subpulse. As shown in the previous section, station-
arity of the population is independent of the subpulse
intensity and operative for any pulse shape, provided the
pulse is real. As recapitulated in Sec. 1, if the angular veloc-
ity vector is �anti-� parallel to the Bloch vector, a single
dressed state is selectively populated. In this case, since ��t�
and �0 are antiparallel, the lower dressed state is selectively
populated during the central pulse accounting for the photo-
electron spectrum depicted in Fig. 10�c�. During the fourth
subpulse �n=−1� with a phase of � /2 and a pulse area of
� /2, the angular velocity vector �−1 is again aligned to the
−v axis and therefore the Bloch vector continues its way to
the north pole where some weak-field interaction takes place
during the last subpulse. Again the phase jump of � /2 mani-

fests itself as a sharp bend of the Bloch vector trace.
Figure 14�c� shows the dynamics of the Bloch vector for a

phase function with T=150 fs leaving the other parameters
unchanged. This case was discussed in the context of Fig. 11
in Sec. IV. The value of T=150 fs delivers the absolute phase
of −n� /2 for each subpulse leading to phase jumps of � /2
between adjacent prepulses �cf. Fig. 11�a��. Due to the abso-
lute phase of �2=−� of the first weak pulse �n=2�, the an-
gular velocity vector �2 �not displayed� points in the +u
direction. However, in contrast to �b�, the phase of the sec-
ond subpulse �n=1� is −� /2 and, therefore, �1 is oriented in
the +v direction. As a consequence, at the end of the second
� /2 subpulse the Bloch vector is �approximately� parallel to
the −u direction. Because the absolute phase of the central
subpulse is zero for all pulse sequences considered here, the
Bloch vector and the angular velocity vector �0 are parallel
during the central pulse. This configuration is the alternative
implementation of �B���0, which implies an �approxi-
mately� constant population during the central subpulse. This
configuration corresponds to the selective population of the
upper dressed state. Hence, the dynamics in the Bloch pic-
ture readily accounts for the shape of photoelectron spec-
trum. Comparison of Figs. 14�b� and 14�c� clearly reveals the
physical mechanism of SPODS. Control on which dressed
state is selectively populated is exerted by the � /2 subpulse
�n=1� that orients the vectors � and �0 either parallel or
antiparallel during the central subpulse. This is equivalent to
the above statement that the relative phase between the
prepulse �n=1� and the central pulse �n=0� determines the
dressed state population provided a state of maximum coher-
ence was prepared by the �n=1� prepulse. Another way to
produce phase jumps of � /2 between adjacent prepulses is
realized by the absolute phase of the modulation function set
to �=−� /2 as shown in Fig. 12�a�. Although the temporal
separation between the subpulses is reduced to T=100 fs,
i.e., the phase mask and pulse shape are different in compari-
son to that of Fig. 11�a�, the Bloch vector trace is identical
with the one shown in Fig. 14�c�. Since the time enters only
parametrically in the Bloch vector trace, these details of the
pulse shape are not seen. Therefore, the Bloch picture is well
suited to extract the essence of the physical mechanism for
SPODS. Note however, that the photoelectron spectra shown
in Figs. 11�c� and 12�c� are not identical due to the different
delays of the interfering free electron wave packets.

The last case, presented in Fig. 14�d�, is devoted to the
analysis of the Bloch vector dynamics induced by a pulse
generated with a larger modulation amplitude �A=1� and an
increased electrical field. Obviously, the dynamic of the
Bloch vector is more complex and thus represents a less
idealized case compared to Figs. 14�b� and 14�c�. This al-
lows us to elucidate important general relations between the
Bloch representation, the dressed state population, and the
photoelectron spectra. As seen in Fig. 13�a� the pulse se-
quence consists of seven subpulses with the absolute phases
of n� /2. The first subpulse �n=3� with an optical phase of
�3=−� /2 �and hence the angular velocity vector �3 parallel
to +v� leads to a weak-field interaction with the atom, as
seen before. The next subpulse �n=2� with a pulse area
larger than � /2 transfers the Bloch vector into the northern

FIG. 14. Bloch sphere representation ��t� of the dynamics in-
duced by the excitation of ground state atoms ��−� �= 
0,0 ,−1�
with sinusoidally modulated resonant femtosecond laser pulses in
the frame rotating with the central laser frequency. The modulation
parameters are A=0.3, T=100 fs, �=� /2 rad, and ��=� /50 fs−1.
�a� shows how the optical phase � controls the position of the
angular velocity vector �B defined in Eq. �A8�. The Bloch repre-
sentation of the reference case as depicted in Fig. 10 is shown in
�b�. The dynamics upon variation of the time �T=150 fs, cf. Fig. 11�
shown in �c� is identical with the dynamics upon variation of the
phase ��=−� /2, cf. Fig. 12�. The dynamics for an amplitude of
A=1 and a field of 2.3�Ein

+ �cf. Fig. 13� is shown in �d�. The
angular velocity vectors �0 and �±1 proportional to the peak elec-
trical fields of the most intense subpulse �n=0� and the adjacent
prepulses �n= ±1� are indicated in order to emphasize the orienta-
tion of �B�t� and ��t� which determines the transient SPODS. In
panel �d� the black dot indicates the transition from the prepulse
�n=1� to the central subpulse, whereas the white dot marks the
transition to the first postpulse �n=−1�.
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hemisphere. Due to its optical phase of �2=�, the angular
velocity vector �2 �not shown� is parallel to +u. Because the
Bloch vector has a nonvanishing component antiparallel to
�2 during this subpulse, the lower dressed state is preferen-
tially populated �cf. Fig. 13�d��. A similar configuration is
found during the third subpulse �n=1�, where the Bloch vec-
tor rotates about the angular velocity vector �1 parallel to the
−v axis. The high Rabi frequency gives rise to several Rabi
nutations about the v axis. Here, the Bloch vector has always
a nonvanishing component along the +v direction. As shown
in Fig. 13�d�, the lower dressed state is preferentially—
though not completely selectively—populated. After this
pulse, the Bloch vector stops approximately aligned to the +u
axis as indicated with the black dot in Fig. 14�d�. During the
central subpulse �n=0� with the optical phase of �0=0 the
Bloch vector rotates almost three times about the u axis.
Since � and �0 are approximately antiparallel during this
subpulse, the lower dressed state is populated with high se-
lectivity as depicted in Fig. 13�d�. The Bloch vector for the
first postpulse �n=−1� starts at the position indicated with
the white dot in Fig. 14�d�. Since the optical phase of �−1
=� /2 and the angular velocity vector �−1 agree with those
of the first prepulse �n=1�, and, in addition, the initial con-
dition is located close to the orbit of ��t� during the �n=1�
prepulse, the same motion of ��t� takes place during the first
postpulse. This leads again to preferential population of the
lower dressed state, but in this case, with slightly lower se-
lectivity as compared to the �n=1� prepulse, because the or-
bit is closer to the w axis as seen in Fig. 14�d�. The second
postpulse �n=−2� induces a similar dynamic as the second
prepulse, because the optical phases �±2=�, and hence the
angular velocity vectors �±2 are identical. Again the lower
dressed state is slightly more populated than the upper
dressed state. These examples show that the inspection of the
Bloch vector and the angular velocity vector allows us to
extract the control mechanism and to qualitatively predict the
photoelectron spectrum being the image of the control
mechanism.

3. Phase condition for SPODS

In this section the coherence properties of the shaped
pulses and the excited atom to create SPODS are investi-
gated. To this end, we consider for simplicity resonant two-
pulse excitation from the ground state, i.e., the mixing angle
� is always � /4. The action of the first pulse with an optical
phase of �1 and a pulse area of �1 exciting ground state
atoms is described by the resonant time evolution operator
U���1 ,�1� �49�

U���1,�1� =  cos��1/2� i ei�1 sin��1/2�
i e−i�1 sin��1/2� cos��1/2�

�1

0
� .

�A9�

For resonant excitation with a first �1=� /2 pulse and a sec-
ond pulse with the constant optical phase �2, the initial
dressed state amplitudes are found to be

dl

du
� = T��/4,�2�U���/2,�1�1

0
� . �A10�

Because the dressed states are the eigenstates of the light
matter interaction, the dressed state population—given by
the squared absolute values of the dressed state amplitudes—
remains constant during the interaction with the second
pulse. Evaluation of Eq. �A10� yields the dressed states
population

�dl�2 = 1
2 �1 − sin����� �A11�

�du�2 = 1
2 �1 + sin����� �A12�

as a function of the optical phases of the pulse sequence
where ��=�2−�1 describes the difference of the optical
phases of the first and the second subpulse. As a consequence
a phase jump of ��=� /2 leads to �du�t��2=1, i.e., selective
population of the upper dressed state whereas a relative
phase of ��=−� /2 exclusively populates the lower dressed
state.

4. Photoelectron spectra map dressed state population

In order to see that the photoelectron spectrum maps the
dressed states population, we consider an idealized scenario
in which the atom is in the lower dressed state with a con-
stant probability of cos2��� and in the upper dressed state
with a constant probability of sin2���. This is realized by the
amplitudes

dl�t�
du�t�

� = cos���e−i�lt

sin���e−i�ut � �A13�

in the dressed state basis. For clarity we assume resonant
excitation and an optical phase of �=0 to obtain the excited
bare state amplitude using Eq. �A6�

cb�t� =
1
	2

�cos���e−i�lt + sin���e−i�ut� . �A14�

Since the photoelectron amplitudes are described by the Fou-
rier transform of the excited state amplitude windowed by
some power of electrical field F�t�= �E−�t��n �cf. Eq. �1�� the
amplitudes for the photoelectrons read

c��e� � cos���F̃�� + ���/2� + sin���F̃�� − ���/2� ,

�A15�

where F̃��� is the Fourier transform of F�t� and we make
use of the Fourier shift theorem and insert the resonant
dressed state energies �l=− 1

2 ��� and �u= 1
2 ���. Equation

�A15� shows that the weights of the AT components are
cos2��� and sin2��� for the lower and upper dressed states,
respectively. In this simplified picture the photoelectron
spectrum exactly maps the population of the dressed states.
Obviously, this description somehow oversimplifies the ion-
ization process since the dressed state population ��t� and
the dressed state energy splitting ���t� are controlled by the
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laser field and therefore both quantities are generally time
dependent. However, since most photoelectrons are produced
at the highest laser intensity, i.e., for approximately constant
values of � and ��, the approximation is justified during the
time interval of ionization with highest probability. From a

physical point of view, it is comprehensible that in this si-
multaneous excitation and ionization scheme—where photo-
electrons are generated during the strong-field laser-atom
interaction—the dressed states rather than the bare states are
mapped into the photoelectron spectrum.
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