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The so-called March model of fullerene uses the one-center approximation of quantum chemistry to calcu-
late the spherical �-electron density � by the Thomas-Fermi �TF� statistical method. Then the variational
principle of the TF theory is employed by combining the electronic energy determined entirely by � with the
discrete C60 nuclear potential energy to predict, semiquantitatively, the equilibrium radius. Here the same
approach is worked out, but now largely analytically, in two dimensions, as a possible model of planar ring
clusters. Again the equilibrium radii are calculated and consistency with realistic clusters of hydrogen and
carbon rings is discussed in detail. Finally, an estimate of the “breathing” frequency of C14, C18, and C22 is
given.
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I. INTRODUCTION

The so-called March model �1,2� of fullerene approxi-
mates the 60 � electrons peaked around the surface of the
buckyball by a spherical distribution of electron density �.
This then leads, by a variational calculation based on the
Thomas-Fermi �TF� energy functional ETF���, but retaining
the nuclear-nuclear potential energy for the correct discrete C
nuclei positions �1�, to an equilibrium radius of the buckmin-
ster fullerene somewhat larger than experiment, but already
useful. Similar considerations, but with Hartree-Fock method
instead of TF, have been successfully used in quantitative
calculations on spherical boron cages �3�.

The present study has been motivated by the cluster stud-
ies on C reported by Jones and Seifert �4�. In particular, they
report by the density functional study �DFT�, that the likely
lowest isomers of CN with N between 14 and 22 are planar
rings with “cumulenic” spacing between the nuclei on the
rings. This has prompted us to consider the analog of the
three-dimensional March model of C60 to apply to such quasi
two-dimensional planar ring clusters.

The outline of the paper is then as follows. In Sec. II
below, for completeness, we briefly summarize the TF statis-
tical model for such a two-dimensional �2D� planar elec-
tronic assembly. Then we focus on the use of electrostatics
and charge interactions satisfying the corresponding 2D
Poisson equation. Analogous to the March model of C60, �,
now the number of electrons per unit area, is taken to have
circular symmetry. This is, in the spirit of the one-center
expansion, equivalent to smearing N point charges f into a
uniform line charge with total charge Nf . Whereas in C60, Nf
was, naturally enough, taken to be 60, i.e., one � electron per
C atom �5,6�, in cluster rings we shall study, now largely
analytically, the equilibrium radius Re of the rings as a func-
tion of N. The details of this are set out in Sec. III. In Sec. IV

we analyze the consistency of the present model with real ab
initio and DFT calculations on ring clusters. The paper con-
cludes with a summary plus some proposals directions for
further study in Sec. V.

II. BRIEF SUMMARY OF THE TWO-DIMENSIONAL
THOMAS-FERMI THEORY

The semiclassical TF statistical method is based on two
assumptions: �i� a chemical potential equation for the fastest
electron with Fermi momentum pF�r� and �ii� a phase-space
argument relating pF�r� to the electron density ��r�. Assump-
tion �i� corresponding to writing the chemical potential � as
the sum of the kinetic term pF

2 /2m, with m as the electron
mass, and a one-body potential energy denoted below by
V�r� yields explicitly

� =
pF

2

2m
+ V�r� �1�

which is valid for general dimensionality D. However, D
enters the phase-space considerations in �ii� above, since a
cell of volume hD can hold two electrons with opposed spin
in the spin compensated ground state we consider throughout
the present study. Thus in 2D, one has for an area � of
coordinate space and a momentum space area �pF

2 , that the
number of electrons per unit area, ��r�, is given by

��r� = �nel

�
�

r
=

2�pF
2�r�

h2 , �2�

the numerator of the final term being the spin occupancy two
times the area of occupied momentum space, while the de-
nominator is the size of the basic phase-space cell in 2D.
Removing pF

2�r� from Eq. �1�, in which � is constant
throughout the whole of the inhomogeneous electron distri-
bution under discussion, using Eq. �2� yields
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� =
h2

4�m
��r� + V�r� . �3�

This is the basic TF equation yielding the areal density ��r�
in 2D from a given one body potential V�r�. As usual � is
determined by the normalization condition on ��r�.

We turn in the following section to apply this Euler Eq.
�3� of the TF statistical method to planar ring clusters.

III. SELF CONSISTENT FIELD AND ITS CONSEQUENCES
IN QUASI-2D RING CLUSTERS

As in the TF neutral atom, and in C60 in the March model
�1,2,5�, the chemical potential � can be put to zero in the
neutral ring clusters under discussion. Equation �3� can be
combined with the 2D form of Poisson’s equation of electro-
statics to yield, in atomic units ��=1, m=1, qe=−1, and
4��0=1�, for the electrostatic potential Ves,

Ves�r� = − ���r� , �4�

where Ves satisfies

�2Ves

�r2 +
1

r

�Ves

�r
= 4Ves. �5�

Scaling r to s, via s=2r, the electrostatic potential can be
obtained by solution of Eq. �5�, for a line charge of radius R,
and with t=2R as

Ves�r� = − ��K0�t�	�t − s�I0�s� + I0�t�	�s − t�K0�s�� , �6�

where the quantity ��
0� is to be obtained from the density
normalization condition �nel=Nf�,

Nf = 2��
0

�

��r�rdr , �7�

while 	�x� is the Heaviside step function and K0�x� and I0�x�
are modified Bessel functions �7�. From the Gauss theorem,
we have additionally that

q�s� =
s

2
Ves� �s� , �8�

which means that q�s�, the total charge, must tend to 0 as
s→� for a neutral system.

A basic function of the present self consistent TF method
for 2D ring clusters is then defined by Q�s�=2q�s� /�. The
merit of this definition is that Q�s� no longer depends on
normalization. It can be written, using Eqs. �6� and �8� as

Q�s� = − s�K0�t�	�t − s�I0��s� + I0�t�	�s − t�K0��s�� . �9�

The jump �discontinuity due to line charge� at s= t of Q, say
�Q, is then given by

�Q = t�I0�t�K0��t� − K0�t�I0��t�� , �10�

where the right-hand side �rhs� of Eq. �10� contains the
modulus of the Wronskian evaluated at t. Owing to the spe-
cial form of the second order differential equation �5�, the
Wronskian is proportional to t−1 and, hence, �Q is constant.

From �10� one finds �Q=1. By the definition of Q this result
leads to �=2Nf , the jump of the function q�s� being related
to the total ring charge Nf . It is important to remark that,
when t tends to 0, one recovers the two-dimensional TF
model atom already discussed by Kventsel and Katriel �8�.

Plots of scaled potential v�s�=Ves�s� /� and total charge
Q�s� are presented in Fig. 1 for various choices of scaled ring
radii t.

A. Variational TF calculation of ring radii as a function of N

As already mentioned we follow the March model of C60
by using 2D TF theory variationally, based on the “line
charge” circular density ��r� given by Eq. �4�. Then the en-
ergy ETF��� in 2D is explicitly

ETF��� = �2�
0

�

��r�2rdr + 2��
0

�

��r�Vlc�r�rdr

−� ��r1���r2�ln r12dr1dr2 + Unn. �11�

Here, Vlc is the confining potential due to the nuclear effec-
tive charges smeared on a circumference of radius R, namely

Vlc�r� = 	2Nf ln R �r 
 R�
2Nf ln r �r 
 R�

. �12�

As already emphasized, Unn is to be treated using the discrete
nuclei on rings, in order to calculate the equilibrium radius
Re given by the equilibrium condition

� �ETF

�R
�

Re

= 0. �13�

Following the Hellmann-Feynman theorem, Eq. �13� is
equivalent to the balance of the forces acting on nuclei if the
electron density entering the energy has been obtained varia-
tionally. Using the TF density coming from the potential
given by Eq. �6�, the radial component of the electric field
due to electrons and acting on the ring is

Ee = −
2Nf��2R�

R
, �14�

where

��t� = tK0�t�I0��t� �15�

is the fraction of electrons inside the circle of radius t=2R.
Then, for a set of N equispaced point charges f lying on a
circumference of radius R, the resultant electric field acting
on one of such charges and due to the other N−1 has the
radial component �still in 2D�

En =
�N − 1�f

R
�16�

which can be used to establish the force balance equation

Ee + En = 0. �17�

Combining Eqs. �14�, �16�, and �17� we get
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��2Re� =
1

2
−

1

2N
, �18�

which can be solved to obtain Re, the equilibrium radius in
this model, as a function only of N, the number of atoms of
the ring cluster.

In Fig. 2 we show the variation of the equilibrium radius
with the number of ring atoms as it results from Eq. �18�.
From this plot one can see that Re, in this model, tends rap-
idly to the limiting behavior, determined by the asymptotic
forms of the modified Bessel functions, of about N /4 in
atomic units. In the same figure we compare the equilibrium
radii of this 2D model with realistic radii obtained from the
DFT calculation on almost 2D ring clusters. This comparison
will be discussed in the next section.

IV. CONSISTENCY OF THE 2D MARCH MODEL WITH
REALISTIC PLANAR RING CLUSTERS

It is of interest now to compare the information that can
be obtained from the model developed in the previous sec-
tion with that arising from ab initio or DFT calculations on
realistic planar ring clusters.

The prototype of such clusters could be rings of equis-
paced hydrogen atoms, f =1, constrained to lie on a circum-

ference, while, in 2D, the analog of three-dimensional �3D�
fullerenes are planar rings of N carbon atoms with N ranging
from 14 to 22. The C rings of this size have been really
produced in molecular beam experiments �9� and their sta-
bility has been discussed by Jones and Seifert �4�. Instead,
the rings of hydrogen atoms considered here are only a the-
oretical construction that can be studied by standard methods
for the electronic structure calculation.

In Fig. 2 we report the equilibrium radii of H and C clus-
ters obtained from calculations performed at the B3LYP DFT
level with basis sets flexible enough to give good constrained
�circular� equilibrium geometries. For H rings we used even
numbers of atoms ranging from 6 to 18, while for C rings we
followed the study of Jones and Seifert �4� limiting attention
to the three clusters C14, C18, and C22. For C rings we made
calculations on singlet states. For H clusters we considered
singlet ground states when N=4n+2, n integer, and triplet
states in the other cases.

From Fig. 2 is quite evident that in 2D the agreement
between model equilibrium radii and radii of C ring clusters
is not good as, instead, it happens in 3D for fullerenes. Some
better consistency is instead observed between the model and
our hypothetical H rings.

The existence of � bonds in C rings modifies substantially
the effective nuclear interaction from that expected in two
dimensions. In order to overcome this inconsistency one can

FIG. 1. Thomas-Fermi self consistent reduced potential �a� and charge �b� for a two-dimensional electron system, confined by a positive
ring line charge, as a function of a properly scaled distance from the centre. Lengths �s and t� are in units of 2a0, Q is in units of Nf , the
number of electrons in the ring, and v is in hartrees divided by 2Nf �see text for more details�.
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modify the Unn term in the energy functional �11�. Equation
�11� with the variational density �4� becomes

E = ��
0

�

��r�Vlc�r�rdr + Unn �19�

in which we have

��
0

�

��r�Vlc�r�rdr = N2f2 ln R + N2f2K0�2R�I0�2R�

�20�

and

Unn = − N�N − 1�f2 ln R +
N2f2

2
AN, �21�

where AN= �1/N�
 j=2
N ln 2�1−cos �1j�, �1j being the angle

between nucleus 1, the ring centre and nucleus j. AN does not
depend on R. Now, to introduce some effect due to � bonds,
we propose to modify Unn in the terms of order N, N being
also the number of such bonds in C rings. � bonds can be
considered by including appropriate short ranged interactions

acting between pairs of neighbor C atoms. Thus, we can
write

Unn
�+�� = Unn + 


i=1

N

u�di,i+1� �22�

where u�di,i+1� is the bond pair potential which depends on
the distance di,i+1 between centres i and i+1 �dN,N+1=dN,1�.
In cumulenelike C rings the bond distances are all the same
and, with the assumption di,i+1�2�R /N, we have

Unn
�+�� = Unn + Nu�2�R

N
� . �23�

At this point, by writing

Unn
�+�� = − N2f2 ln R + Ng�R� �24�

in which

g�R� = f2 ln R +
f2

2 

j=2

N

ln 2�1 − cos �1j� + u�2�R

N
� ,

�25�

the energy E takes the simple form

E = N2f2K0�2R�I0�2R� + Ng�R� . �26�

In the range of radii of CN rings considered in this work, the
modified Bessel function K0 and I0 can be substituted by
their asymptotic expression. The product K0�t�I0�t� in this
regime is simply 1/2t with t=2R in the present case. This
fact, combined with the observation that the equilibrium radii
are proportional to the number of atoms in the ring, suggests
to maintain the ln R functional dependence in g�R� of Eq.
�26� in the region of the equilibrium geometries. Under these
considerations we have

E�R� =
N2f2

4R
+ N�� ln R + �N� , �27�

where �N is a constant introduced to bring E�Req� to coinci-
dence with that of calculated minimum. Here, we remark that
the second term in the rhs of Eq. �27� corresponds to Ng�R�
of Eqs. �24� and �26�. Equation �27� suggests that E /N could
be written as a function of R /N in the more general form

E�R�
N

= a
N

R
+ b ln�R

N
� + c , �28�

with a, b, and c related to f , �, and �N through Eq. �27�
above. Equation �28� is the analog of Eq. �9� of our previous
work �6� on fullerenes in 3D.

In Fig. 3 we show results for fitted scaled energies E /N
obtained from Hartree-Fock �HF� and B3LYP DFT calcula-
tions performed on C14, C18, and C22 ring clusters. The three
curves, in both the two plots of Fig. 3, look roughly identical
apart for a small energy shift. Fitted parameters a, b, and c
are given in Table I. These numerical results confirm some
universality of Eq. �28�. The value of a can also be used to
estimate the number of electrons of each atom, namely f ,
involved in the TF model density �4�. From Eq. �27� we can

FIG. 2. Equilibrium radius as a function of the number of atoms
of a ring cluster for the two dimensional March model of this work
�MM� and for realistic H-ring �H� and C-ring �C� planar clusters.
The radii are in atomic units.
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write f =2�a, which tells us that this number is about 2.77 if
the HF data are used or about 2.68 with B3LYP results.

Finally, with the parameters of Table I, we can calculate
the frequency of the “breathing” symmetrical vibrational
mode. The reduced mass for this motion is M /N where M is
the mass of the carbon nucleus. By definition, the square of
such angular frequency � is given by

�2 =
N

M
� �2E

�R2�
Req

, �29�

where the energy E is the same as in Eq. �28� and plays the
role of potential energy in the harmonic approximation for

the study of the motion of nuclei in this case �10,11�. Com-
bining Eqs. �28� and �29�, we obtain

� =� b3

a2M
, �30�

which is essentially a constant not depending on N. From
the data of Table I we obtain �̄=� /2�c=1163 cm−1 with
B3LYP DFT and 1378 cm−1 at the HF level.

We conclude this section on connection with realistic sys-
tems by mentioning quantum rings. Quantum rings are arti-
ficial systems of confined electrons observed at the nanoscale
in semiconductors. They originate from 2D quantum dots by

TABLE I. Parameters entering the definition of the scaled energy defined in Eq. �28� obtained from fitting
of HF and B3LYP results of calculations performed on C14, C18 and C22 ring clusters.

Method Parameter C14 C18 C22

HF a 1.93±0.03 1.94±0.02 1.90±0.02

b 5.02±0.08 5.06±0.06 4.97±0.07

c −38.065±0.005 −38.045±0.004 −38.030±0.004

B3LYP a 1.80±0.03 1.81±0.02 1.77±0.03

b 4.62±0.08 4.67±0.07 4.57±0.07

c −38.343±0.005 −38.323±0.004 −38.308±0.004

FIG. 3. Curves of scaled energies E /N against the scaled radius R /N, obtained at HF and DFT �B3LYP� level of calculation, for the three
carbon rings C14 �upper curves�, C18 �middle�, and C22 �lower curves�. Data are in atomic units.
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depleting the central region of the disk and thereby forming
a ring �see, for example, Ref. �12��. We do not enter into the
details of the methods used to study such systems, but we
say that the model developed in the present work in Secs. II
and III can also be formulated in a context of a quantum ring.
In order to do this, we need to introduce the effective mass of
electrons and the relative dielectric constant of the medium
in all expressions of the model. The effective mass m* enters
through the definition of the Fermi energy, while the medium
dielectric constant � through the Poisson equation. For this
case, we get the following coupled equations in atomic units:

� = V +
��

m* − �2V =
4�

�
� . �31�

Of course, some attention will need to be paid to the
confinement. The choice of a background positive line
charge potential is still valid but the total charge and the
radius should be differently defined in terms of some other
external parameter. One more important point concerns the
effect of an applied magnetic field, but this needs an exten-
sion of the present model.

V. SUMMARY AND PROPOSED FUTURE DIRECTIONS

The selfconsistent potential Ves�r� in the analog of the
March model in 2D planar ring clusters has first been calcu-
lated analytically. It is given by Eq. �6� in terms of modified
Bessel functions. The 2D TF energy functional is then shown
to lead to the potential energy function in Eq. �28�, where the
energy per atom of the ring cluster of radius R depends on
R /N. This is the 2D counterpart of our early scaling of po-
tential energy in the 3D fullerenes. The breathing frequency
of the planar ring clusters C14, C18, and C22 is thereby esti-
mated.

As to future directions, we already referred at the end of
Sec. IV to a possible application of the present model to
nanoscale quantum rings. Therefore, to conclude, we want to
sketch briefly below how to eventually refine the 2D March
model discussed fully above to take account of exchange, in
what is essentially a local density �Dirac-Slater like� approxi-
mation. In 3D, the Slater X� method works as follows:

Ux =
1

2
� dr1� dr2

��r1���r2�fx�r12�
r12

− 1 =� dr2��r2�fx�r12� ,

fx�r12� � − 1�r12 
 R� � 0�r12 
 R� ,

R = � 3

4��
�1/3

,

Ux � − 2�� dr1��r1�2�
0

R

r12dr12

= − �� dr1��r1�2R2

� − �3�1/2

4
�2/3� dr��r�4/3. �32�

The counterpart of the above argument in 2D goes as
follows:

Ux = −� dr1� dr2��r1���r2�fx�r12�ln r12,

R = � 1

��
�1/2

,

Ux � 2�� dr1��r1�2�
0

R

r12 ln r12dr12

=
�

2
� dr1��r1�2R2�2 ln R − 1�

� −
1

2
� dr��r��1 + ln����� . �33�

The final line of Eq. �33� prompt us to add that the exchange
potential energy Ux in 2D contains a term which is reminis-
cent of the Shannon entropy, the latter having an integrand of
the form � ln �.
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