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The endohedral fullerene structures of medium-sized SiN �30�N�39� clusters have been studied using the
density functional theory �DFT� with gradient correction. For each cluster size, fullerene cages with different
topologies and those filled by a different number of atoms were constructed. These cage isomers were then
optimized by DFT-based molecular dynamic relaxations followed by numerical optimization. Compared with
recent theoretical calculations �S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng, J. Am. Chem. Soc. 126, 13845
�2004��, the energies of the lowest-energy fullerene cage structures obtained here are lower for most clusters.
In particular, the optimal filling and/or cage combination ratios for Si37 and Si38 were found to be Si5@Si32 and
Si6@Si32, different from the previously proposed ones �Si3@Si34 and Si4@Si34�.
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Silicon clusters are of great interest and importance from
both fundamental and technological points of view. The geo-
metric structures of small silicon clusters have been exten-
sively studied and well established by experimental and the-
oretical studies �1�. Except for N=5, the geometric structures
of these clusters for N�8 have been confirmed by anion
photoelectron spectroscopy of gas-phase clusters �2�, or Ra-
man �3� and infrared �4� measurements on matrix-isolated
clusters. The geometric structures of small SiN clusters are
far from fragments of a bulk diamond lattice �5,6�. As the
cluster size is sufficiently large, it is natural to expect that the
silicon clusters would possess a bulklike diamond structure
with a reconstructed surface. Thus, understanding the struc-
tural evolution with cluster size and exploring the transition
towards diamondlike structure are very important issues in
the study of silicon clusters and nanostructures. As the bridge
between small clusters and nanocrystallines �quantum dots�,
the medium-sized SiN �N�20–100� clusters have attracted
great attention �7–22�.

In cluster physics, determining the global minima struc-
tures of a cluster is a very challenging problem due to the
numerous structural isomers on the potential energy surface
�PES�. When the cluster size increases, it becomes much
more difficult to locate the lowest-energy structure in theo-
retical studies because the number of the local minimum on
the PES increases exponentially. Several global optimization
methods such as genetic algorithm �7,21�, basin-hopping
techniques �22�, and “big bang” methods �8�, have been em-
ployed for the medium-sized SiN clusters with N�11–30.
These studies indicated that prolate supercluster structures
using tricapped triangular prisms as building blocks are
formed for SiN with N�15–25, and that the transition from
the prolate to more-spherical configurations occurs at the
size range of N�25–30. An experimental measurement of
ionic mobility of medium-sized SiN clusters �23� also reveals

such a structural transition around N�25–30. Above the
transition size, most of the cluster properties such as binding
energies �24,25�, ionization potentials �26�, photoelectron
spectra �27�, and chemical reactivity �28� exhibit smooth
size-dependent behavior in experiments. These results imply
that the structures of the medium-sized silicon clusters with
N�30 might follow some generic growth pattern. In other
words, an addition of one more atom will not induce dra-
matic structural reconstruction of the medium-sized clusters.

On analogy to the fullerene cages of carbon clusters �1�,
silicon fullerene cages have been considered in previous
studies �9–12�. But the hollow silicon cages were found to be
unstable because the valence orbitals of silicon atoms cannot
form sp2 hybridization like carbon. To saturate the dangling
bonds of the silicon fullerene surface and stabilize the silicon
fullerene cages, some additional atoms are needed to fill in-
side the cage and form sp3 hybridization. Based on such
consideration, a number of “handmade” endohedral fullerene
cages have been constructed for the medium-sized silicon
clusters �e.g., Si33, Si36, Si39, Si40, and Si45� �13–18�. How-
ever, due to the complexity of the PES, there was no unbi-
ased global optimization of the SiN �N�30� clusters to sup-
port the guess of endohedral fullerene cages and to determine
the optimal filling and/or cage ratio until recent works by
Yoo, Zhao, and co-workers �19,20�. From the global search
using genetic algorithm �GA� incorporated with a tight-
binding �TB� model, endohedral fullerene cages were con-
firmed to be energetic favorable structural patterns for SiN
�N=27–40, 45, and 50� �19,20�. A biased search using a
basin-hopping algorithm at a level of density function theory
�DFT� was performed to further optimize the lowest-energy
structures for SiN �N=27–39� �20�. However, in those pre-
vious studies �19,20�, the energetically favorable outer
fullerene cages and the optimal filling and/or cage combina-
tion for the endohedral cages were obtained at a semiempir-
ical TB level, which could be further improved by high-level
DFT computations. To further search the lowest-energy en-
dohedral silicon cages within the structural pattern of filled*Corresponding author. Email address: zhaojj@dlut.edu.cn
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fullerenes cages, in this work we examined a number of pos-
sible endohedral cages for SiN in the size range 30�N
�39 using DFT calculations. For most cluster sizes, new
endohedral cages with lower energies were found. The opti-
mal filling and/or cage ratios are discussed and compared
with previously proposed empirical rules.

In this work, endohedral fullerene cages of different to-
pologies and with different filling and/or cage ratios were
constructed for SiN �30�N�39�. The coordinates of outer
silicon fullerene cages were directly taken from those for
carbon fullerenes in the fullerene Structure Library �29� and
rescaled by a factor of 1.65. For each size of an outer
fullerene cage, we consider all possible topologies, that is,
from two isomers for 28-atoms fullerene to seven isomers for
the 34-atoms fullerene. Afterwards, a suitable amount of sili-
con atoms are uniformly filled into the hollow silicon cages
�18�. These handmade filled fullerene cages were optimized
by a two-step strategy. First, the initial structures were re-
laxed by DFT-based molecular dynamics �MD� using a
plane-wave pseudopotential technique implemented in a
CASTEP package �30�. Ultrasoft pseudopotential for ion-
electron interaction and a 100 eV cutoff of a plane-wave
basis set were adopted in the CASTEP calculations. To ensure
the systems reaching the equilibrium structures, we took 5 ps
or 4000 steps in the MD relaxation. After the MD relaxation,
these structural isomers were further optimized using the all-
electron DFT program �DMol� �31� with a double numerical
basis including d-polarization function �DND� �31�. In the
DMol calculations, self-consistent field calculations were
done with a convergence criterion of 10−6 Hartree on the
total energy, and the structures were fully optimized without
any symmetry constraint with a convergence criterion of
0.002 Hartree/Å on the forces. In both optimization steps
�CASTEP and DMol calculations�, the exchange-correlation
interaction was treated within the generalized gradient ap-
proximation �GGA� of the Perdew, Burke and Enzerhof
�PBE� functional �32�. The accuracy of the present all-
electron PBE computational scheme implemented in DMol
has been validated by benchmark calculations on the silicon
dimer and the bulk solid in a previous work �18�. For com-
parison, the lowest-energy configurations obtained for SiN
�30�N�39� in Ref. �20� were also computed.

Using the optimization approach described above, we
have examined a number of structural isomers for each size
of SiN �30�N�39� clusters by considering different pos-
sible combinations of outer fullerene cages and endohedral
filling atoms. For example, the number of isomers increases
from 3 for Si30 to 12 for Si38. The lowest-energy endohedral
fullerenes obtained from this work �denoted as �a�� are
shown in Fig. 1, along with the lowest-energy configurations
given in Ref. �20� �denoted as �R��. The relative energy dif-
ferences between these two types of structural isomers are
also presented in Fig. 1. The filling and/or cage combination,
the symmetry for the original carbon fullerene cage, the
binding energies, and the highest occupied molecular
orbital–lowest unoccupied molecular orbital �HOMO-
LUMO� gaps for these lowest-energy endohedral fullerene
structures from previous work �20� and from present calcu-
lations are summarized in Table I.

From Fig. 1 and Table I, one can see clearly that the

optimal endohedral fullerenes obtained from present calcula-
tions usually have lower total energy or higher binding en-
ergy than those from previous calculations �20�. The two
exceptional cases are Si33 and Si36, where the present total
energies for Si33 and Si36 �33�a� and 36�a� in Fig. 1� are
0.054 and 0.252 eV higher than those from previous calcu-
lations �33�R� and 36�R� in Fig. 1�, respectively. These re-
sults indicate that a careful examination of the endohedral
fullerene cages by considering all the possibilities and opti-
mizing the candidate configurations using the first-principles
DFT method is necessary to find the lowest-energy structures
within this structural pattern.

We now discuss the lowest-energy endohedral fullerene
structures in terms of the filling and/or cage combinations
and the outer fullerene cages. As shown in Table I, for most
cluster sizes, we obtained the same optimal filling and/or
cage ratio as previous work �20�, whereas different optimal
filling and/or cage combinations were found for Si37 and
Si38. The present calculations predict the lowest-energy en-
dohedral fullerene as Si5@Si32 and Si6@Si32, while they are
Si3@Si34 and Si4@Si34, respectively, in Ref. �20�. The ener-
gies for the lowest-energy configuration of Si37 and Si38 from
present calculations are 1.215 and 0.852 eV lower than pre-
vious results, respectively.

FIG. 1. �Color online� The lowest-energy endohedral fullerene
structures from this work �denoted as �a�� and obtained in Ref. �20�
�denoted as �R�� for medium-sized SiN �30�N�39� clusters. The
interior filling atoms are highlighted.
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For Si30, Si31, and Si32, the optimal outer fullerene cages
are Si28 from both previous and present calculations. Previ-
ous calculations �20� predicted that the original carbon
fullerene cage should have Td symmetry, while our results
show a transition from a D2 to a Td fullerene cage between
Si30 and Si31. For Si33 and Si34, both previous and present
calculations obtained the same outer fullerene cage, which
originally has C2v symmetry. In the size region between Si35
and Si38, we found that the outer fullerene cages are all Si32,
with different point group symmetries �C2 ,D3 ,D3d� for the
original carbon fullerene cage. Previous calculations pre-
dicted an increase of outer fullerene cages from Si32 to Si34 at
Si37, while our present calculations indicate that such an in-
crease occurs at Si39. We also analyzed the structural differ-
ences between the present and the previous �20� results. For
the endohedral Si atoms, the Si-Si bond lengths are shorter in
the present structures than those in the previous structures
�20�. In Table I, we included the average coordination num-
bers �CN� calculated for these two sets of configurations. The
average CN for all of these endohedral silicon fullerenes are
between 3.5 and 4.0. The average CN for our present struc-
ture is usually higher than those in Ref. �20�.

The HOMO-LUMO gaps of the lowest-energy endohedral
fullerene structures and the previous structures �20� are also
given in Table I. Except for Si33 and Si36, all the other gaps
for the present obtained structures are larger than those of the
previous structures, consistent with the energy difference be-
tween present and previous structures. Started from Si32, the
electronic gap gradually increases with cluster size. Experi-
mentally, it was found that the electronic properties of clus-
ters such as ionization potentials �26� and photoelectron
spectra �27� exhibit smooth size-dependent behavior.

Except for the structural patterns considered above, there
have been other patterns. For example, Pan and Ramakrishna
�15� proposed endohedral cage structures consisting of a
five-atom bulklike core filled inside reconstructed fullerene
cages. They used this structural model to construct Si33, Si39,
and Si45. Sun et al. �17� studied a Si6@Si30 endohedral
fullerene structure for Si36 using a first-principles method.
For comparison we also included these three structures in our

calculations. Within the present computational scheme, they
are less energetically favorable than the present lowest-
energy structures by 0.726, 0.392, and 3.419 eV for Si33,
Si36, and Si39, respectively. These results demonstrate that
one has to be very careful to choose the optimal filling and/or
cage combinations within the filled fullerene structural pat-
tern. DFT-MD relaxation combined with DFT local minimi-
zation has proven to be an efficient way to find out the
lowest-energy endohedral fullerene cages.

It is also interesting to investigate the stability of the
medium-sized silicon clusters upon hydrogenation. One can
define the formation energy of a hydrogenated silicon cluster
from the difference between the total energy of SiNH2M and
the sum of the total energies of SiN and M times of the total
energy of H2 molecules. We found that the formation of hy-
drogenated silicon clusters is exothermic. For example, the
computed formation energies for Si31H8 and Si37H6 are 4.761
and 3.534 eV, respectively. This is the same as the result of
Ref. �33�.

In Ref. �20�, an empirical rule for the filling and/or cage
ratio �m /n� of a filled fullerene cage Sim@Sin was summa-
rized on the basis of the results of GA global optimizations
for SiN �N=27–39� clusters. Considering a fullerene cage
with n=26+2x atoms, the upper and lower limits for the
number m of filling atoms should be between 3+x and x. For
the SiN clusters �30�N�39� studied in this work, the
lowest-energy filled cages fit well with that rule. For ex-
ample, in the case of n=32, m can be 3–6, corresponding to
combinations of Si3@Si32 for Si35 to Si6@Si32 for Si38.

More recently, another empirical rule for the optimal fill-
ing and/or cage has been proposed within a simple space-
filling picture �18,19�. In this model, the number m of the
atoms filled inside a spherical-like fullerene cage with n at-
oms �in the range of n=26–60� can be expressed by a simple
function as

m � 0.0051n2 + 0.03071n − 1.5525. �1�

For 30�n+m�39, Eq. �1� predicts m�3.02, 3.26, 3.50,
3.75, 4.00, 4.26, 4.52, 4.78, 5.05, and 5.32, respectively,

TABLE I. Optimal filling and/or cage combination �Sim@Sin�, binding energy �Eb� per atom, average coordination number �CN�,
HOMO-LUMO gap for the lowest-energy structures from this work, and Ref. �20�. The symmetries for the original cages taken from carbon
fullerenes are also presented in parentheses for comparison. The average CN was calculated using a 2.65 Å cutoff.

This work Ref. �20�
SiN Sim@Sin Eb �eV/atom� CN Gap �eV� Sim@Sin Eb �eV/atom� CN Gap �eV�

Si30 Si2@Si28�D2� 3.796 3.53 0.795 Si2@Si28�Td� 3.789 3.47 0.737

Si31 Si3@Si28�Td� 3.816 3.74 0.963 Si3@Si28�Td� 3.815 3.81 0.570

Si32 Si4@Si28�Td� 3.823 3.88 0.357 Si4@Si28�Td� 3.823 3.88 0.291

Si33 Si3@Si30�C2v� 3.823 3.58 0.462 Si3@Si30�C2v� 3.824 3.58 0.572

Si34 Si4@Si30�C2v� 3.827 3.82 0.574 Si4@Si30�C2v� 3.824 3.76 0.473

Si35 Si3@Si32�C2� 3.831 3.54 0.604 Si3@Si32�D3� 3.814 3.43 0.463

Si36 Si4@Si32�D3d� 3.861 3.89 0.668 Si4@Si32�D3� 3.868 3.56 0.670

Si37 Si5@Si32�C2� 3.867 4.00 0.659 Si3@Si34�C2� 3.840 3.57 0.598

Si38 Si6@Si32�D3� 3.875 3.84 0.720 Si4@Si34�C2� 3.853 3.63 0.656

Si39 Si5@Si34�Cs� 3.882 3.79 0.787 Si5@Si34�C2� 3.873 3.69 0.487
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fairly close to our present results as m=2, 3, 4, 3, 4, 3, 4, 5,
6, and 5. Especially for Si37 and Si38, Eq. �1� predicts the
optimal numbers of m=4.78, 5.05, while our present calcu-
lations obtained m=5,6 and previous results were m=3,4
�20�. The comparison between those computational results
with the prediction by the empirical rule implies that the
space-filling picture is valid in the size range we studied and
that previous GA optimization within the TB model seems to
underestimate the number of endohedral silicon atoms in the
filled cages.

In previous experiments �24,25�, it was found that the
binding energies Eb per atom of SiN clusters �N�25� could
be roughly described by

Eb�N� = Eb��� − cN−1/3 �2�

where Eb��� is the binding energy per atom for bulk silicon
solid �experiment: 4.63 eV, DFT calculation at PBE-DND
level: 4.58 eV �19��. For the medium-sized range with 25

�N�70, a coefficient c=2.33±0.03 eV �25� was obtained
from the data by collision induced dissociation experiments
�24�. In Fig. 2, we plot the computed binding energies per
atom �Eb� for the lowest-energy structures of SiN clusters
�30�N�39� as a function of the inverse of cluster radius
N−1/3, along with the prediction by Eq. �2�. First, the theo-
retical binding energy increases gradually with increasing
cluster size, which is an essential requirement for identifying
stable medium-sized clusters �20�. The theoretical trend for
the increase of binding energy with cluster size agrees rea-
sonably with the experiment given by Eq. �2�.

In summary, DFT calculations have been performed to
search the lowest-energy configurations for medium-sized
SiN �30�N�39� clusters within the filled fullerene struc-
tural pattern. For each size, silicon fullerene cages with dif-
ferent topological structures and those filled by a different
number of silicon atoms have been constructed and opti-
mized using molecular dynamic relaxation followed by nu-
merical optimization, at the DFT level. For most cluster
sizes, the energies of the lowest-energy fullerenes cage struc-
tures obtained in this work are usually lower than those ob-
tained in previous theoretical calculations �20�. For Si37 and
Si38 the optimal filling and/or cage combination are found to
be Si5@Si32 and Si6@Si32, different from previously pro-
posed ones �Si3@Si34 and Si4@Si34� in Ref. �20�. The
present results agree well with an empirical space-filled
model, which assumes spherical fullerene cages filled with
atomic spheres. The computed binding energies for the
lowest-energy configurations agree reasonably with experi-
mental data. The present results indicate that one has to ex-
amine all the possible possibilities and to optimize them at a
first-principle level in order to find the lowest-energy con-
figuration of medium-sized silicon clusters within the struc-
tural pattern of filled fullerene cages.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural
Science Foundation of China �Grants No. 90206033, No.
10274031, No. 10474030, and No. 60478012�, the Founda-
tion for the Author of National Excellent Doctoral Disserta-
tion of the People’s Republic of China �Grant No. 200421�.

�1� R. L. Johnston, Atomic and Molecular Clusters �Tylor & Fran-
cis, London, 2002�.

�2� C. C. Arnold and D. M. Neumark, J. Chem. Phys. 99, 3353
�1993�.

�3� E. C. Honea, A. A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang,
J. G. Wacker, J. L. Fye, and M. E. Jarrold, Nature �London�
366, 42 �1993�.

�4� S. Li, R. J. Van Zee, W. Weltner, Jr., and K. Raghavachari,
Chem. Phys. Lett. 243, 275 �1995�.

�5� K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219
�1988�.

�6� Z. Y. Lu, C. Z. Wang, and K. M. Ho, Phys. Rev. B 61, 2329
�2000�.

�7� K. M. Ho, A. A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang, J.
G. Wacker, J. L. Fye, and M. E. Jarrold, Nature �London� 392,
582 �1998�.

�8� K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, and A.
A. Shvartsburg, Phys. Rev. Lett. 93, 013401 �2004�.

�9� F. S. Khan and J. Q. Broughton, Phys. Rev. B 43, 11754
�1991�.

�10� J. Song, S. E. Ulloa, and D. A. Drabold, Phys. Rev. B 53, 8042
�1996�.

FIG. 2. Binding energy per atom �Eb� of medium-sized SiN
�30�N�39� clusters as a function of the inverse of the cluster
radius N–1/3. The theoretical results �black squares� obtained for the
lowest-energy structures are compared to experimental data given
by Eq. �2�. We used the bulk binding energy Eb���=4.58 eV from
GGA calculations with a shift of −0.023 eV for a better
coincidence.

MA et al. PHYSICAL REVIEW A 73, 063203 �2006�

063203-4



�11� B. X. Li and P. L. Cao, J. Phys.: Condens. Matter 13, 10865
�2001�.

�12� Z. F. Chen, H. J. Jiao, G. Seifert, A. H. C. Horn, D. K. Yu, T.
Clark, W. Thiel, and P. V. R. Schleyer, J. Comput. Chem. 24,
948 �2003�.

�13� E. Kaxiras, Phys. Rev. Lett. 64, 551 �1990�; E. Kaxiras, and K.
Jackson, ibid. 71, 727 �1993�.

�14� D. A. Jelski, B. L. Swift, T. T. Rantala, X. F. Xia, and T. F.
George, J. Chem. Phys. 95, 8552 �1991�.

�15� J. Pan and M. V. Ramakrishna, Phys. Rev. B 50, 15431
�1994�; M. V. Ramakrishna and J. Pan, J. Chem. Phys. 101,
8108 �1994�.

�16� M. Menon and K. R. Subbaswamy, Phys. Rev. B 51, 17952
�1995�.

�17� Q. Sun, Q. Wang, P. Jena, S. Waterman, and Y. Kawazoe, Phys.
Rev. A 67, 063201 �2003�.

�18� J. L. Wang, X. L. Zhou, G. H. Wang, and J. J. Zhao, Phys. Rev.
B 71, 113412 �2005�.

�19� J. J. Zhao, J. L. Wang, J. Jellinek, S. Yoo, and X. C. Zeng, Eur.
Phys. J. D 34, 35 �2005�.

�20� S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng, J. Am. Chem.
Soc. 126, 13845 �2004�.

�21� I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W.
Michael Siu, and K. A. Jackson, Phys. Rev. Lett. 85, 546

�2000�.
�22� S. Yoo, X. C. Zeng, X. Zhu, and J. Bai, J. Am. Chem. Soc.

125, 13318 �2003�.
�23� M. F. Jarrold and V. A. Constant, Phys. Rev. Lett. 67, 2994

�1991�; R. R. Hudgins, M. Imai, M. F. Jarrold, and P. Dogourd,
J. Chem. Phys. 111, 7865 �1999�.

�24� M. F. Jarrold and E. C. Honea, J. Phys. Chem. 95, 9181
�1991�.

�25� T. Bachels and R. Schafer, Chem. Phys. Lett. 324, 365 �2000�.
�26� K. Fuke, K. Tsukamoto, F. Misaizu, and M. Sanekata, J. Phys.

Chem. 99, 7807 �1993�.
�27� M. A. Hoffmann, G. Wrigge, B. von Issendorff, J. Muller, G.

Gantefor, and H. Haberland, Eur. Phys. J. D 16, 9 �2001�.
�28� U. Ray and M. F. Jarrold, J. Chem. Phys. 94, 2631 �1991�. M.

F. Jarrold, Y. Ijiri, and U. Ray, ibid. 94, 3607 �1991�.
�29� URL: http://www.cochem2.tutkie.tut.ac.jp/Fuller/fsl/fsl.html
�30� M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J.

Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Mat-
ter 14, 2717 �2002�.

�31� B. Delley, J. Chem. Phys. 92, 508 �1990�; 113, 7756 �2000�.
�32� J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
�33� V. Kumar and Y. Kawazoe, Phys. Rev. Lett. 90, 055502

�2003�.

LOWEST-ENERGY ENDOHEDRAL FULLERENE¼ PHYSICAL REVIEW A 73, 063203 �2006�

063203-5


