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Faddeev-Yakubovski equations are solved numerically for 4He tetramer and trimer states using realistic
helium-helium interaction models. We describe the properties of ground and excited states, and we discuss with
a special emphasis the 4He-4He3 low energy scattering.
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I. INTRODUCTION

A helium atom is one of the simplest few-body systems.
Nowadays, its structure can be described theoretically with
an accuracy better than the spectroscopy one �1�. In spite of
this simplicity, the compounds of helium atoms display a
series of unique microscopic and macroscopic physical phe-
nomena.

The closed shell electronic structure, as well as the com-
pactness of the helium atom, makes it the most chemically
inert noble gas. Nevertheless, the very weak van der Waals
attraction between two distant He atoms is responsible for
the fact that at very low temperatures, both bosonic 4He and
fermionic 3He liquify. In addition, the extreme weakness of
the He-He interaction is decisive in explaining why liquid
helium is the only known superfluid.

As exciting is the physics of the atomic helium nano-
scopic structures �He multimers�, recent inspiring experi-
ments �2,3� have demonstrated the existence of bound di-
atomic 4He systems �dimers�—the ground state with the
weakest binding energy of all naturally existing diatomic
molecules. Moreover, a diffraction experiment projecting a
molecular beam of small He clusters on nanostructured trans-
mission gratings, allowed a direct measurement of the dimer
average bond length value �R�=52±4 Å. Such a large bond,
compared to the effective range of the He-He potential, en-

ables one to estimate its binding energy E�
�2�R�2

4m =1.1
+0.3/−0.2 mK, as well as the 4He-4He scattering length a0
=104+8/−18 Å.

The extreme weakness of the 4He dimer binding energy
requires a precise theoretical description of the ab initio
He-He potential, which results from subtracting the huge en-
ergies of separated atoms. Nevertheless, several very accu-
rate theoretical models �4–9� were recently constructed, pre-
dicting helium properties in full agreement with experiments.
These effective He-He potentials are dominated by the strong
repulsion �hard-core� at distances RHe-He�2 Å, where the

two He atoms are “overlapping.” At larger He-He distances,
the weak van-der-Waals attraction takes over, creating a shal-
low attractive pocket with a maximal depth of V0�10.9 K,
centered at RHe-He�3 Å. The strong repulsion of the He-He
potential at short distance, allows one to treat accurately
atomic He systems without having to take into account the
internal structure of single He atoms.

The physics of small He clusters is an outstanding labo-
ratory for testing different quantum mechanical phenomena.
The bound state of 4He dimer, at practically zero energy,
suggests the possibility of observing an Efimov-like state in
the triatomic compound �10�. The existence of this 4He
dimer bound state very close to threshold is also responsible
for a resonant 4He-4He S-wave scattering length a0
�104 Å, which is more than 30 times larger than the typical
length scale given by the van der Waals interaction l�3 Å.
The small He clusters low energy scattering observables
should therefore be little sensitive to the details of He-He
interaction and should thus exhibit some universal behavior.
This sharp separation of different scales can be exploited,
making He multimers a perfect test ground for effective field
theory �EFT� approaches �11–14�.

We present in this work a rigorous theoretical study of the
smallest 4He clusters. There exist in the literature a large
number of theoretical calculations on triatomic 4He �trimer�
�15–17�. However, the four-atomic 4He system �tetramer�,
being by an order of magnitude more complex in its numeri-
cal treatment, remains practically unexplored. Our study tries
to fill up this gap by providing original calculations for tet-
ramer bound and scattering states. In addition, some existing
ambiguities in triatomic 4He calculations �18� are discussed.

To describe 4He tetramer, Faddeev-Yakubovski �FY�
equations in configuration space are solved. In some cases,
this method may be cumbersome and numerically expensive.
It constitutes nevertheless a very general and mathematically
rigorous tool, with a big advantage over many other tech-
niques, that it enables a systematic treatment of bound and
continuum states.

The paper is structured as follows: in Sec. II we present
the theoretical framework used; in Sec. III we highlight our
4He trimer results. Section IV deals with four-atomic helium
systems and in Sec. V, we discuss the possible existence of
the rotational states in three-atomic and four-atomic 4He sys-
tems. Section VI concludes this work with the final remarks.
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To describe the interaction between the helium atoms, we
have used the potential developed by Aziz and Slaman �4�,
popularly referred to as LM2M2 potential. There exists sev-
eral equivalent interaction models. However, they all have
similar structure and quantitatively provide very close results
�17,19�.

All results presented in this paper are restricted to the
bosonic 4He isotope; therefore in the following, we omit the
mass number 4 and refer to 4He as He. All calculations use
�2

m =12.12 K Å2 as the input mass of He atoms.

II. THEORETICAL FRAMEWORK

A. Faddeev-Yakubovski equations

The Schrödinger equation is the paradigm of nonrelativ-
istic quantum mechanics. However, this equation is not able
to separate different rearrangement channels in the asymp-
tote of multiparticle wave function �w.f.�. Thus it does not
provide explicitly a way to implement the physical boundary
conditions for scattering w.f., which are necessary to obtain a
unique solution. Faddeev �20� have succeeded to show that
these equations can be reformulated by introducing some
additional physical constraints, what leads to mathematically
rigorous and unique solution of the three-body scattering
problem. Faddeev’s pioneering work was followed by
Yakubovsky. In �21�, the systematic generalization of Fad-
deev equations for any number of particles was presented.

One should mention that the Schrödinger equation may
still be applied when solving the few-particle bound state
problem. However, then one must deal directly with the total
systems w.f., which is fully �anti�symmetric and has quite a
complicated structure. Exploiting the knowledge of systems
symmetry one often tries to decompose this w.f. into only
partially �anti�symmetrized components, which have a sim-
pler structure and are more tractable numerically. One prac-
tical way is to decompose systems w.f. into so-called FY
components. Then FY equations often have an obvious ad-
vantage over the Schrödinger one, since it deals directly only
with FY components and avoids construction of a full system
wave function.

In what follows, we describe only four-particle FY equa-
tions; three-particle Faddeev equations are self-contained in
four-particle ones. The calculations presented in this work
were performed using the framework of differential FY equa-
tions developed by Merkuriev and Yakovlev �22,23�. The
major step in these equations is the representation of the
systems w.f. as a sum of 18 components: 12 of type K, de-
scribing the asymptotic behavior of different 3+1 particle
channels, and 6 of type H, describing the systems decompo-
sition into two clusters of two particles:

� = 	
i�j

Kij,k
l + 	

i�j,k�l

Hij,kl. �1�

Here �ijkl� indicates cyclic permutation of particle indices
�1234� �see Fig. 1�. These FY components are coupled by 18
FY equations. Since all particles are identical, several
straightforward symmetry relations can be established be-
tween different FY components. Using these relations, the

number of independent FY equations and components re-
duces to two:

�E − Ĥ0 − V̂�K12,3
4 = V̂�P+ + P−���1 + �P34�K12,3

4 + H12,34� ,

�E − Ĥ0 − V̂�H12,34 = V̂P̃��1 + �P34�K12,3
4 + H12,34� . �2�

Here P+= P12P23, P−= P23P12, and P̃= P13P24 are particle

permutation operators. Ĥ0 is the kinetic energy operator of

the system and V̂ is the potential energy operator for the
particle pair �12�. The coefficient � is a Pauli factor: �=1 for
bosonic systems and �=−1 for systems of identical fermions.

By applying a combination of permutation operators to
the FY components of Eq. �1�, one can express the w.f. of the
system by means of two nonreducible FY components:

� = �1 + �1 + P+ + P−��P34��1 + P+ + P−�K12,3
4 + �1 + P+

+ P−��1 + P̃�H12,34. �3�

It is convenient to treat Eq. �2� using relative reduced
coordinates. These coordinates are proportional to well-
known Jacobi coordinates, which are simply scaled by the
appropriate mass factors. We use two different sets of rela-
tive reduced coordinates, defined as follows:

xij
� =
2

mimj

mi + mj
�r� j − r�i� ,

yij,k
� =
2

�mi + mj�mk

mi + mj + mk
�r�k −

mir�i + mjr� j

mi + mj
� ,

zijk,l
� =
2

�mi + mj + mk�ml

mi + mj + mk + ml
�r�l −

mir�i + mjr� j + mkr�k

mi + mj + mk
�

�4�

for K-type FY components. mi and r�i are, respectively, the ith
particle mass and position vector. To describe H-type com-

FIG. 1. Faddeev-Yakubovsky components K and H. Asymptoti-
cally, as z→�, components K describe 3+1 particle channels,
whereas components H contain asymptotic states of 2+2 channels.
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ponents, another set of coordinates is more appropriate:

xij
� =
2

mimj

mi + mj
�r� j − r�i� ,

ykl
� =
2

mkml

mk + ml
�r�l − r�ki�

zij,kl
� =
2

�mi + mj��mk + ml�
mi + mj + mk + ml

�mkr�k + mlr�l

mk + ml
−

mir�i + mjr� j

mi + mj
� .

�5�

Using these coordinates, the kinetic energy operator is
expressed as a simple sum of Laplace operators:

H0 = −
�2

2m
	R −

�2

m
�	x + 	y + 	z� . �6�

Another big advantage of these coordinate sets is the fact that
the degrees of freedom due to the center of mass motion are
separated.

The dimension of the problem can be further reduced by
using the fact that an isolated system conserves its total an-
gular momentum J and one of its projections Jz. We deal
with systems of bosonic He atoms in their ground state,
which have a total spin equal to zero. In this case, the system
w.f. is independent of the spin and the orbital angular mo-
mentum is conserved separately. Using this fact, we expand
FY components on a partial-wave basis �PWB� of orbital
angular momentum and, omitting the spin:

Kij,k
l �x�,y�,z�� = 	


=�lx,ly,lxy,lz�

F

K�x,y,z�

xyz
��Ylx

�x̂� � Yly
�ŷ��lxy

� Ylz
�ẑ��LLz,

Hij,kl�x�,y�,z�� = 	

=�lx,ly,lxy,lz�

F

H�x,y,z�

xyz
��Ylx

�x̂� � Yly
�ŷ��lxy

� Ylz
�ẑ��LLz

. �7�

In this basis, the kinetic energy operator reads

Ĥ0 =
�2

m
− �x

2 − �y
2 − �z

2 +
lx�lx + 1�

x2 +
ly�ly + 1�

y2 +
lz�lz + 1�

z2 � .

In Eq. �7�, we have introduced the so-called FY ampli-
tudes F


K�x ,y ,z� and F

H�x ,y ,z�, which are continuous func-

tions in radial variables x, y, and z. The symmetry properties
of the w.f. with respect to the exchange of two He atoms
impose additional constraints. One should have amplitudes
only with an even value of the angular momentum lx,
whether these amplitudes are derived from K or H FY com-
ponents.

In addition, for H-type amplitudes F

H�x ,y ,z�, the angular

momentum ly should be even as well. The total parity of the
system � is given by �−�lx+ly+lz independently of the coupling
scheme �K or H� used.

By projecting Eq. �2� to the PWB of Eq. �7�, a system of
coupled integrodifferential equations is obtained. In general,

PWB is infinite and one obtains thus an infinite number of
coupled equations. This obliges us, when solving these equa-
tions numerically, to make additional truncations by consid-
ering only the most relevant amplitudes, namely those which
have the smoothest angular dependency �small partial angu-
lar momentum values lx, ly, and lz�.

B. Boundary conditions

Equations �2� are not complete: they should be supple-
mented with the appropriate boundary conditions for FY
components. It is usual to write boundary conditions in the
Dirichlet form, which at the origin should mean vanishing
FY components. However, the existence of a large strong
repulsion region �hard-core� corresponding to the inner part
of He-He potential brings additional complications. The rel-
evant matrix elements from the physical interaction region
�shallow attractive well� fade away in front of the huge re-
pulsive hard-core terms, thus resulting in severe numerical
instabilities.

However, such a strong repulsion at the origin simply
indicates that two He atoms cannot get arbitrarily close to
each other: for a repulsive region of characteristic size rh, the
probability that two particles get closer to each other at a
certain distance r=c�rh will be vanishingly small. It means
that the w.f. of the system vanishes in part of a four-particle
space, inside six multidimensional surfaces rij =c, where rij
is the distance between particle i and j. The most straightfor-
ward way to improve numerical stability would be to avoid
calculating the solution in at least part of the strong repulsion
region, and to impose by hand the wave function to be equal
to zero in this region. Nevertheless, due to the complex ge-
ometry of this domain in the nine-dimensional space of par-
ticle relative coordinates, this method is not easy to put into
practice.

A nice way to overcome this difficulty was proposed by
Motovilov and Merkuriev �24�. The authors showed that an
infinitely repulsive interaction at rij �c generates boundary
conditions for the FY components which can be ensured by
setting

�E − Ĥ0 − V̂�K12,3
4 = 0

�E − Ĥ0 − V̂�H12,34 = 0
for x � c �8�

and

K12,3
4 + �P+ + P−���1 + �P34�K12,3

4 + H12,34� = 0

H12,34 + P̃��1 + �P34�K12,3
4 + H12,34� = 0

for x = c .

�9�

In addition, FY components asymptotic behavior should
be conditioned as well. For the bound state problem, the w.f.
of the system is compact, therefore the regularity conditions
can be completed by forcing the amplitudes F


K�H� to vanish
at the borders of the hypercube �0,Xmax� �0,Ymax�
 �0,Zmax�, i.e.,

F

K�H��Xmax,y,z� = F


K�H��x,Ymax,z� = F

K�H��x,y,Zmax� = 0.

�10�
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In the case of elastic atom-trimer �1+3� scattering, the
asymptotic behavior of the w.f. can be matched by simply
imposing at the numerical border z=Zmax, the solution of the
3N bound state problem for all the quantum numbers, corre-
sponding to the open channel 
a. It is worth reminding that
only K-type components contribute in describing 3+1 par-
ticle channels:

F
a

K �x,y,Zmax� = f
a
�x,y� . �11�

Indeed, below the first inelastic threshold, at large values
of z, the solution of Eq. �2� factorizes into a He trimer
ground state w.f.—being a solution of 3N Faddeev
equations—and a plane wave propagating in the z direction
with the momentum k
a

=
 m
�2 �Ecm−EHe3

�. One has

F
a

K �x,y,z� � f
a

K �x,y�� ĵlz
�k
a

z� + tan���n̂lz
�k
a

z�� .

Here the functions f
a

K �x ,y� are the Faddeev amplitudes
obtained after solving the corresponding He trimer bound
state problem, whereas EHe3

is its ground state energy;

n̂lz
�k
a

z� and ĵlz
�k
a

z� are regularized Riccati-Bessel func-
tions. Equations �2� in conjunction with the appropriate
boundary conditions define the set of equations to be solved.
The numerical methods employed will be briefly explained
in the next section.

Once the integrodifferential equations of the scattering
problem are solved, one has two different ways to obtain the
scattering observables. The easier one is to extract the scat-
tering phases directly from the tail of the solution, by calcu-

lating the logarithmic derivative � �zF
a
K �x,y,z�

F
a
K �x,y,z� � of the open

channel’s K amplitude 
a in the asymptotic region:

tan � =

k
a
ĵl��k
a

z� −
�zF
a

K �x,y,z�

F
a

K �x,y,z�
ĵl�k
a

z�

�zF
a

K �x,y,z�

F
a

K �x,y,z�
n̂l�k
a

z� − k
a
n̂l��k
a

z�

. �12�

This result can be independently verified by using an in-
tegral representation of the phase shifts

k
a
tan � = −

m

�2 � �
a

�123� ĵl�k
a
z��V14 + V24 + V34��dV .

�13�

�
a

�123� is the trimer—composed from the He atoms indexed
by 1, 2, and 3—ground state w.f. normalized to unity and �
is normalized according to

��x�i,y� i,z�i� = �
a

�123��x�,y��� ĵlz
�k
a

z� + tan���n̂lz
�k
a

z�� .

�14�

Detailed discussions on this subject can be found in �25,26�.

C. Numerical methods

In order to solve the set of integrodifferential equations—
obtained when projecting Eq. �2� and the appropriate bound-

ary conditions Eqs. �8�–�11� into a partial wave basis—the
components Fi


 are expanded in terms of piecewise Hermite
spline basis:

Fi

�x,y,z� = 	 cijkl


 Sj�x�Sk�y�Sl�z� .

We use piecewise Hermite polynomials as a spline basis. In
this way, the integrodifferential equations are converted into
an equivalent linear algebra problem with unknown spline
expansion coefficients to be determined. For bound states,
the eigenvalue-eigenvector problem reads

Ax = EBx , �15�

where A and B are square matrices, while E and x are, re-
spectively, the unknown eigenvalue�s� and its eigenvector�s�.
In the case of the elastic scattering problem, a system of
linear algebra equations is obtained:

�A − EcmB�x = b , �16�

where x is a vector of unknown spline expansion coefficients
and b is an inhomogeneous term, generated when imple-
menting the boundary conditions Eq. �11�. For detailed dis-
cussions on the equations and method used to solve large
scale linear algebra problems, one can refer to �26�.

III. TRIMER SCATTERING AND BOUND STATES

As mentioned in the Introduction, trimer states have been
broadly explored in many theoretical works. Hyperspherical,
variational and Faddeev techniques were used to calculate
accurately bound state energies �16,17,19,27–30� as well as
to test different He-He interaction models. Nevertheless, we
found it useful to consider these states as a first step, before
the more ambitious analysis of He tetramer states could be
undertaken. Special emphasis will be attributed to He-He2
scattering calculations, which are less studied and for which
some discrepancies were pointed out �18,19�. Some argu-
ments will also be developed in favor of considering the first
trimer excitation as an Efimov state.

We present in Table I the convergence of the He trimer
states as a function of the partial-wave basis size. It contains
results for the ground �B3� and first excited �B3

*� state binding

TABLE I. Convergence of He trimer calculations obtained when
increasing partial wave basis. In the three columns are, respectively,
presented trimer ground �B3� and excited �B3

*� state energies in mK,
as well as atom-dimer scattering length �a0

�2+1�� in Å.

lmax B3 �mK� B3
* �mK� a0

�1+2� �Å�

0 89.01 2.0093 155.39

2 120.67 2.2298 120.95

4 125.48 2.2622 116.37

6 126.20 2.2669 115.72

8 126.34 2.2677 115.61

10 126.37 2.2679 115.58

12 126.39 2.2680 115.56

14 126.39 2.2680 115.56
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energies as well as for the He-He2 scattering length �a0
�1+2��.

The basis truncations were made by limiting partial angular
momentum values, applying selection criteria lx= ly � lmax.
One can remark that the convergence is monotonic and quite
similar for the He3 bound states and for the He-He2 scatter-
ing length calculations. These results demonstrate that in or-
der to ensure five digit accuracy, the partial wave basis must
include FY amplitudes with angular momentum values up to
12. However, for reaching a 1% accuracy, lmax=4 turns out to
be enough.

In Table II are summarized some relevant properties of
the trimer ground and excited states. Together with their
binding energies �B� we give some average quantities like
kinetic �T� and potential energy �V� values and moments of
interparticle distances xij. Our results are in perfect agree-
ment with other existing calculations �17,29,30�; the most
accurate of them have been included in this table for com-
parison.

The situation is more ambiguous for the He-He2 scatter-
ing length a0. Results obtained by Sandhas et al. �16�—
solving Faddeev equations—and Blume et al. �29�—using
hypherspherical harmonics—agreed with each other on a
scattering length value a0=126 Å. However, Roudnev �18�,
using also Faddeev equations, found a smaller value a0
=115.4±0.1 Å. It seems that in the Sandhas et al. �16� cal-
culation a relatively small grid was employed, which did not
allow one to disentangle the contribution of the virtual dimer
break up component in the asymptotic behavior of the wave
function. A more recent study �19� of the same authors pro-
vided a value of a0=115.5±0.5 Å, in full agreement with
Roudnev’s result.

Our calculations are also very close to this value. When
using a numerical grid limited to ymax=450 Å we obtain a0
=134 Å, still far from the final result. Note that hyperradial
grids employed in �16� were limited to �max=
x2+y2

=460 Å. The results of Table I have been obtained using a
grid with ymax=950 Å, i.e., He-He2 distance rmax=


3
2 ymax

=823 Å, which is large enough to reduce the grid-dependent
variations to the fourth significant digit. As a function of
rmax, the scattering length varies smoothly �see Fig. 2� and
converges towards the value a0���=115.2 Å, very close to
the one given by Roudnev, a0=115.4±0.1 Å.

Whether or not the trimer first excitation is an Efimov
�10� state has been an issue of strong polemics �32,33�. In

fact, when using effective range theory and describing the
system by zero-range interactions, it is not difficult to show
the appearance of an Efimov state. However, the problem
becomes complicated in calculations with finite range poten-
tials. Efimov states accumulate according to a logarithmic
law

N �
1

�
ln

�a�
r0

and thus the two body scattering length should each be time
increased by a factor �e��23 �or the dimer binding energy
reduced �e2��530 times� to allow the appearance of an
additional Efimov state. To handle this property, the grids
employed in calculations should be extremely large and
dense, capable on one hand to accommodate extended wave
functions, and on the other hand to trace the very weak bind-
ing of the third particle to the dimer. Such requirements can-
not be fulfilled in the calculations with realistic interactions.
Thus the basic clue in claiming excited trimer to be an Efi-
mov state is the fact that this state disappears when the in-
teratomic potential is made less attractive �15,34,35�. Actu-
ally, if this potential is multiplied by an enhancement factor
��1 then the following effect is observed: first, the differ-
ence between the trimer excited state binding energy �B3

*�
and the dimer one �B2� increases with �. Then, for larger
values of � the difference �B3

*−B2� monotonously decreases
and for ��1.2 the trimer excited state moves below the
dimer threshold and becomes a virtual one.

The demonstration of the Efimov effect can be accom-
plished only by showing accumulation of new states when
dimer binding energy decreases. Such a demonstration has
been given in Ref. �36� using semiempirical potential HFD-B
�6�. We would like to remark that the formation of new states
can be alternatively demonstrated by studying the
�-dependence of the three-body scattering length, without
the necessity of solving the bound state problem. In scatter-
ing calculations, the numerical solution of three-body equa-
tions can be reduced to the interaction domain and the wave
function extended outside this region using analytical expres-
sions �37�.

TABLE II. Mean values for He trimer ground and excited states.
In this table B, T, and V indicate, respectively, binding, mean ki-
netic, and potential energies calculated in mK; xij stands for inter-
particle distance.

Ground state Excited state

B �mK� 126.39 126.4 �17� 2.268 2.265 �17�
�T� �mK� 1658 1660 �17� 122.1 121.9 �17�
�V� �mK� −1785 −1787 �17� −124.5 −124.2 �17�

�xij

2 � �Å� 10.95 10.96 �17� 104.3 102.7 �30�
�xij� �Å� 9.612 9.636 �17� 83.53 83.08 �17�

�xij
−1� �Å−1� 0.135 0.0267

�xij
−2� �Å−2� 0.0230 0.0233 �31� 0.00218

FIG. 2. �Color online� Convergence of He-�He�2 scattering
length obtained when enlarging the solution domain of Faddeev
equations in He-�He�2 separation direction �variable y� with addi-
tional discretization points.
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In Fig. 3 we display the behavior of the He-He2 scattering
lengths, when the He-He potential is multiplied by a scaling

factor ��1, according to Ṽ=�V. In this figure, the He-He2
scattering length is plotted as a function of the fictive dimer
binding energy. One can see that, when decreasing �, scat-
tering length decreases. However, in the absence of Efimov
states one should expect them increasing, since reducing �,
the dimer target becomes larger. Once � is reduced to
�0.990, the scattering length becomes negative and for val-
ues ��0.979 it exhibits a singularity going from a0=−� to
+�. This singularity corresponds to the appearance of a new
trimer bound state �i.e., second excited state in He trimer�.
This analysis clearly demonstrates that the He trimer excited
state is an Efimov one. It is worth mentioning that for an
enhancement factor �=0.979, the He dimer binding energy is
only 0.046 mK.

IV. TETRAMER STATES

The major aim of this paper is to provide a comprehensive
analysis of the four-atomic He compound �tetramer�. The
first efforts to describe this system were made already in the
late 1970s by Nakaichi et al. �38� using a variational method.
Later on, variational Monte Carlo techniques were used by
several authors �29,39–41� to compute the tetramer ground
state. These methods are very powerful in calculating L�

=0+ bound state properties, but are seldom generalized to
describe excited states and are not appropriate for the scat-
tering problem.

FY techniques were also used by Nakaichi et al. �42� to
calculate the tetramer ground state binding energy and the
He-He3 scattering length. However, in order to reduce
the—at that time—outmatching numerical costs, some im-
portant approximations were made. The He-He potential was
restricted to S-wave and written as a one-rank separable ex-
pansion and the same expansion was used to represent the
FY amplitudes. These approximations led to a tetramer
ground state which is underbound by 40% with respect to
their own variational result �38�. A recent attempt to calcu-
late the He tetramer binding energy using S-wave FY equa-
tions was done in �43�, although without separable expansion
of FY amplitudes.

The FY calculations we present here contain no approxi-
mation other than the finite basis set used in the partial wave

expansion �7�. This basis set included amplitudes with inter-
nal angular momentum not exceeding a given fixed value
lmax, i.e., fulfilling the condition max�lx , ly , lz�� lmax. The
largest basis we have considered has lmax=8, and consists of
180 FY amplitudes, a number by two orders of magnitude
larger than in preceding calculations. Note that the smallest
basis, which is often referred to as S-wave approximation, is
obtained by fixing lmax=0 and requires only two amplitudes,
one of type K and one of type H. The convergence is dis-
played in Table III for the tetramer ground state binding en-
ergy and He-He3 scattering length.

The corresponding FY K-amplitudes are displayed in Fig.
4 as a function of the He-He3 distance r=
2

3z. One can see
the different scales involved in the bound state and zero en-
ergy scattering wave function.

The convergence of the tetramer calculations is sensibly
slower than the one observed for the trimer case �see Table
I�. Such a deterioration is due to the complex structure of the
involved FY components. Indeed, each He atom pair brings
an additional hard-core region; the ensemble of these regions
crosses over in the multidimensional configuration space
�48� and results into a single domain with nontrivial geom-
etry. Inside this multidimensional domain, the total wave
function must vanish by cancelling the contributions of the
different FY amplitudes, which can be achieved only at the
price of increasing its functional complexity.

FIG. 3. �Color online� The change of the atom-dimer scattering
length as a function of the dimer binding energy.

TABLE III. Convergence of the He tetramer calculations ob-
tained when increasing the partial wave basis of Eq. �7�. The two
columns represent, respectively, the tetramer ground state binding
energy in mK �B4� and the atom-trimer scattering length �a0

�3+1�� in
Å.

max �lx , ly , lz� B4 �mK� a0
�3+1� �Å�

0 348.8 �−855

2 505.9 190.6

4 548.6 111.6

6 556.0 105.9

8 557.7 103.7

FIG. 4. �Color online� Comparison of the functional dependence
of K-type FY components in one He atom separation from He3 core
direction. Single, dashed, and dotted line curves correspond, respec-
tively, to tetramer ground, excited state, and He-He3 zero energy
scattering wave functions.
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The convergence of the He-He3 scattering calculations is
also slightly slower than for tetramer ground state. This is a
consequence of the scattering wave function, which presents
a richer structure than the ground state one, as can be seen in
Fig. 4. Tetramer ground state has a rather simple geometry:
the four He atoms minimize their total energy by forming a
tetrahedron. The total energy of the 1+3 scattering state �E
�−126 mK� is considerably larger than the ground state one
�E�−558 mK� and provides more flexibility to each atom.
Furthermore, since the scattering length value is much larger
than the size of the trimer target, the scattering wave function
turns to be strongly asymmetric.

Despite these difficulties, the PW basis we have used en-
ables one to reach rather accurate results: the tetramer
ground state binding energy is converged up to 0.4%, while
the final variation of the scattering length does not exceed
2%. Our best result for the ground state binding energy of
He4, B=558 mK, is in perfect agreement with the B
=559�1� mK value, provided by several variational Monte
Carlo techniques �29,39,40�.

It is interesting to compare the bound state result with the
effective field theory �EFT� predictions. It follows from this
approach that systems governed by large scattering lengths
should exhibit universal properties. The wave functions of
such systems have very large extensions with only a negli-
gible part located inside the interaction region. The detailed
form of the short-range potential does not matter, since the
system probes it only globally. It should be therefore possible
to describe its action using only a few independent param-
eters �physical scales�. One scale is obviously required to fix
the two-body binding energy or the scattering length. Keep-
ing fixed the two-boson binding energy, the three bosons
system would collapse if the interaction range tends to zero,
a collapse known as the Thomas effect �44�. This indicates
that the three-body system is sensitive to an additional scale,
which can be determined by fixing one three-body observ-
able �for instance, the 3-particle binding energy or the 1+2
scattering length� �45,46�.

It seems �14� that the four-boson binding energies remains
finite if none of its three-boson subsystems collapse. Further-
more four- and three-body binding energies are found to be
correlated �14�. The simplest way to establish such a corre-
lation law is by using contact interactions. In this way, the
two-body binding energy is fixed by the parameter strength
of zero-range two-body force, whereas the three-body col-
lapse is avoided and its binding energy is fixed by introduc-
ing a repulsive three-body contact term. Using this model
Platter et al. �14� demonstrated that inside quite a large do-
main of dimer-trimer binding energy ratio �B2 /B3�, the cor-
relation between tetramer and trimer binding energies is al-
most linear. In the same study, a numerical approximation of
this correlation law was obtained.

If we take our dimers �BHe2
=1.30348 mK� and trimers

binding energies as the scales for EFT with contact interac-
tion, one obtains a tetramer binding energy of 485 and
491 mK, respectively, depending on which trimer energy—
ground or excited—is used. This result is only by 13%
smaller than our most accurate result.

One should remark that the EFT scaling laws are derived
using contact interactions, which act only in S-wave. There-

fore it would be more consistent to compare our values ob-
tained using S-wave approximation �lmax=0�. In this case, the
EFT formulas give, respectively, BHe4

=330 and 325 mK de-
pending on which trimer fixes the scale. These values must
be compared with our result BHe4

=348.8 mK, i.e., EFT is
only off by 6%.

The good agreement between exact and EFT results
proves the great prediction power of the last approach. EFT
works surprisingly well even beyond its natural limit of ap-
plicability: systems with a size significantly exceeding the
range of interaction. Note, indeed, that the He tetramer and
trimer ground states are rather compact objects, in which the
interatomic separation is about �10 Å, and therefore com-
parable with He-He interaction range �3 Å.

Let us discuss now the He-He3 scattering results. Nakai-
chi et al. �42�, using S-wave separable expansion of the out-
dated HFDHE2 potential, obtained a large and negative scat-
tering length a0=−116 Å. Using the same HFDHE2
potential and restricting to lmax=0 amplitudes we have got
also a negative, although much larger, scattering length value
a0�−5600 Å. This result is, however, very unstable, as a
consequence of the lmax=0 basis inability to describe the
nontrivial behavior of the FY components in the hard-core
region. If we add max�ly , lz��4 amplitudes, the scattering
length reduces to �−898 Å for the same HFDHE2 interac-
tion model limited to S-wave. Similar calculations with the
LM2M2 potential give a0�−450 Å. As one can see in Table
III, the full potential must be used in order to obtain con-
verged results. The presence of He-He interaction in higher
partial waves cardinally changes the physics of He tetramer:
not only the size but also the sign of the resonant scattering
length changes, thus indicating the emergence of a new ex-
cited state in this compound.

Another effort to evaluate He-He3 scattering length was
made by Blume et al. �29�. In their work, effective He-Hen
potentials were constructed starting from the same LM2M2
He-He interaction model. Without taking into account the
particle correlations, Blume et al. provided a positive He
-He3 scattering length a0=56.1 Å.

As already mentioned, the large positive scattering length
indicates the presence of a tetramer excitation close to the
trimer ground state threshold. Much physics about this tet-
ramer state can be learned by studying the behavior of the
zero energy 1+3 scattering w.f., or what is even more prac-
tical, its FY components. These components are only par-
tially symmetrized and have a more transparent asymptotic
behavior �23,47�. The structure of the K-type FY component
displayed in Fig. 4 proves that this state is the first tetramer
excited state: the corresponding open channel FY amplitudes
have two nodes in z, the He-He3 separation direction. The
first node is situated at �10 Å, i.e., inside the He3 cluster,
indicating the presence of a compact ground state. The sec-
ond node is situated at �103.7 Å, which coincides with the
scattering length value. This coincidence is not accidental: at
such He-He3 separations, the single He atom is already out
of the interaction domain of the He3 cluster. Close to this
node, the FY components reach the well-known linear be-
havior:
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F
a

K �x,y,z� � �He3
�x,y��
2

3
z − a0� . �17�

The factor 
2
3 in front of the z-coordinate is due to mass

scaling of Jacobi variables Eq. �4�.
A direct calculation of the He4 excited state represents

nowadays a hardly realizable numerical task. This state is
very weakly bound and its wave function very extended. In
order to numerically reproduce it, one is obliged to use a
very large and dense grid. On the other hand, one should be
able to ensure a high accuracy to trace a small binding en-
ergy difference. For the time being, it constitutes an insur-
mountable obstacle in the context of the large computing
power demanding four-body calculations.

Nevertheless the vicinity of the tetramers excited state to
the He-He3 continuum makes possible the extraction of its
binding energy from the scattering results. A bound state is
identified with a S-matrix Sl�k� pole on the positive imagi-
nary axis of the complex momentum plane. Since Sl�k� is
unitary, its general form close to the pole k= ik0 is

Sl�k� =
k + ik0

k − ik0
= e2i�. �18�

The momentum k0 is related to the tetramer binding energy
measured with respect to trimer ground state threshold by

	B0=
�2k0

2

2�3+1
, where �3+1=3m /4 is the reduced atom-trimer

mass.
On the other hand, the well-known effective range expan-

sion can be used to approximate the low energy phase shifts:

k2l+1 ctg � = −
1

al
+

1

2
rlk

2 + o�k2� . �19�

Combining relations �18� and �19�, one obtains an expression
for the bound state momentum k0 in terms of the low energy
parameters. For the He-He3 scattering states with lz=0, it
reads:

1

2
r0k0

2 − k0 +
1

a0
= 0. �20�

It follows from Eq. �20� that in order to obtain the un-
known binding energy it is sufficient to know the low energy
coefficients a0 and r0. The scattering length value a0 has
been already determined and the effective range r0 can be
extracted by fitting with Eq. �19� the He-He3 low energies
phase shifts. The corresponding extrapolation procedure is
illustrated in Fig. 5. One can see that inside the considered
momentum region, close to k= �k0�, the effective range ex-
pansion works perfectly well. The obtained binding energy,
	B0=1.087 mK, should not suffer much from higher order
momentum terms in the expansion �19�. Nevertheless, the
He-He3 effective range is pretty large, r0=29.1 Å, and influ-
ences significantly the extrapolated binding energy value. By
ignoring this term, one would get

	B0
�0� =

�2

2�3+1a0
2 , �21�

and a binding energy of only 	B0
�0�=0.751 mK will be ob-

tained, i.e., a value by 30% smaller.
We finally predict the existence of a L�=0+ tetramer ex-

cited state with binding energy BHe4

* =	B0+BHe3
=127.5 mK.

This value compares well with the EFT prediction �14� dis-
cussed above, which gives the range BHe4

* � �128–130� mK,
a dispersion due to the fact that the interpolation was done
for the total binding energy and not the sensibly smaller rela-
tive value 	B0.

The validity of the procedure we use to obtain the binding
energy of the excited tetramer can be verified in the dimer
case, for which direct bound state calculations causes no dif-
ficulty. The procedure is illustrated in Fig. 6. The accurate
dimer binding energy is BHe2

=1.30348 mK, a value very
close to 	B0=1.087 mK, and allows one to control the inac-
curacy made when disregarding higher order terms in expan-
sion �19�. By considering only two terms in the expansion
�19� we have got BHe2

=1.3036 mK, only differing in the fifth
significant digit from the directly calculated value. In addi-
tion, the He-He potential effective range extracted by fitting
the low energy phase shift is r0=7.337 Å. This value can be
independently calculated applying the Wigner formulas from

FIG. 5. �Color online� Extrapolation of He tetramer excited state
binding energy from the He-He3 scattering calculations. Low en-
ergy phase shift fit is made for k ctg � values as a linear function of
momentum squared �k2�.

FIG. 6. �Color online� He dimer binding energy extrapolated
from He-He scattering calculations. Low energy phase shift k ctg �
is fitted with a linear function of k2. Exact k ctg ��k2� values are
indistinguishable from the linear fit.
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the zero-energy scattering wave function, which gives r0
=7.326 Å, in nice agreement with the extrapolated one. Such
an agreement demonstrates the validity of our approach.

One should, however, mention that the very same proce-
dure is not applicable to the trimer excited state calculation.
If done, it would lead to a complex momentum k0
= �1.3±0.8i�10−2 Å−1. This is a consequence of a dimer
binding energy almost as small as 	BHe3

* =BHe3

* −BHe2
. In this

case, the scattering phase shifts are affected by two open
thresholds and thus a single channel S-matrix theory is not
appropriate. In He-He3 scattering, the nearest threshold He2
-He2 opens only for scattering energies Ecm�124 mK and
thus is well separated from the energy region of interest
��1 mK�.

It is interesting to compare the effective ranges for He-He,
He-He2, and He-He3 systems. They are, respectively, r0
=7.33, 79.0, and 29.1 Å. It is not surprising that the atom-
dimer effective range is the largest one: this is a consequence
of a dimer ground state which is the most extended of the
three considered targets. The atom-trimer effective range is
more than a third of the atom-dimer one and is significantly
larger than the range of the He-He potential. This suggest
that the trimer ground state has a structure with a sizable
probability to find single He atoms separated by 20–30 Å
apart from its center.

We can still use the He-He3 scattering w.f. to obtain a
relatively good description of the tetramer excited state. In
fact, the left-hand side of FY Eqs. 2 for the bound and zero-
energy He-He3 state differ only by a small energy term,
which has a little effect on the w.f. inside the interaction
region, dominated by large kinetic and potential terms. These
functions sensibly differ only in the He-He3 asymptotes,
where they can be described analytically �23,47� as a tensor
product of a strongly bound trimer in its ground state and a
plane wave of the remaining He atom with energy E-EHe3

. In
practice, the two w.f. differ only by FY amplitudes contrib-
uting to the open channels. For zero-energy scattering, one
has a linearly diverging open channel FY amplitude as de-
scribed in Eq. �17�. For a bound state these amplitudes con-
verge very slowly with a small exponential factor:

F
a

K �x,y,z� � �He3
�x,y�e−
2/3k0z. �22�

The closed channel FY amplitudes rapidly vanish being

shrunken by a relatively large e−�
mBHe3
/�2

exponent, with �
=
x2+y2+z2.

Using this approximation for the tetramer excited state
wave function, we have calculated some of its properties,
which are summarized in Table IV.

V. TETRAMER AND TRIMER ROTATIONAL STATES

Considering that 4He is a spinless atom, the rotational
states of 4He-multimers can be classified according to their
parity ��� and total orbital angular momentum �L�. FY com-
ponents are very useful to classify these states as well as to
analyze their properties. As we have mentioned in Sec. II, the
lx quantum number must be even �see Fig. 7�. It follows that
for He trimer, the L�=0− states are forbidden. Further we

classify the He trimer states into those which can break into
dimer and a freely propagating He atom, and those in which
dimer states are forbidden by symmetry requirements. In the
first group, we have states with L�= �1−,2+ ,3− , . . . �. To be
decay stable, these states should be more bound than dimer.
The other group is formed by the L�= �1+,2− ,3+ , . . . � states,
which can only break into three helium atoms.

Clearly, the 1− is the most promising candidate for a tri-
mer stable rotational state. This state is realized with the
smallest partial angular momentum, i.e., lx+ ly �1, and con-
sequently contains the smaller centrifugal terms in the
Hamiltonian. The nonexistence of this state would imply the
nonexistence of other states of the same decay group, i.e.,
L�= �1−,2+ ,3− , . . . �, since they involve larger centrifugal en-
ergies: lx+ ly �2. The existence of stable trimers in the sec-
ond group is very doubtful; the most favorable would be the
2− one, for which one has already lx+ ly �3.

In a similar way, we can classify the rotational states of
He tetramer �see Fig. 1�. In the first group, we have states
L�= �1−,2+ ,3− , . . . � for which the first decay threshold is the
trimer ground state. The most promising state inside this
group is the 1− one. For this state, the condition lx+ ly + lz
�1 must be satisfied.

In the second group, we have trimer decay stable states
L�= �1+,2− ,3+ , . . . �. These states can neither break into
trimer-atom pair nor into two dimers: their reference thresh-
old is dimer plus two free atoms. The L�=0− state represents
a special case: it can be broken only into four free atoms.

TABLE IV. Mean values for He tetramer ground and excited
states. In this table B, T, and V indicates, respectively, binding,
mean kinetic, and potential energies calculated in mK; xij stands for
interparticle distance.

Ground state Excited state

B �mK� 557.7 559 �40� 127.5 128–130 �14�
T �mK� 4107 1900

V �mK� −4665 −4850 �40� −1913


�xij
2 � �Å� 8.40 34.4

�xij� �Å� 7.69 7.76 �40� 24.8

�xij
−1� �Å−1� 0.156 0.088

�xij
−2� �Å−2� 0.0286 0.0251 �31� 0.013

FIG. 7. Coupling scheme for three-particle FY component.
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The FY formalism we are using allows one to calculate
multiparticle rotational states with the same ease as zero an-
gular momentum ones. However, none of trimer or tetramer
rotational states have been found stable. The nonexistence of
weakly bound states can be easily verified using low energy
scattering techniques for trimer and tetramer states in the first
decay groups �two cluster�. In addition, the calculated scat-
tering length turns out to be an indicator for the strength of
the interaction between the scattered clusters and thus tests if
near-threshold bound or resonant states are present.

For atom-dimer scattering in 1−, one obtains a large posi-
tive scattering length �a1�1/3=114.2 Å. If He-He interaction
is changed, this length scales with the dimer size. If we add
a small attractive three-body interaction to force a trimer
binding without affecting dimer, this scattering length be-
comes smaller. In fact, when the attractive three-body force
is weak, this scattering length reduces very slowly. Only
when this additional force becomes rather strong, close to the
critical value binding 1− trimer, the scattering length falls
down to −�. It crosses a singularity, passing from −� to +�
at the value where 1− trimer bound state appears, and then
again stabilizes to large positive value. This clearly indicates
that no trimer rotational state exist with quantum numbers
L�= �1−,2+ ,3− , . . . �. An even much stronger attractive three-
body force is required to bind the second group L�

= �1+,2− ,3+ , . . . � states, thus excluding the possible existence
of bound or even near-threshold resonant He trimer states.

The case of rotational tetramers is identical to the trimers
one. A positive scattering length �a1�1/3�12.28 Å is also ob-
tained for He-He3 scattering with L�=1−. This value is sen-
sibly smaller than the one for 1− atom-dimer scattering,
which simply results from the scaling with the target size. As
in trimers case, one has to apply a strong additional attractive
force to reduce this scattering length to −�, i.e., to force the
1− tetramers binding. Tetramers in the second decay group,
as well as L�=0−, seem to be even less favorable: they re-
quire an even stronger additional force to be bound. We con-
clude therefore that no bound or even near-threshold reso-
nant states should exist for tetramers with L��0+.

VI. SUMMARY

In this paper, we have outlined Faddeev-Yakubovski
equation formalism in configuration space. It enables a con-
sistent description of bound and scattering states in multipar-
ticle systems. This formalism was applied to study the light-
est �N=2,3 ,4� systems of He atoms using realistic He-He
interaction. We have presented accurate calculations for
bound He trimer and tetramer states, as well as for low en-
ergy atom-dimer and atom-trimer scattering.

Our main results concern the He tetramer states. We have
obtained a tetramer ground state binding energy of B
=558 mK, in perfect agreement with the most accurate varia-
tional results.

The first realistic calculation of He-He3 scattering length
has been achieved, with the prediction a0=104 Å. Such a
large value indicates the existence of a tetramer excited state
close to the trimer ground state threshold.

Its binding energy can hardly be determined in a direct
bound state calculation, due to the difficulties in accommo-
dating a very extended wave function. We have shown that
this energy can be obtained by applying an effective range
expansion to low energy 1+3 scattering states. We predict
the existence of a L�=0+ He tetramer excited state with a
binding energy of 127.5 mK, situated 1.09 mK below the
trimer ground state.

Finally, we have studied the possible existence of rota-
tional states in three and four atomic He compounds. It has
been shown that neither the He trimer nor the tetramer have
bound rotational �L��0+� states. The existence of corre-
sponding near-threshold resonances is also doubtful.
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