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Using lattice effective field theory, we study the ground state binding energy of N distinct particles in two
dimensions with equal mass interacting weakly via an attractive SU�N�-symmetric short range potential. We
find that in the limit of zero range and large N, the ratio of binding energies BN /BN−1 approaches the value
8.3�6�.

DOI: 10.1103/PhysRevA.73.063204 PACS number�s�: 36.40.�c

I. INTRODUCTION

We consider the ground state of N distinct particles in two
dimensions with equal mass interacting weakly via an attrac-
tive SU�N�-symmetric short range potential. Since the
ground state is completely symmetric this is equivalent to the
problem of N weakly-bound identical bosons. The self-
bound two-dimensional system with a realistic van der Waals
potential is relevant to the properties of adatoms on surfaces.
In this work, however, we address the question of what hap-
pens as the range of the interaction goes to zero

V�x�1, . . . ,x�N� → C �
1�i�j�N

��2��x�i − x� j� . �1�

Let BN be the ground state binding energy of the
N-particle system in the zero range limit. The first calcula-
tion of B3 /B2 was given in �1�. The precision of this calcu-
lation was improved by �2�, and most recently a precise
value of B3 /B2=16.522 688�1� was given in �3�. There have
also been studies of the four- and five-particle systems �4–6�.
But range corrections for these studies appear to be very
large, and the first precise determination of B4 /B2 in the zero
range limit was only recently given in �7�, yielding a value of
B4 /B2=197.3�1�.

The behavior of BN in the large-N limit was also recently
discussed in �3�. They showed that due to the weakening of
the attractive coupling at short distance scales, the large-N
droplet system could be treated classically. This yielded a
prediction for the ratio of the binding energies in the large-N
limit

lim
N→�

BN

BN−1
� 8.567. �2�

In �8� the N-particle system for N�7 was investigated using
diffusion Monte Carlo with both a Lennard-Jones potential
and a more realistic helium-helium potential. However the
results showed that range corrections were too large to allow
for a determination of BN /BN−1 for large N.

Although there is no known system of atomic or molecu-
lar clusters that displays the physics of the zero range limit
for large N, the topic is interesting for several reasons. With
recent advances in laser trapping techniques it is now pos-
sible to produce many-body quantum systems on a two-
dimensional optical lattice. Much of the attention has been
devoted to the Bose-Hubbard model with repulsive on-site
interactions �9,10�, but the weakly attractive N-boson system

can also be studied. In that case computational lattice studies
such as this would be of immediate relevance. Our system
also raises interesting questions about the convergence of
effective field theory and the large-N limit. Results of previ-
ous numerical studies suggest that it is surprisingly difficult
to reach the zero range and large-N limits at the same time.
We explore why this is the case and what can be done to
overcome some of the difficulties. Similar issues arise in
systems of higher-spin fermions in optical traps and lattices.
In these systems the competition between short range inter-
actions and large-N effects can determine properties of the
ground state, two-particle pairing versus multiparticle clus-
tering �11,12�.

In this paper we study the N-particle system using lattice
effective field theory. The organization of our paper is as
follows. We first discuss the renormalization of the interac-
tion coefficient in the two-particle system. We discuss renor-
malization in the continuum with a sharp momentum cutoff
and then on the lattice. After that we address two features of
the large-N limit. The first is a rescaling technique that can-
cels some of the nonzero range corrections from the ratio
BN /BN−1. The other is an overlapping interaction problem
that occurs when many particles lie within a region the size
of the range of the potential. We show that this problem can
produce large systematic errors that grow with N. The
strength of the overlapping interaction must be reduced if we
wish to probe zero range physics accurately for large N. We
demonstrate one way of doing this which exploits an unusual
feature of the discrete Hubbard-Stratonovich transformation
�13�. Using lowest-order lattice effective field theory, we
compute BN /BN−1 for N�10. Extrapolating to the limit N
→�, we find the result

lim
N→�

BN

BN−1
= 8.3�6� . �3�

II. TWO-PARTICLE SYSTEM AND RENORMALIZED
COUPLING

We begin by reviewing the two-particle system in the con-
tinuum formalism with a sharp cutoff, �, on the magnitude
of the momentum. For a zero range potential

V�x�1, . . . ,x�N� = C �
1�i�j�N

��2��x�i − x� j� , �4�

the diagrams which contribute to two-particle scattering are
shown in Fig. 1. We let m be the particle mass. In order that
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the bound state pole in the rest frame occurs at energy
E=−B2, we get the constraint

−
1

C
=

1

2�
�

0

� pdp

B2 +
p2

m

=
m

4�
ln�mB2 + �2

mB2
	 . �5�

We can rewrite this as

mB2�−2

1 + mB2�−2 = exp
 4�

Cm
� , �6�

and the bound state energy is given by

mB2�−2 = exp
 4�

Cm
� + O��mB2�−2�2� . �7�

We now consider the same calculation on the lattice. Let a
be the spatial lattice spacing and at be the temporal lattice
spacing. We start with the Hamiltonian lattice formulation
where at=0. The standard lattice Hamiltonian with nearest
neighbor hopping has the form

H =
1

2ma2�
n�

�
1�i�N

�
l=x,y

�2bi
†�n��bi�n�� − bi

†�n��bi�n� + l̂�

− bi
†�n��bi�n� − l̂�� + Ca−2�

n�
�

1�i�j�N

bi
†�n��bi�n��bj

†�n��bj�n�� .

�8�

Here, bi�n�� is an annihilation operator for a particle with
flavor i at the spatial lattice site n� . The condition on C in the
Hamiltonian lattice formalism is

−
1

C
= lim

L→�

1

a2L2 �
k� integer

1

B2 + 2�k�
, �9�

where �k� is the lattice kinetic energy and L is the length of
the periodic lattice cube in lattice units. For the standard
lattice action

�k� =
1

ma2 �
s=x,y


1 − cos
2�ks

L
� . �10�

For later reference we define 	 as the momentum indepen-
dent term inside the summation in �10�. So for the standard
lattice action 	=1. We define the lattice cutoff momentum
�=�a−1. Then in the limit �→�

mB2�−2 = B exp
 4�

Cm
� + O��mB2�−2�2� , �11�

where for the standard action B�3.24.
In order to test the cutoff dependence of our lattice results,

we also consider actions with O�a2�-improved and

O�a4�-improved kinetic energies. O�a2� and O�a4� correc-
tions to the interaction are not included since these would
entail a significant number of new interactions. Because we
are not performing a full O�a2� or O�a4� improvement, we do
not expect the improved kinetic energy actions to give quali-
tatively better results than the standard action. However a
comparison of the different actions provides an additional
check that the results reproduce continuum limit behavior
rather than lattice-dependent artifacts. For the
O�a2�-improved action the lattice kinetic energy is

�k� =
1

ma2 �
s=x,y


5

4
−

4

3
cos

2�ks

L
+

1

12
cos

4�ks

L
� . �12�

In this case 	= 5
4 and B�1.79, where B is defined in the

asymptotic expression �11�. For the O�a4�-improved action

�k� =
1

ma2 �
s=x,y


49

36
−

3

2
cos

2�ks

L
+

3

20
cos

4�ks

L

−
1

90
cos

6�ks

L
� , �13�

	= 49
36, and B�1.54. As we increase the order of improve-

ment, �k� more closely approximates the continuum kinetic
energy and B approaches the continuum sharp cutoff value of
1.

At nonzero temporal lattice spacing the same diagrams in
Fig. 1 contribute to two-particle scattering. A derivation of
the Feynman rules at nonzero temporal lattice spacing for the
analogous three-dimensional system can be found in �14�, as
well as a derivation of the bound state pole condition. In two
dimensions the strength of the interaction is given by the
transfer matrix element

�e−atCa−2
− 1��1 − 	

2at

ma2	2

, �14�

while the free lattice propagator has the form

1

e−�2�i/Lt�k0 − 1 + at�k�
. �15�

Lt is the total number of temporal lattice units and k0 is an
integer from 0 to Lt−1.

As we take Lt→�, the energy in physical units becomes a
continuous variable. Requiring that the bound state pole in
the rest frame occurs at energy E=−B2, we get the constraint

1

�1 − 	
2at

ma2	2

�e−atCa−2
− 1�

= lim
L→�

1

L2 �
k� integer

1

eatB2 − 1 + 2at�k� − at
2�k�

2 . �16�

At nonzero temporal lattice spacing we therefore have

FIG. 1. Diagrams contributing to two-particle scattering for a
zero-range potential.
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mB2�−2 = B�atm
−1a−2�exp
 4�

C�m
� + O��mB2�−2�2� ,

�17�

where

C� �
a2

at
�1 − 	

2at

ma2	2

�1 − e−atCa−2
� . �18�

In this case B is a function of atm
−1a−2 and is different for

the standard and improved lattice actions. For given values
of B2, a, and at, we determine C in the infinite volume limit
L→�. For mB2�−2 not too small, roughly 10−6 or larger, we
use the exact expression �16� for sufficiently large values for
L. For smaller values of mB2�−2 it is more convenient to use
the asymptotic expression �17�. But once the interaction co-
efficient C is determined and we proceed to the N-body sys-
tem, such extremely large lattice volumes are unnecessary. It
suffices to consider lattice systems larger than the character-
istic size of the N-body droplet. For large N this is many
orders of magnitude smaller than the characteristic size of
the two-body droplet.

III. RATIOS IN THE LARGE-N LIMIT

It has been suggested that the large-N ground state wave
function can be described as a classical distribution �3�. If RN
is the characteristic size of the droplet, the distribution is
proportional to 
�r /RN� for some function 
 independent of
N, and the binding energy BN is proportional m−1RN

−2. In or-
der to determine 
, one integrates out high energy modes to
determine the effective coupling at energy BN. If this picture
of the large-N droplet is correct, then errors due to the finite
cutoff momentum � appear only in the combination
mBN�−2. Therefore if we measure binding energies while
keeping mBN�−2 fixed, much of the error cancels in the ratio
BN /BN−1. In essence we are using large-N similarity under
rescaling to eliminate cutoff errors. If the classical droplet
picture is incorrect, then this technique will probably not
reduce errors. The issue will be settled when we analyze
results of the Monte Carlo simulations.

Let BN��� be the measured binding energy of the
N-particle ground state at cutoff momentum �. Conceptually
it is simplest to regard m and B2 as fixed quantities while we
vary �. In the continuum limit

lim
�→�

BN��� = BN. �19�

Let z�0 be a parameter that measures proximity to the con-
tinuum limit,

z = mBN����−2. �20�

For a given z, we define the cutoff momentum ��z ,N� im-
plicitly so that

mBN���z,N��„��z,N�…−2 = z . �21�

We define f�z� as

f�z� = lim
N→�

1

N
ln�BN„��z,N�…/BN� . �22�

f�z� measures the exponential growth of finite cutoff errors
with increasing N. We have

lim
N→�

ln
BN„��z,N�…
BN

� − ln
BN−1„��z,N − 1�…
BN−1

�� = f�z� ,

�23�

and so

lim
N→�

BN

BN−1
= e−f�z� lim

N→�

BN„��z,N�…
BN−1„��z,N − 1�…

. �24�

Therefore so long as �f�z� � �1, the large-N ratio of binding
energies can be measured reliably. Other cutoff errors which
do not grow linearly with N will cancel in the ratio

BN„��z,N�…
BN−1„��z,N − 1�…

�25�

as we take N→�.
In our Monte Carlo lattice simulations it is more conve-

nient to regard m and � as fixed quantities while varying B2.
We define B2�z ,N� implicitly by

mBN„B2�z,N�…�−2 = z . �26�

We are changing the overall physical scale when we
change B2, and so we work with ratios BN /B2. The analog of
the result �24� is

lim
N→�

BN

BN−1
= e−f�z� lim

N→�

BN„B2�z,N�…/B2�z,N�
BN−1„B2�z,N − 1�…/B2�z,N − 1�

.

�27�

IV. OVERLAPPING RANGE AND IMPLICIT N-BODY
INTERACTION

Large range corrections can occur when many particles lie
within a region the size of the range of the potential, �−1.
The problem is most severe when all N particles lie in this
localized region, and the potential energy is amplified by a
factor of N�N−1� /2. For a continuum potential with a repul-
sive core, the result is a deep hole at the center of the mul-
tiparticle wave function and a tendency towards underbind-
ing or unbinding. At lowest order in lattice effective field
theory the effect goes in the opposite direction. A spike
forms at the center of the wave function when all particles lie
on the same lattice site, and the binding energy is too large.

Consider the state with N particles at the same lattice site
in the Hamiltonian lattice formalism

��N� = b1
†�n��b2

†�n�� ¯ bN
† �n���0� . �28�

The expectation value of the potential energy for this local-
ized state is
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��N�V��N� =
CN�N − 1�

2a2 . �29�

This potential energy can be regarded as an implicit N-body
contact interaction produced by overlapping two-body inter-
actions. In the continuum limit we know that the importance
of this N-body contact interaction is suppressed by many
powers of the small parameter z=mBN�−2. However the situ-
ation at finite � can be quite different from the continuum
limit if the potential energy per particle for the localized state
��N� is as large as the cutoff energy scale

�C�N − 1�
2a2 � 

�2

ma2 . �30�

To lowest order in mB2�−2, the renormalized coupling is

C =
4�

m ln�mB2�−2�
=

4�

m ln�mBN�−2� − m ln�BN/B2�
.

�31�

For large N

C �
4�

m ln z − mN ln �
, �32�

where

� = lim
N→�

BN

BN−1
. �33�

Then

−
C�N − 1�

2a2 �
�2

ma2� 2�−1

ln � −
1

N
ln z� . �34�

In the continuum limit the problem goes away since

1

ln � −
1

N
ln z

→ 0. �35�

However the convergence is slow and requires z�e−N. For
actual lattice simulations it is therefore necessary to limit the
size of the implicit N-body contact interaction.

V. DISCRETE HUBBARD-STRATONOVICH
TRANSFORMATION

There are several ways to deal with the large implicit
N-body contact interaction. On the lattice there is one
method which is particularly convenient. This is to write the
two-body interaction using a discrete Hubbard-Stratonovich
transformation �13�. The discrete Hubbard-Stratonovich re-
produces the two-body contact interaction exactly. Typically
it is used for systems with spin-1 /2 fermions where Pauli
exclusion implies that there are no N-body contact interac-
tions beyond N=2. It seems therefore that the properties of
the transformation for N�3 has not been discussed in the
literature. In the following we show that when a discrete

Hubbard-Stratonovich transformation is used, the temporal
lattice spacing regulates the strength of the implicit N-body
contact interaction.

For simplicity we show only the interaction part of the
Hamiltonian. The exponential of the two-body interaction at
site n� over a Euclidean time step at is

e−atHint = exp
− atCa−2 �
1�i�j�N

bi
†�n��bi�n��bj

†�n��bj�n��� .

�36�

The discrete Hubbard-Stratonovich transformation amounts
to making the replacement

e−atHint →
1

2 �
s�n��=±1

exp
− �1

2
atCa−2 + �s�n��	

�� �
1�i�N

bi
†�n��bi�n�� − 1	� , �37�

where

cosh � = exp�− 1
2atCa−2�, � � 0. �38�

To see that this has all the desired properties, let us define

A�K� =
1

2 �
s�n��=±1

exp�− � 1
2atCa−2 + �s�n����K − 1�� , �39�

for nonnegative integer K. We note that A�0�=A�1�=1, and
A�2�=exp�−atCa−2�. These are precisely the expectation val-
ues of e−atHint for K=0,1 ,2 distinct particles at lattice site n� .
When K�3 but ��K−1��1, we find

A�K� � exp
− atCa−2K�K − 1�
2

� . �40�

This is also the expectation value of e−atHint for K distinct
particles at lattice site n� . However when K�3 and
��K−1��1

A�K� � 1
2 exp��− 1

2atCa−2 + ���K − 1�� . �41�

The total potential energy of the K-particle localized state,
��K�, no longer increases quadratically with K. The temporal
lattice spacing at acts as an auxiliary ultraviolet regulator that
limits the size of the implicit K-body contact interaction.
When K�2 or the implicit K-body contact interaction is
smaller than at

−1, we have the unaltered result

��K�V��K� �
CK�K − 1�

2a2 . �42�

When K�2 and the implicit K-body contact interaction ex-
ceeds at

−1, then the regulator takes effect and we have

��K�V��K� � at
−1�� 1

2atCa−2 − ���K − 1� + ln 2� . �43�

VI. ALGORITHM

The standard lattice action we use for our simulations is
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�
n� ,nt,i


ci
*�n� ,nt�ci�n� ,nt + 1� − e−�atCa−2/2�−�s�n� ,nt��1 −

2at

ma2	
�ci

*�n� ,nt�ci�n� ,nt�� −
at

2ma2 �
n� ,nt,l,i

�ci
*�n� ,nt�ci�n� + l̂,nt�

+ ci
*�n� ,nt�ci�n� − l̂,nt�� − �

n� ,nt

�s�n� ,nt� , �44�

where nt is the temporal lattice coordinate, ci is the path
integration field for the particle of type i, and s is the discrete
Hubbard-Stratonovich field which takes values ±1. We have
used the lattice conventions developed in �14,15� for a three-
dimensional lattice. The choice of Bose or Fermi statistics
for ci is irrelevant since we consider systems with no more
than one particle of each type.

In order to compute the ground state binding energy BN
we consider the correlation function

ZN�t� = ��N
0 �e−Ht��N

0 � , �45�

where the initial or final state is the state with all N particles
at zero momentum

��N
0 � = b̃1

†�0�b̃2
†�0� ¯ b̃N

† �0��0� . �46�

��N
0 � is also the ground state of the noninteracting system.

We refer to t as Euclidean time and define

EN�t� = −
�

�t
�ln ZN�t�� . �47�

Then as t→ +�, EN�t� converges to −BN, the ground state
energy of the interacting N-particle system. The only as-
sumption is that the ground state has a nonvanishing overlap
with the ground state of the noninteracting system.

The conversion of the lattice action to a transfer matrix
formalism at fixed particle number has been discussed in
�16�. We use the same transfer matrix derived there, except
in this case we keep the discrete Hubbard-Stratonovich field
and calculate the sum over configurations

ZN�t� � �
s

e−�n� ,nt
�s�n� ,nt���N

0 �T�e−H�s�t���N
0 � , �48�

H�s� consists of only single-body operators interacting with
the background Hubbard-Stratonovich field. We can write
the full N-particle matrix element as the Nth power of the
single-particle matrix element

��N
0 �T�e−H�s�t���N

0 � � �M�s,t��N, �49�

M�s,t� = �k� = 0�T�e−H�s�t��k� = 0� , �50�

where �k� =0� is a single-particle state with zero momentum.
Our time-ordered exponential notation, T�e−H�s�t�, is short-
hand for the time-ordered product of single-body transfer
matrices at each time step

T�e−H�s�t� = M�Lt−1� ¯ M�nt�
¯ M�1�M�0�, �51�

where Lt is the total number of lattice time steps and t
=Ltat. If the particle stays at the same spatial lattice site from

time step nt to nt+1, then the corresponding matrix element
of M�nt�

is

e−�atCa−2/2�−�s�n� ,nt��1 −
2at

ma2	 . �52�

If the particle hops to a neighboring lattice site from time
step nt to nt+1 then the corresponding matrix element of
M�nt�

is
at

2ma2 . All other elements of M�nt�
are zero.

We sample configurations according to the weight

exp�
n� ,nt

�s�n� ,nt� + N ln�M�s,tend��� , �53�

where tend is the largest Euclidean time at which we wish to
measure ZN�t�. We use a simple heat bath update procedure.
For each configuration the observable that we compute is

O�s,t� =
�M�s,t��N

�M�s,tend��N , �54�

for t� tend. This is the same general technique that was used
in �17�. By taking the ensemble average of O�s , t� we are
able to calculate

ZN�t�
ZN�tend�

. �55�

VII. RESULTS

For each simulation we have computed roughly 2�105

successful heat bath updates for each lattice site, split across
four processors running completely independent trajectories.
Averages and errors were calculated by comparing the results
of each processor. The codes were based on existing codes
used for light nuclei in three dimensions and we have kept
some of the same input parameters relevant for the light nu-
clei system. We use a mass of m=939 MeV and keep the
spatial lattice spacing fixed at a= �40 MeV�−1. This corre-
sponds with �=�a−1�126 MeV and cutoff energy �2 /m
=16.8 MeV. Clearly these input parameters in raw form are
not appropriate for atomic clusters. Therefore we translate of
all of the parameters in terms of dimensionless numbers
which can then be easily applied to any two-dimensional
droplet system.

We have already defined the dimensionless ratio z

z =
BN

�2/m
= BNma2�−2. �56�

z measures the ratio of BN to the cutoff energy. In most cases
it is clear which N we are referring to and so we use the
simple notation z. When there is some possibility of confu-
sion we include the N subscript, zN.

We also define �

� =
�at

−1

�2/m
= at

−1ma2�−1. �57�

A small value for � indicates that there is a significant
amount of high frequency regularization provided by the
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nonzero temporal lattice spacing at. A large value for �
means that we are close to the Hamiltonian limit, at→0.
There is little or no regularization of high frequency modes
and most of the regularization is provided by the momentum
cutoff �.

We adjust the two-particle binding energy B2 in order to
study the finite cutoff dependence. Since we keep � fixed,
our value B2 will decrease as go to larger values of N. For
convenience we use the shorthand

bN = BN/B2 �58�

for the dimensionless ratio of the binding energies. For each
data point we increase the spatial length and temporal extent
of the lattice until the finite volume and time errors are
clearly smaller than the statistical errors. The largest lattice
system we simulate is 9�9�260.

We have computed bN for N�10 for a wide range of
values for B2 using the O�a4�-improved action and at

= �20 MeV�−1, which corresponds with �=3.7. The results
are shown as a plot of ln�bN� versus z in Fig. 2. We see that
there is considerable dependence on z. The dependence ap-
pears to be roughly linear in z for 0.1�z�0.3, and we have
drawn interpolating lines. We note that since ln�bN� and
ln�bN−1� have approximately the same slope, most of the z
dependence cancels in the combination ln�bN�−ln�bN−1�.
This suggests that f�z� as defined in �22� is small. Much of
the systematic cutoff errors can be canceled in the ratio
bN /bN−1 by keeping z the same for bN and bN−1. From Fig. 2
we see that bN /bN−1 is about 10 for 5�N�10. Therefore
scaling B2 proportional to 10−N as we probe the N-body
droplet should keep z approximately the same for these val-
ues of N.

Next we calculated bN /bN−1 for N�10 using three differ-
ent actions. We compared the standard action, the
O�a2�-improved action, and the O�a4�-improved action, us-

ing at= �20 MeV�−1 and B2=2�102−N MeV. This corre-
sponds with �=3.7 and z2=1.2�101−N. The results are
shown in Fig. 3. We see about a 10% variation among the
three different actions, with the O�a2�- and O�a4�-improved
actions agreeing slightly better with each other than with the
standard action.

In Fig. 4 we plot bN /bN−1 using the O�a4�-improved ac-
tion, at= �20 MeV�−1, and three different sets of values for
B2: B2=3�102−N MeV, 2�102−N MeV, and 1
�102−N MeV. This corresponds with �=3.7 and z2=1.8
�101−N, 1.2�101−N, and 0.6�101−N, respectively. The dis-
crepancies for the different values of B2 are at the 30% level
for small N, but as expected the errors decrease with increas-
ing N.

We also studied the dependence of bN /bN−1 on the tempo-
ral lattice spacing at. We set B2=2�102−N MeV and used
the O�a4�-improved action with at= �16 MeV�−1,
�20 MeV�−1, �30 MeV�−1, and �40 MeV�−1. This corresponds
with z2=1.2�101−N and �=3.0, 3.7, 5.6, and 7.5, respec-

FIG. 2. ln�bN� versus z. We use the O�a4�-improved action and
�=3.7.

FIG. 3. Comparison of bN /bN−1 for the standard,
O�a2�-improved, and O�a4�-improved actions. We use �=3.7 and
z2=1.2�101−N.

FIG. 4. Comparison of bN /bN−1 for different values of z2. We
use the O�a4�-improved action and �=3.7.
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tively. Since � is rather large, at has only a small effect on
the ultraviolet regularization of the two-body interaction. In-
stead the importance of at is as an auxiliary regulator on the
implicit N-body contact interaction. The results are shown in
Fig. 5. The results appear to differ at about the 10–15% level.

In Fig. 6 we combine all of the data shown in Figs. 3–5.
For comparison we include the known results for N=3 �3�,
N=4 �7�, and N→� �3�. We draw two best fit curves with up
to quadratic dependence on 1/N. The known results were not
included in this fit. The best fit curve using 1/N and 1/N2

gives a value

lim
N→�

bN

bN−1
� 7.7, �59�

while the best fit curve using only 1/N2 gives a value

lim
N→�

bN

bN−1
� 8.8. �60�

If we take these two results as approximate lower and upper
bounds then we find

lim
N→�

bN

bN−1
� 8.3�6� . �61�

VIII. CONCLUSIONS

We have studied the two-dimensional N-particle system
with short range attraction using lowest-order lattice effec-
tive field theory. We discussed two aspects of the large-N
limit. The first is a technique that uses large-N similarity
under rescaling to cancel some of the nonzero range correc-
tions from the ratio BN /BN−1. The other is the problem of a
large implicit N-body contact interaction when many par-
ticles lie within a region the size of the range of the potential.

We regulated this implicit N-body contact interaction on the
lattice using a discrete Hubbard-Stratonovich transformation.
Using a heat bath algorithm we computed BN /BN−1 for N
�10. Extrapolating to the large-N limit we found

lim
N→�

BN

BN−1
= 8.3�6� . �62�

This appears to be in agreement with the value 8.567 found
by �3�.

While we have measured the large-N limit of BN /BN−1 to
within 10%, we relied on large-N similarity under rescaling
to keep the finite cutoff errors in check. The z dependence in
Fig. 2 suggests that one needs to go beyond leading order to
accurately describe all of the physics at large N. This com-
petition between effective field theory expansions and the
large-N limit presents an interesting theoretical challenge.
Since there are no known physical systems where we can
experimentally measure the universal zero range behavior,
the coefficients of the higher-dimensional operators must be
set by numerical calculations. One technique perhaps is to
use numerical renormalization group matching to relate the
coefficients of higher-dimensional operators for different val-
ues of mB2�−2. However more study would be needed to see
if this is a viable technique.
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FIG. 6. Cumulative data for bN /bN−1. We draw two best fit
curves with up to quadratic dependence on 1/N and show the
known results for N=3, 4, and �.

FIG. 5. Comparison of bN /bN−1 for different values of �. We use
the O�a4�-improved action and z2=1.2�101−N.
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