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We show that a simple approximation based on concepts underlying the Kibble-Zurek theory of second order
phase-transition dynamics can be used to treat avoided level crossing problems. The approach discussed in this
paper provides an intuitive insight into quantum dynamics of two-level systems, and may serve as a link
between the theory of dynamics of classical and quantum phase transitions. To illustrate these ideas we analyze
dynamics of a paramagnet-ferromagnet quantum phase transition in the Ising model. We also present exact
unpublished solutions of the Landau-Zener-like problems.
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I. INTRODUCTION

Two-level quantum systems that undergo avoided level
crossing play an important role in physics. Often they pro-
vide not only a qualitative description of system properties
but also a quantitative one. The possibility for a successful
two-level approximation arises in different physical systems,
e.g., a single one-half spin; an atom placed in a resonant
light; smallest quantum magnets; etc.

In this paper we focus on avoided level crossing dynamics
in two-level quantum systems. Two interesting related exten-
sions of the above-mentioned long list are the critical dynam-
ics of quantum phase transitions �1–5� and adiabatic quan-
tum computing �6�. In both of these cases �and, indeed, in all
of the other applications of the avoided level crossing sce-
nario� there are many more than two levels, but the essence
of the problem can be still captured by the two-level,
Landau-Zener type calculation.

Our interest in the Landau-Zener model originates also
from its well-known numerous applications to different
physical systems. In many cases there is a possibility of more
general dependence of the relevant parameters �i.e., gap be-
tween the two levels on time� than in the original Landau-
Zener treatment. This motivates our extensions in this paper
of the level crossing dynamics to asymmetric level crossings
and various power-law dependences. Appropriate variations
of external parameters driving the Landau-Zener transition
can allow for an experimental realization of these general-
ized Landau-Zener-like models in quantum magnets �7� and
optical lattices �8�.

We focus on evolutions that include both the adiabatic and
diabatic �impulse� regime during a single sweep of a system
parameter. For simplicity, we call these evolutions diabatic
since we assume that they include a period of fast change of
a system parameter. This is in contrast to adiabatic time evo-
lutions induced by very slow parameter changes when the
system never leaves the adiabatic regime. We will use a for-
malism proposed recently by one of us �9�. It originates from
the so-called Kibble-Zurek �KZ� theory of topological defect
production in the course of classical phase transitions
�10,11�, and works best for two-level systems. The two-level
approximation was recently shown by Zurek et al. �2� and
Dziarmaga �3� to be useful in studies of quantum phase tran-

sitions confirming earlier expectations—see Chap. 1.1 of
�1,9�. Therefore we expect that the formalism presented here
will provide a link between dynamical studies of classical
and quantum phase transitions.

The present contribution extends the ideas presented in
�9�. In particular, we have succeeded in replacing the fit to
numerics used there for getting a free parameter of the
theory, with a simple analytic calculation. We also show that
the method of �9� can be successfully applied to a large class
of two-level systems. Moreover, we present nontrivial exact
analytic solutions for the Landau-Zener model and the rel-
evant adiabatic-impulse approximations not published to
date.

Section II presents basics of what we call the adiabatic-
impulse approximation. Section III shows adiabatic-impulse,
diabatic, and finally exact solutions to different versions of
the Landau-Zener problem. In Sec. IV we discuss solutions
for a whole class of two-level systems on the basis of
adiabatic-impulse and diabatic schemes. Section V presents
how results of Sec. III can be used to study quantum Ising
model dynamics. Details of analytic calculations are in Ap-
pendix A �diabatic solutions�, Appendix B �exact solutions of
Landau-Zener problems�, and Appendix C �adiabatic-
impulse solution from Sec. IV�.

II. ADIABATIC-IMPULSE APPROXIMATION

We will study dynamics of quantum systems by assuming
that it includes adiabatic �no population transfer between
instantaneous energy eigenstates� and impulse �no changes in
the wave function except for an overall phase factor� stages
only. The nature of this approach suggests the name
adiabatic-impulse �AI� approximation. The AI approach
originates from the Kibble-Zurek �KZ� theory of nonequilib-
rium classical phase transitions and we refer the reader to �9�
for a detailed discussion of AI-KZ connections. Below, we
summarize basic ideas of the KZ theory and the relevant
assumptions used later on.

Second order phase transitions and avoided level cross-
ings share one key distinguishing characteristic: in both
cases sufficiently near the critical point �defined by the re-
laxation time or by the inverse of the size of the gap between
the two levels� system “reflexes” become very bad. In phase
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transitions this is known as “critical slowing down.”
In the treatment of the second order phase transitions this

leads to the behavior where the state of the system can
initially—in the adiabatic region far away from the
transition—adjust to the change of the relevant parameter
that induces the transition, but sufficiently close to the criti-
cal point its reflexes become too slow for it to react at all. As
a consequence, a sequence of three regimes �adiabatic, im-
pulse near the critical point, and adiabatic again on the other
side of the transition� can be anticipated. In the second order
phase transitions this allows one to employ a configuration
dominated by the pretransition fluctuations to calculate sa-
lient features of the posttransition state of the order param-
eter �e.g., the density of topological defects�. Key predictions
of this KZ mechanism have been by now verified in numeri-
cal simulations �12,13� and more importantly in laboratory
experiments �14–17�.

The crux of this story is of course the moments when the
transition from adiabatic to impulse and back to adiabatic
behavior takes place. Assuming that the transition point is
crossed at time t=0, this must happen around the instants ±t̂,
where t̂ equals system relaxation time � �11�. As the relax-
ation time depends on system parameter �, which is changed
as a function of time, one can write

�„��t̂�… = t̂ . �1�

This basic equation proposed in �11� can be solved when
dependence of � on some measure of the distance from the
critical point �e.g., relative temperature or coupling �� is
known. Assuming, e.g., �=�0 /� and �= t /�Q, where �Q, the
“quench time,” contains information about how fast the sys-
tem is driven through the transition, one arrives at
�0 / �t̂ /�Q�= t̂. Hence the time t̂ at which the behavior switches
between approximately adiabatic and approximately impulse
is ��0�Q. Once this last “adiabatic” instant in the evolution of
the system is known, interesting features of the posttransition

state �such as the size of the regions �̂ in which the order
parameter is smooth� can be computed. Generalization to
other universality classes is straightforward �11� and leads to

t̂ � �Q
1/�1+�z�, �̂ � �Q

�/�1+�z�, �2�

where z and � are universal critical exponents �see, e.g.,
�12��.

In what follows we adopt this approach to quantum sys-
tems where dynamics can be approximated as an avoided
level crossing �see Fig. 1�. For simplicity we restrict our-
selves to two-level systems that possess a single anticrossing
�Fig. 1� in the excitation spectrum and a gap preferably going
to +� far away from the anticrossing. The latter condition
guarantees that asymptotically the system enters the adia-
batic regime.

The passage through avoided level crossing can be di-
vided into an adiabatic and an impulse regime according to
the size of the gap in comparison with the energy scale that
characterizes the rate of the imposed changes in system
Hamiltonian. If the gap is large enough the system is in the
adiabatic regime, while when the gap is small it undergoes
impulse time evolution as depicted in Fig. 1�b�. The instants

±t̂ are supposed to be such that the discrepancy between time
dependent exact results and those coming from splitting of
the evolution into only adiabatic and impulse parts is mini-
mized. Therefore the AI approximation looks like a time de-
pendent variational method where t̂ is a variational param-
eter while adiabatic-impulse assumptions provide a form of a
variational wave function.

To make sure that assumptions behind the AI approach are
correctly understood, let us consider time evolution of the
system depicted in Fig. 1. Let the evolution start at ti→−�
from a ground state �GS� and last until tf → +�. The AI
method assumes that the system wave function, ���t��, sat-
isfies the following three approximations coming from pass-
ing through first adiabatic, then impulse and finally adiabatic
regions:

t � �− �,− t̂�:���t�� 	 �phase factor��GS at t� ,

t � �− t̂, t̂�:���t�� 	 �phase factor��GS at − t̂� ,

t � �t̂, + ��:�
��t��GS at t��2 = const.

Finally, one needs to know how to get the instant t̂. As
proposed in �9�, the proper generalization of Eq. �1� to the
quantum case �after rescaling everything to dimensionless
quantities� reads

1

gap�t̂�
= �t̂ , �3�

where �=O�1� is a constant. Similarity between Eq. �3� and
Eq. �1� suggests �in accord with physical intuition� that the
quantum mechanical equivalent of the relaxation time scale
is an inverse of the gap.

In this paper we give a simple and systematic way for �i�
obtaining � analytically; and �ii� verification that Eq. �3�
leads to correct results in the lowest nontrivial order. This
method, illustrated on specific examples in Appendix A, is
based on the observation that a time dependent Schrödinger
equation can be solved exactly in the diabatic limit if one
looks at the lowest nontrivial terms in expressions for exci-

FIG. 1. �a� Structure of energy spectrum �parametrized by time�
of a generic two-level system under consideration. Note the anti-
crossing at t=0 and asymptotic form of eigenstates: �1�, �2�. �b�
Adiabatic-impulse regimes in system dynamics. Compare it to a
plot of relaxation time scale in the Kibble-Zurek theory �9,11�. Note
that instants separating adiabatic and impulse regimes do not have
to be placed symmetrically with respect to t=0—see Sec. III A and
Fig. 3.
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tation amplitudes. This should be true even when getting an
exact solution turns out to be very complicated or even im-
possible. After obtaining � this way, the whole AI approxi-
mation is complete in a sense that there are no free param-
eters, so its predictions can be rigorously checked by
comparison to exact �either analytic or numeric� solution.

III. DYNAMICS IN THE LANDAU-ZENER MODEL

In this section we illustrate the AI approximation by con-
sidering the Landau-Zener model. In this way we supplement
and extend the results of �9�.

The Landau-Zener model, after rescaling all the quantities
to dimensionless variables, is defined by the Hamiltonian:

H =
1

2�
t

�Q
1

1 −
t

�Q

� , �4�

where �Q is time independent and provides a time scale on
which the system stays in the neighborhood of an anticross-
ing. As �Q→0 the system undergoes diabatic time evolution,
while �Q	1 means adiabatic evolution. There are two eigen-
states of this model for any fixed time t: the ground state
�↓ �t�� and the excited state �↑ �t�� given by

�↑�t��
�↓�t�� � = � cos�
�t�/2� sin�
�t�/2�

− sin�
�t�/2� cos�
�t�/2�
��1�

�2� � , �5�

where �1� and �2� are time-independent basis states of the
Hamiltonian �4�; cos�
�=� /�1+�2; sin�
�=1/�1+�2;

� =
t

�Q
, �6�

and 
� �0,��. The gap in this model is

gap = �1 + �2.

The instant t̂ is obtained from Eq. �3�:

1

�1 + � t̂

�Q
�2

= �t̂ ,

which leads to the following solution:

�̂ =
t̂

�Q
=

1
�2
��1 +

4

���Q�2�1/2

− 1. �7�

Dynamics of the system is governed by the Schrödinger
equation:

i
d

dt
��� = H��� ,

and it will be assumed that evolution happens in the interval
�ti , tf�.

As was discussed in �9�, by using AI approximation one
can easily arrive at the following predictions for the prob-

ability of finding the system in the excited state at tf 	 t̂.
�1� Time evolution starts at ti�−t̂ from the ground state

PAI = �
↑�t̂��↓�− t̂���2 =
�̂2

1 + �̂2 . �8�

In this case the system undergoes in the AI scheme the adia-
batic time evolution from ti to −t̂, then impulse one from −t̂
to t̂, and finally adiabatic from t̂ to tf 	 t̂.

�2� Time evolution starts at ti=0 from the ground state

pAI = �
↑�t̂��↓�0���2 =
1

2�1 −
1

�1 + �̂2� . �9�

Now evolution is first impulse from t=0 to t= t̂ and then
adiabatic from t̂ to tf 	 t̂.

In the following we consistently denote excitation prob-
ability when the system evolves from ti�−t̂, ti=0 by P, p,
respectively. Additionally the subscript AI will be attached to
predictions based on the AI approximation.

In the first case, the substitution of Eq. �7� into Eq. �8�
leads to

PAI = 1 − ��Q +
���Q�2

2
−

���Q�3

8
+ O��Q

4 � . �10�

Now we have to determine �. It turns out that it can be done
by looking at the diabatic excitation probability. The proper
expression and calculation can be found in Appendix A. Sub-
stituting =1/2 into Eqs. �A6� and �A5� one gets that to the
lowest nontrivial order PAI=1−��Q /2, which implies that
�=� /2 and verifies Eq. �3� for this case. Note that the cal-
culation leading to Eqs. �A5� and �A6� is not only much
easier then determination of the exact LZ solution �18�, but
also really elementary. Therefore we expect that it can be
done comparably easily for any model of interest.

Now we are ready to compare our AI approximation with
� determined as above, to the exact result, i.e.,

P = exp�−
��Q

2
� . �11�

First, the agreement between the exact and AI result is up to
O��Q

3 �, i.e., one order above the first nontrivial term. This is
the advantage that the AI approximation provides over a
simple diabatic approximation performed in Appendix A.
Second, we see that the AI expansion contains the same pow-
ers of �Q as the diabatic �small �Q� expansion of the exact
result. Third, Fig. 2 quantifies the discrepancies between ex-
act, AI, and diabatic results. For the AI prediction, we plot in
Fig. 2 instead of a Taylor series �10� the full expression
evaluated in �9�

PAI =
2

���Q�2 + ��Q
����Q�2 + 4 + 2

, �12�

with �=� /2. As easily seen the AI approximation signifi-
cantly outperforms a diabatic solution. In other words, the
combination of AI simplification of dynamics and diabatic
prediction for the purpose of getting the constant � leads to
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fully satisfactory results considering simplicity of the whole
approach.

It is instructive to consider now separately three situa-
tions: �i� dynamics in a nonsymmetric avoided level crossing
�Sec. III A�; �ii� dynamics beginning at the anticrossing cen-
ter �Sec. III B�; and �iii� dynamics starting at ti→−� but
ending at the anticrossing center �Sec. III C�. The first case
will give us a hint whether O��Q

3 � agreement we have seen
above is accidental and has something to do with the sym-
metry of the Landau-Zener problem. The second problem
was preliminarily considered in �9�, but without comparing
the AI prediction to the exact analytic one being interesting
on its own. Finally, the third problem is an example where AI
approximation correctly suggests at a first sight unexpected
symmetry between this problem and the one considered in
Sec. III B.

A. Nonsymmetric Landau-Zener problem

We assume that system Hamiltonian is provided by the
following expression:

H =
1

2�
1

�

t

�Q
1

1 −
1

�

t

�Q

�, � = �1 for t � 0

� for t � 0
� �13�

with ��0 being the asymmetry parameter—see Fig. 3�a� for

schematic plot of the spectrum.
Once again, evolution starts at ti→−� from a ground

state. The exact expression for finding the system in the ex-
cited eigenstate at the end of time evolution �tf → +�� is

P = 1 −
e−��1+���Q/8

2
sinh�1

4
��Q��

� ���1/2 + i�Q�/8�
��1/2 + i�Q/8�

+�1

�

��1 + i�Q�/8�
��1 + i�Q/8�

�2

, �14�

and its derivation is presented in Appendix B. Naturally, for
�=1, i.e., in a symmetric LZ problem, the expression �14�
reduces to Eq. �11�.

Now we would like to compare Eq. �14� to predictions
coming from AI approximation. Due to asymmetry of the
Hamiltonian the systems enter the impulse regime in the time
interval �−t̂L , t̂R�—see Fig. 3�b� for illustration of these con-
cepts. The instants t̂L and t̂R are easily found in the same way
as in the symmetric case. It is a straightforward exercise to
verify that according to AI approximation, the probability of
finding the system in the upper state is

PAI = �
↓�− t̂L��↑�t̂R���2. �15�

To simplify comparison between exact �14� and approxi-
mate �15� excitation probabilities we will present their diaba-
tic Taylor expansions:

PAI = 1 −
1

4
�1 + ���2��Q +

1

16
�1 + ���1 + ���2���Q�2

+ O��Q
3 � . �16�

Determination of the constant � is easy and is presented in
Appendix A. By putting =1/2 into Eqs. �A6� and �A10�,
one gets that �=� /2.

The AI prediction can be easily compared to the exact
result �14� after series expansion

P = 1 −
�

8
�1 + ���2�Q +

�2

64
�1 + ���1 + ���2�Q

2 + O��Q
3 � .

This comparison shows that once again there is perfect
matching between exact and AI description up to O��Q

3 �, i.e.,
one order better then the simple diabatic approximation from
Appendix A, despite the fact that we deal now with a non-
symmetric LZ problem. Moreover, the constant � is the same
in symmetric and nonsymmetric cases. Finally the same
powers of �Q show up in both exact and AI results.

The nonsymmetric Landau-Zener model is also interest-
ing in the light of a recent paper �19�, where it is argued that
the final state of the system that passed through a classical
phase transition point is determined by details of dynamics
after phase transition. In our system, there are two different
quench rates: �Q before the transition and �Q� =�Q� after the
transition. Substitution of �=�Q� /�Q into Eq. �14� shows that
the final state of the nonsymmetric Landau-Zener model ex-
pressed in terms of the excitation probability depends on
both �Q and �Q� , so that it behaves differently than the system
described in �19�.

FIG. 2. Transition probability when the system starts time evo-
lution from a ground state at ti→−� and evolves to tf → +�. Dots:
exact expression �11�. Solid line: AI prediction �12� with �=� /2
determined from the diabatic solution in Appendix A. Dashed thick
line: lowest order diabatic result, 1−��Q /2, coming from Eqs. �A5�
and �A6� with =1/2.

FIG. 3. The same as in Fig. 1 but for a nonsymmetric Landau-
Zener problem with ��1—see Eq. �13�.
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B. Landau-Zener problem when time evolution
starts at the anticrossing center

Now we consider the LZ problem characterized by
Hamiltonian �4� in the case when time evolution starts from
the ground state at the anticrossing center, i.e., ti=0. It means
that ���0��� ��1�− �2�� /�2. Excitation probability at tf →
+� equals exactly �see Appendix B�

p = 1 −
2

��Q
sinh���Q

4
�e−��Q/8���1 +

i�Q

8
�

+ ei�/4��Q

8
��1

2
+

i�Q

8
��2

. �17�

From the point of view of AI approximation the evolution
is now simplified by assuming that it is impulse from ti=0 to
t̂ and then adiabatic from t̂ to tf → +�. This case was dis-
cussed in �9�, and it was shown that substitution of Eq. �7�
into Eq. �9� leads to a simple expression

pAI =
1

2
−

1

2
�1 −

2

���Q�2 + ��Q
����Q�2 + 4 + 2

, �18�

expanding it into diabatic series one gets

pAI =
1

2
−

1

2
���Q +

1

8
���Q�3/2 + O��Q

5/2� . �19�

Determination of a constant � is straightforward �see Appen-
dix A�. Putting =1/2 into Eqs. �A8� and �A9� one easily
gets �=� /4 and confirms that the first nontrivial term in Eq.
�19� is indeed ���Q. This value of � �	0.785� is in agree-
ment with the numerical fit done in �9� where optimal � was
found to be equal to 0.77. Small disagreement comes from
the fact that now we use just the 1

2 − 1
2
���Q part for getting �,

which is equivalent to making the fit to exact results in the
limit of �Q�1. In �9� the fit of the whole expression �18� in
the range of 0��Q�6 was done.

Having the exact solution �17� at hand, we can verify
rigorously accuracy of Eqs. �18� and �19� with the choice of
�=� /4. Expanding Eq. �17� into diabatic series one gets

p =
1

2
−

��

4
��Q +

�3/2

64
�2 −

4 ln 2

�
��Q

3/2 + O��Q
5/2� . �20�

As expected the first nontrivial term is in perfect agreement
with Eq. �19� once �=� /4. On the other hand, the term
proportional to �Q

3/2 is about 10% off. Indeed, after substitu-
tion �=� /4 into Eq. �19� one gets the third term equal to
�3/2�Q

3/2 /64, which has to be compared to 	1.1�3/2�Q
3/2 /64

from Eq. �20�. It shows that the AI approximation in this case
does not predict exactly higher nontrivial terms in the diaba-
tic expansion.

Nonetheless, expression �18� works much better then the
above comparison suggests. It not only significantly outper-
forms the lowest order diabatic expansion, 1

2 − 1
4
���Q, but

also beautifully fits to the exact result pretty far from the
�Q�1 regime. Figure 4 leaves no doubt about these state-
ments. It suggests that AI predictions should be compared to
exact results not only term by term as in the diabatic expan-
sion, but also in a full form.

C. One-half of Landau-Zener evolution

In this section we consider exactly one-half of the LZ
problem. Namely, we take the Hamiltonian �4� and evolve
the system to the anticrossing center, tf =0, while starting
from the ground state at ti→−�.

Let us see what the AI approximation predicts for excita-
tion probability of the system at tf =0. According to AI, evo-
lution is adiabatic in the interval �−� ,−t̂� and then impulse in
time range �−t̂ ,0�. It implies that

�
↑�0����0���2 	 �
↑�0����− t̂���2 	 �
↑�0��↓�− t̂���2.

A simple calculation then shows that

PAI = �
↑�0��↓�− t̂���2 =
1

2�1 −
1

�1 + �̂2� . �21�

A quick look at Eq. �9� shows that the excitation probability
for one-half of the Landau-Zener problem is supposed to be,
according to the AI scheme, equal to the excitation probabil-
ity when the system starts from the anticrossing and evolves
toward tf → +�.

To check that prediction we have solved the one-half LZ
model exactly, see Appendix B, and found that indeed both
probabilities are exactly the same, so the AI approximation
provides us here with a prediction that is correct not only
qualitatively but also quantitatively.

IV. DYNAMICS IN A GENERAL CLASS OF QUANTUM
TWO-LEVEL SYSTEMS

To test predictions coming from the AI approximation on
two-level systems different than the classic Landau-Zener
model, we consider in this section dynamics induced by the
Hamiltonian

FIG. 4. Transition probability when the system starts time evo-
lution at the anticrossing center from a ground state and evolves to
tf → +�. Dots: exact expression �17�. Solid line: AI prediction �18�
with �=� /4 determined from the diabatic solution in Appendix A.
Dashed thick line: lowest order diabatic prediction 1/2−���Q /4
coming from Eqs. �A8� and �A9� with =1/2.
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H =
1

2�sgn�t�� t

�Q
�/�1−�

1

1 − sgn�t�� t

�Q
�/�1−� � ,

�22�

where � �0,1� is a constant parameter �when =1/2 the
system reduces to the Landau-Zener model�. The eigenstates
of Hamiltonian �22� are expressed by formula �5� with

cos�
� =

sgn�t�� t

�Q
�/�1−�

�1 + � t

�Q
�2/�1−�

,

and

sin�
� =
1

�1 + � t

�Q
�2/�1−�

.

Extending the notation of Sec. III to the system �22� one has
to replace definition �6� by

� = sgn�t�� t

�Q
�/�1−�

and then expressions �8� and �9� providing excitation prob-
abilities are valid also for the model �22�.

The instant t̂ for the Hamiltonian �22� is determined by
the following version of Eq. �3�:

1

�1 + � t̂

�Q
�2/�1−�

= �t̂ . �23�

It seems to be impossible to obtain the solution of Eq. �23�
exactly. Fortunately, a diabatic perturbative expansion for t̂
can be found—see Appendix C. Once the diabatic expansion
of t̂ is known, we can present different predictions about
dynamics of the model �22�.

First, we consider transitions starting from a ground state
at ti→−� and lasting until tf → +�. Using the results of
Appendix C one gets the following expression for the exci-
tation probability:

PAI =
�̂2

1 + �̂2 = 1 − ���Q�2 + �1 − ����Q�4

−
1

2
�1 − ��2 − 3����Q�6 +

1

3
�1 − ��1 − 2�

� �3 − 4����Q�8 + O��Q
10� . �24�

This result is equivalent to Eq. �10� when one puts =1/2.
The constant � was found in Appendix A from the diabatic
solution and equals Eq. �A6�

� = �1 − ���1 − �1/.

The exponent 2 in the lowest order term in Eq. �24� was
positively verified �Appendix A�. Additionally, we have per-
formed numerical simulations for =1/3 ,2 /3 ,3 /4 ,5 /6. A
fit to numerics in the range of �Q�1 has confirmed both the
exponent 2 and the value of �. The comparison between
the AI prediction for =1/3 ,2 /3 and numerics is presented
in Fig. 5�a�. The lack of exact solution for this problem does
not allow us a more systematic analytic investigation of the
AI approximation in this case. Nonetheless, a good agree-
ment between AI and numerics is easily noticed. Once again,
the AI prediction outperforms the lowest order diabatic ex-
pansion.

As before, we would like to consider transitions starting
from the anticrossing center, i.e., ti=0. In this case the exci-
tation probability equals

pAI =
1

2�1 −
1

�1 + �̂2� =
1

2
−

1

2
���Q� +

1

4
�1 − �

� ����3 −
1

16
�1 − ��3 − 5����Q�5 + O��Q

7� .

�25�

As above, the diabatic calculation of Appendix A verifies the
exponent of the first nontrivial term in Eq. �25� and provides
us with the following prediction for � �A9�

FIG. 5. Numerics: bold dashed line, AI approximation: solid
line, and lowest order exact diabatic expansion �Appendix A�: dot-
ted line. �a� Evolution starts from ti→−�. �b� Evolution starts from
ti=0. In both �a� and �b� evolution ends in tf → +�.
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� = �1 − ���1 − �1/ cos ��

2
�1/

.

After setting =1/2 formula �25� becomes the same as Eq.
�19�. Due to the lack of exact results we have carried out
numerical simulations for =1/3 ,2 /3 ,3 /4 ,5 /6. As ex-
pected, this calculation has confirmed that the exponent of �Q
is indeed  for small �Q and that � is provided by Eq. �A9�.
The AI approximation vs numerics and diabatic expansion
for =1/3 ,2 /3 is presented in Fig. 5�b�. Once again an
overall agreement is strikingly good.

V. QUANTUM PHASE TRANSITION IN ISING MODEL
VS ADIABATIC-IMPULSE APPROACH

In this section we will illustrate how ideas coming from
the adiabatic-impulse approach can be used in studies of dy-
namics of quantum phase transition. As an example we
choose the quantum Ising model recently considered in this
context �2–4�. The quantum Ising model is defined by the
following Hamiltonian

H = − �
n=1

N

�g�n
x + �n

z�n+1
z � , �26�

where N is the number of spins. The quantum phase transi-
tion in this model is driven by the change of a dimensionless
coupling g. The transition point between paramagnetic phase
�g�1� and ferromagnetic one �0�g�1� is at g=1. To study
dynamics of Eq. �26� one assumes that the system evolves
from time t�=−� to time t�=0, and takes

g = −
t�

�Q�
,

where �Q� provides a quench rate. The quantity of interest is
density of topological defects �kinks� after completion of the
transition, i.e., at g=0. It equals �3�

n = lim
N→+�

� 1

2N
�
n=1

N−1

�1 − �n
z�n+1

z �� . �27�

The quantum Ising model obviously possesses 2N different
energy eigenstates so it seems to be hopeless to expect that
the two-level approximation would be sufficient. Therefore it
is a remarkable result of Dziarmaga �3� that dynamics in this
system can be exactly described by a series of uncoupled
Landau-Zener systems. Due to lack of space, we refer the
reader to �3�, and present just the main results and their AI
equivalents.

The density of defects �27� in Dziarmaga’s notation reads
as

n =
N	1 1

2�
�

−�

�

dkpk,

where pk’s are defined as

pk = �cos�k/2�uk�t� = 0� − sin�k/2�vk�t� = 0��2, �28�

with uk, vk satisfying the following Landau-Zener system:

i
d

dt
�vk

uk
� =

1

2�
t

�Q
1

1 −
t

�Q

��vk

uk
� ,

t = 4�t� + �Q� cos k�sin k ,

�Q = 4�Q� sin2 k , �29�

where t� changes from −� to 0. The initial conditions for that
LZ system are the following:

�uk�t� = − ��� = 1, vk�t� = − �� = 0. �30�

Due to the symmetry of the whole problem, it is possible to
show that pk� p−k, and therefore it is sufficient to restrict to
k�0 from now on.

Evolution in Eq. �29� lasts from ti=−� to tf =2�Q� sin�2k�.
Since obviously tf does not go to +�, it is important to de-
termine where tf is placed with respect to ±t̂.

We solve the equation t̂= �tf� �where we substitute k=kc�.
After using Eq. �7� with �=� /2 and simple algebra one
arrives at

1
�2
��1 +

4

���Q/2�2�1/2

− 1 = � cos kc

sin kc
� ,

which leads to the result

sin2 kc = 1 −
1

4�2�Q�
2 .

Defining kc to be between 0 and � /2 and doing some addi-
tional easy calculations one gets that when �Q� �

1
2� we have:

�i� tf � t̂ for k� �0,kc�; �ii� −t̂� tf � t̂ for k� �kc ,�−kc�; and
�iii� tf �−t̂ for k� ��−kc ,��. Moreover, when �Q� �

1
2� one

can show that �tf�� t̂ for any k’s of interest. It means that the
evolution ends in the impulse regime for small enough �Q� .

Now, as in �2–4�, we consider adiabatic time evolutions of
the Ising model. In our scheme it clearly corresponds to �Q�
	

1
2� . As the system undergoes slow evolution it is safe to

assume that only long wavelength modes are excited, which
means that k�� /4 are of interest. This allows us to approxi-
mate sin k�k and cos k�1, which implies that Eq. �28�
turns into pk	�uk�tf��2 and that

n 	
1

�
�

0

�

dk�uk�tf��2,

with ��� /4. Since k� �0,�� corresponds to the above-
mentioned �i� case, tf � t̂, the AI approximation says that
�uf�tf��	�uf�+���. Initial conditions �30� mean that the sys-
tem starts time evolution at t=−� from excited state and we
are interested in the probability of finding it in the ground
state at tf. Elementary algebra based on AI approximation
shows that this probability equals
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�uk�tf��2 = �
↑�− t̂��↓�t̂���2 = �
↓�− t̂��↑�t̂���2.

Therefore it is provided by Eqs. �8� and �12�. For any fixed �
consistent with lowest order approximation of sin k and cos k
one gets

n � 0.172
1

�2�Q�
, �31�

where the prefactor was found from expansion of the integral
into 1/��Q� adiabatic series with �Q� → +� at fixed �. In the
derivation of this result sin2 k in the expression for �Q was
approximated by k2.

First of all, the prediction �31� provides correct scaling of
defect density with �Q� . The prefactor, 0.172, has to be com-
pared to 1

2� 	0.16 �exact result from �3� and numerical esti-
mation from �2�� or 0.18 �approximate result from �4��. Our
prefactor matches these results remarkably closely concern-
ing simplicity of the whole AI approximation. Slight overes-
timation of the prefactor in comparison to exact result comes
from the fact that AI transition probability, Eq. �12�, overes-
timates the exact result, Eq. �11�, for large �Q’s �Fig. 2�. It is
interesting to note that in the Kibble-Zurek scheme used for
description of classical phase transitions an overestimation of
defect density is usually of the order of O�1� �2,12,13�, while
here discrepancy is smaller than 10%.

Therefore the AI approximation provides us with two pre-
dictions concerning dynamics of the quantum Ising model:
�i� it estimates when evolution ends in the asymptotic limit;
and �ii� it correctly predicts the scaling exponent and number
of defects produced during adiabatic transitions. The part �ii�
can be calculated exactly in the quantum Ising model �26�.
Nonetheless, in other systems undergoing quantum phase
transition the two-level simplification might be too difficult
for exact analytic treatment, e.g., as in the system governed
by Eq. �22�. Then the AI analysis might be the only analytic
approach working beyond the lowest order diabatic expan-
sion. Besides that the AI approach provides us with a quite
intuitive description of system dynamics, which is of interest
in its own. Especially when one looks at connections be-
tween classical and quantum phase transitions.

VI. SUMMARY

We have shown that the adiabatic-impulse approximation,
based on the ideas underlying the Kibble-Zurek mechanism
�10,11�, provides good quantitative predictions concerning
diabatic dynamics of two-level Landau-Zener-like systems.
After supplementing the splitting of the evolution into adia-
batic and impulse regimes by the exact lowest order diabatic
calculation, the whole approach is complete and can be in
principle applied to different systems possessing anticross-
ings, e.g., those lacking exact analytic solution as the model
�22�. We expect that the AI approach will provide the link
between dynamics of classical and quantum phase transition
thanks to usage of the same terminology and similar assump-
tions.

We also expect that different variations of the classic
Landau-Zener system discussed in this paper can be experi-

mentally realized in the setting where the sweep rate can be
manipulated. Indeed, the model �22� arises once a proper
nonlinear change of external system parameter is performed.
The experimental access to studies of the nonsymmetric
Landau-Zener model can be obtained by change of the sweep
rate after passing an anticrossing center. The case of evolu-
tion starting from or ending at the anticrossing center can
also be subjected to experimental investigations, e.g., in a
beautiful system consisting of the smallest available quantum
magnets �cold Fe8 clusters� �7�.
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APPENDIX A: EXACT DIABATIC EXPRESSIONS
FOR TRANSITION PROBABILITIES

We would like to provide lowest order exact expressions
for transition probabilities in a class of two-level systems
described by the Hamiltonian �22�.

First, we express the wave function as

���t�� = C1�t�exp�− i�1 − ��t�1/�1−�

2�Q
/�1−� ��1�

+ C2�t�exp� i�1 − ��t�1/�1−�

2�Q
/�1−� ��2� , �A1�

were exponentials are �i�dt sgn�t��t /�Q�/�1−� /2. Within
this representation dynamics governed by the Hamiltonian
�22� reduces to

iĊ1�t� =
C2�t�

2
exp� i�1 − ��t�1/�1−�

�Q
/�1−� � , �A2�

iĊ2�t� =
C1�t�

2
exp�− i�1 − ��t�1/�1−�

�Q
/�1−� � . �A3�

�i� Time evolution starting from the ground state at ti
→−�: We would like to integrate Eq. �A3� from −� to +�.
The initial condition is such that C1�−��=1 and C2�−��=0.
The simplification comes when one assumes a very fast tran-
sition, i.e., �Q→0. Then it is clear that C1�t�=1+O��Q

�� with
some ��0. Putting such C1�t� into Eq. �A3� one gets

C2�+ �� =
1

2i
�Q

�
−�

+�

dx exp�− i�1 − ��x�1/�1−��

+ �higher order terms in �Q� , �A4�

which after some algebra results in

P = �C1�+ ���2 = 1 − �C2�+ ���2 = 1 − ���Q�2

+ �higher order terms in �Q� , �A5�

where
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� = �1 − ���1 − �1/. �A6�

�ii� Time evolution starting from the ground state at
ti=0 (anticrossing center): Since the initial wave function is
��1�− �2�� /�2 we have C1�0�=1/�2 and C2�0�=−1/�2 and
we evolve the system until tf → +� with the Hamiltonian
�22�. For fast transitions one has that C1�t�=1/�2+O��Q

��,
where ��0 is some constant. Integrating Eq. �A3� from 0 to
+� one gets

C2�+ �� +
1
�2

=
�Q



2�2i
�

0

+�

dx exp�− i�1 − �x1/�1−��

+ �higher order terms in �Q� , �A7�

which can be easily shown to lead to

p = �C1�+ ���2 = 1 − �C2�+ ���2 =
1

2
−

1

2
���Q�

+ �higher order terms in �Q� , �A8�

where

� = �1 − ���1 − �1/ cos��

2
�1/

. �A9�

�iii� Time evolution from ti→−� to tf → +� in the
nonsymmetric LZ model: We assume that the Hamiltonian is
given by Eq. �22� for t�0, while for t�0 it is given by Eq.
�22� with �Q exchanged by �Q� where ��0 is the asymmetry
constant—see Eq. �13� for the =1/2 case. Integration of
Eq. �A3� separately in the intervals �−� ,0� and �0, +�� leads
to the following prediction:

P = �C1�+ ���2 = 1 − �C2�+ ���2 = 1 −
1

4
�1 + ��2���Q�2

+ �higher order terms in �Q� , �A10�

with � given by Eq. �A6�.

APPENDIX B: EXACT SOLUTIONS
OF THE LANDAU-ZENER SYSTEM

In this Appendix we present derivation of exact solutions
of the Landau-Zener problem that are used in the main part
of the paper. The general exact solution for the Landau-Zener
model evolving according to Hamiltonian �4� was first dis-
cussed in �18� and then elaborated in a number of papers,
e.g., �20�. Here we will use that general solution for getting
predictions about different time evolutions. The problem is
simplified by writing the wave function as Eq. �A1� with 
=1/2. Then one arrives at the equations �A2� and �A3� once
again with =1/2. Combining the latter ones with the sub-
stitution

U2�t� = C2�t�eit2/�4�Q�

one gets

Ü2�z� + �k −
z2

4
+

1

2
�U2�z� = 0,

where

k =
i�Q

4
, z =

t
��Q

e−i�/4. �B1�

The general solution of this equation is expressed in terms of
linearly independent Weber functions D−k−1�±iz� �18,21�. By
combining this observation with a =1/2 version of Eq.
�A3� one gets

���t�� = 2i�t −
it

2�Q
��aD−k−1�iz� + bD−k−1�− iz���1�

+ �aD−k−1�iz� + bD−k−1�− iz���2� , �B2�

where z is defined in Eq. �B1�. Though there is a simple
one-to-one correspondence between z and t, we will use both
z and t in different expressions to shorten notation.

To determine constants a and b in different cases one has
to know the following properties of Weber functions �21�.
First, "�arg�s���3� /4 one has

Dm�s� = e−s2/4sm�1 + O�s−2�� . �B3�

Second, "−5� /4�arg�s��−� /4

Dm�s� = e−im�Dm�− s� +
�2�

��− m�
e−i�m+1��/2D−m−1�is� .

�B4�

Third, as s→0 one has

Dm�s� = 2m/2
��

��1/2 − m/2�
+ O�s� . �B5�

Finally,

d

ds
Dm�s� = mDm−1�s� −

1

2
sDm�s� . �B6�

�i� Exact solution of nonsymmetric LZ problem: The
evolution starts at ti→−�, i.e., up to a phase factor
���−�����1�. The Hamiltonian is given by Eq. �13�.
Using Eqs. �B3�, �B4�, and �B6� one finds that a=0 and
b=��Q exp�−��Q /16� /2. Substituting them into Eq. �B2� re-
sults in

���t � 0�� = e−��Q/16ei3�/4��k + 1�D−k−2�− iz�

− izD−k−1�− iz���1� +
��Q

2
e−��Q/16D−k−1�− iz��2� .

�B7�

Using Eq. �B5� one finds that this solution at t=0 becomes

���0�� = e−��Q/16ei3�/4
��2−k/2

��1/2 + k/2�
�1�

+
��Q

2
e−��Q/16��

2

2−k/2

��1 + k/2�
�2� . �B8�

For t�0 the Hamiltonian changes its form, see Eq. �13�, and
one has to match Eq. �B8� with Eq. �B2� having �Q replaced
by �Q�. Substitution of
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a =
e−��Q/16

4
2−k�1−��/2��Q���1 + k�/2�

��1 + k/2�
�1

�

−
��1/2 + k�/2�
��1/2 + k/2�

� ,

b =
e−��Q/16

4
2−k�1−��/2��Q���1 + k�/2�

��1 + k/2�
�1

�

+
��1/2 + k�/2�
��1/2 + k/2�

� ,

into Eq. �B2� gives the wave function ���t�0��. Taking one
minus squared modulus of the amplitude of finding the sys-
tem in the state �2� one obtains the excitation probability of
the system at tf → +� in the form �14�.

�ii� Exact solution of LZ problem when evolution
starts from a ground state at anticrossing center: The Hamil-
tonian of the system is given by Eq. �4� and we look for a
solution that starts at t=0 from the �ground� state: ���0��
= ��1�− �2�� /�2. The constants a and b from Eq. �B2� turn out
to be equal to

a =
2k/2��1/2 + k/2�ei�/4��Q

4�2�
− 2k/2��1 + k/2�

2��
,

b = −
2k/2��1/2 + k/2�ei�/4��Q

4�2�
− 2k/2��1 + k/2�

2��
.

Having this at hand, it is straightforward to show that one
minus squared modulus of the amplitude of finding the sys-
tem in the state �2� at tf → +�, i.e., excitation probability,
equals Eq. �17�.

�iii� One-half of the Landau-Zener problem: The exci-
tation probability of the system that started time evolution at
ti=−� from ground state, and stopped evolution at tf =0,
turns out to be equal to Eq. �17�. The simplest way to prove
it comes from an observation that this probability equals one
minus the squared overlap between the state ��1�− �2�� /�2
and Eq. �B8�. Then, straightforward calculation leads imme-
diately to expression �17�.

APPENDIX C: SOLUTION OF EQ. (23)

Equation �23� can be solved in the following recursive
way. First, one introduces new variables:

x = � t̂

�Q
�2

, � =
1

�2�Q
2 . �C1�

In these variables Eq. �23� becomes

x1/�1−� = � − x , �C2�

and we assume that ��1 �diabatic evolutions�.
A quick look at Fig. 6 makes clear that the solution can be

obtained by considering a series of inequalities, numbered by
index i, in the form

xL�i� � x � xU�i�, �C3�

where both lower �xL�i�� and upper �xU�i�� bounds satisfy the
the same recurrence equation

xL,U�i� = �� − �� − xL,U�i−1��1−�1−, �C4�

with the initial conditions xL�0�=0, xU�0�=�. Considering a
few iterations one can show that the solution of Eq. �C2� can
be conveniently written as

x1/�1−� =
1

���Q�21 − ����2 + �1 − ����Q�4

+
1

2
�3 − 2��1 − ����Q�6 +

1

3
�1 − ��1 − 2�

� �3 − 4����Q�8 + O��Q
10�� . �C5�

Using Eq. �C5�, different quantities of interest can be deter-
mined, e.g.,

�̂2 =
1

���Q�21 − ���Q�2 +
1

2
�1 − ����Q�4

−
1

3
�1 − ��1 − 2����Q�6 +

1

8
�1 − �

� �1 − 3��2 − 3����Q�8 + O��Q
10�� , �C6�

t̂ = �Q
�−1 + O��Q

3� . �C7�

Substitution of =1/2 into Eqs. �C6� and �C7� reproduces
diabatic series expansions of �̂, t̂ from the standard Landau-
Zener theory �7�.

FIG. 6. Schematic plot of the recurrence method for getting the
solution of Eq. �C2�. Solid lines x1/�1−� and �−x, dashed line is a
construction of recurrence solutions �C3� and �C4�. The plots are in
a ��� box.
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