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Scattering of ﬁ(ls) off metastable helium atom at thermal energies
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Quantal calculations for scattering of ground-state antihydrogen by metastable (n=2S) helium atoms have
been performed using the nonadiabatic, atomic orbital expansion technique at thermal energies. The zero-
energy elastic cross sections of the present systems are much greater than the corresponding value for the
ground-state helium target. The low-energy elastic cross section for the singlet metastable helium [He(2 9]
target is higher than the corresponding value when the target is in the metastable triplet state [He(2 391
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I. INTRODUCTION

The last few years have witnessed a tremendous develop-
ment in experimental techniques for the production of the
antihydrogen atom (H) at cryogenic temperatures [1-6]. A
few properties of the antiatom have also been investigated

through actual experimentation. The early production of H at
CERN [1] and Fermi Lab [2] has stimulated theoretical stud-

ies of H interacting with normal atoms at ultracold tempera-
tures. Up to now a good few attempts have been made to

estimate different scattering probabilities for H-H system at
low incident energies using adiabatic [7,8] and nonadiabatic
[9] calculation techniques. The above theoretical studies may
be summarized as follows: in consideration of the same
physical effects, the adiabatic and nonadiabatic calculations
yield almost the same values for the s-wave elastic scattering
parameters for the H-H system at thermal energies; rear-
rangement processes have a marginal effect on the elastic
scattering although there is ambiguity about the values of the
rearrangement cross sections; the effect of the strong inter-
action is found to increase the elastic cross section to some
extent for an atomic hydrogen target [7,8,10]. Studies on the
interaction of the H-He system have also begin to appear in
the literature [11-15]. For a ground-state He target, the
strong interaction has been reported to have considerable ef-
fect on the elastic channel [14] for the system. Sinha and
Ghosh have performed nonadiabatic calculations for the

s-wave elastic scattering of H off an atomic lithium target
[16] at low energies. The high values of the elastic cross
section for this system suggest that Li(2s) may be a more
efficient buffer gas, compared to ground-state H and He, in
cooling H to ultracold temperatures. We have also investi-
gated the s-wave elastic scattering of antihydrogen atom off
atomic metal targets (Li to Rb) [17]. The leptonic potential
energy for the systems are expected to be free from any
barrier or hump.

From the academic point of view, investigations of H
scattering off different atomic and molecular targets are of
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importance as such studies will explore the interaction dy-
namics which are very little known to date. On the other
hand, from the experimental point of view H-He and H-H,
systems will provide information about the cooling of antia-
toms in different (He and H,) buffer gases. Information
about the elastic and inelastic cross sections of H with dif-
ferent atomic and molecular gas targets will be helpful in
proper design of experiments for effective cooling of exotic
atomic samples.

The investigation of atomic scattering processes involving
metastable atomic targets is always a fascinating field of
study as the metastable atoms have high dipole polarizability
and low excitation and ionization thresholds compared to the
corresponding values of the stable state. On the other hand,
the metastable atoms have lifetimes large enough to allow
for scattering experiments. For a scattering calculation in-
volving metastable atoms the lowest-order long-range inter-
actions, R™* for ion impact scattering and R~ for atom im-
pact scattering, are expected to dominate the scattering
dynamics which results in a high value for the elastic cross
section. The metastable states of rare-gas atoms have special
features; in addition to the properties of other metastable
atoms, they have large core excitation energy and high cross
sections (this has been confirmed theoretically [18] as well as
experimentally [19] for electron impact scattering). From the
theoretical point of view, the investigation of ground-state

antihydrogen [H(1s)] interacting with metastable helium at-
oms [He(2 'S)] or [He(2 3S)] is of prime interest. A recent
calculation [15] has reported the adiabatic leptonic potential

energy curve for the H(1s)+He(2 *S) system and estimated
semiclassically the rearrangement cross section. The adia-
batic potential energy curve reported for the system does not
show either a barrier or a hump. Such an interaction is a

characteristic of H+alkali metal systems rather than
antihydrogen—noble gas interactions. It is worth mentioning
that the lowest triplet state of helium, viz., He(2 35), has a
variety of experimental applications, ranging from its rel-
evance to Bose-Einstein condensation [20] and to the study
of surface magnetism [21]. On the other hand, the singlet
metastable state of helium, viz., He(2 'S), has application in
diagnosing the internal electric field of a Penning plasma
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[22]. Furthermore, recent experimental techniques are ca-
pable of producing both metastable states at ultracold tem-
peratures.

The peculiarities of metastable helium states and the ex-

perimental need for better design of experiments to cool H
have motivated us to undertake a theoretical calculation for
the scattering of the ground-state antihydrogen atom off
these metastable species at low incident energies where the
quantum effects are important. We have chosen the theoret-
ical model in such a way that due attention has been paid to
the long-range forces. Such a study will reveal the dynamics
of antihydrogen interaction with metastable helium species.
Furthermore, if a chamber contains some charged particles in
addition to buffer gases (He and H,) the charged particle will
execute Landau trajectories under the action of the trapping
magnetic field. Due to the repeated collisions of charged par-
ticles with the ground-state helium atom, some of the atoms
[23] will be excited to metastable states, which in turn may
interact with the antiatom. It has been argued [19] that the
presence of a small fraction of metastable helium may
change the discharge phenomena appreciably due to the high
collision cross section of electron off metastable helium.
Such a phenomenon is not very unlikely in a gas chamber
containing charged particles, especially electrons, provided
that the metastable helium has a large cross section com-
pared to that of ground-state helium for antihydrogen impact
scattering.

II. THEORY

For the sake of completeness of the present paper, here we
present a description of our theoretical model. The bound
state of the target (He) atom with wave functions ¢,(r,7,) is
described by the time-independent Schrodinger equation:

HHe¢n(;l’;2)=6J;l]e¢q(;l»;2) (1)

where 7, and 7, are the positions of the two electrons with
respect to the center of mass of the He atom and the Hamil-
tonian is given by

1 1 zZ Z 1
T L
2 2 ry ry |r 1—F 2|

H He = — (2)

To describe the bound-state wave functions of the helium
atom we used the orbitals due to Winter and Lin [24]. The
state of a He atom in which one of the electrons lies in the
ground state (1s) while the other is in any arbitrary state
(nlm, excluding 1s) is written as

¢115LM(;1’;2) = %@(rl)vnsLM(;Z) ip(rZ)UnSLM(;l)] (3)

where p(r)=vZ/me " is the normalized ground-state wave
function of the helium ion (He*) with Z=2 and

n-L

V51D = FY 1y (e DS, (= D e(nSL kA (4)
k=1

The optimized values for the range parameter (), expansion
coefficient (¢), and normalization constant (N) are provided
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by the authors of [24] together with the eigenenergies for
states up to 4 5D, where the multiplicity S=1 for helium
electrons having antiparallel spin alignments (singlet) and
S=3 for parallel spins (triplet). The total wave functions ¢
form an orthonormal basis set for the He atom. This wave
function treats both the electrons on equal footing and allows
the exchange of electrons of the He atom. It is to be noted
that the singlet states (ground and excited) of He have been
employed by us [12,13] for the ground-state target. Our
s-wave elastic scattering length without strong interaction
was confirmed later [14].

The bound-state wave functions ¢,(r,) of the projectile
atom are determined by the equation

Had (7)) = €13,(7,) (5)

where Fp is the position vector of the positron measured from
the antiproton, the center of mass of the antiatom. The
Hamiltonian of the projectile atom is

1 1
Hg=-=-V?> - —. (6)
20,

The total Hamiltonian of this interaction system is given by
1

H = Hye+ Hij— — Vg + V. (7)
2u

The separation between the centers of mass of the collid-

ing atoms is represented by R. The third term on the right-
hand side of the above equation represents the relative ki-
netic energy between the centers of mass of the system,
while the last term is the interaction potential and is given by
v Z VA 1
==t Z - s
R |R+rp| |R+rp—r1|

1 1

T+ .
R+7,—7 |R-r| |R-1

[u—

(8)

The theory of the close-coupling approximation (CCA) is
based on the expansion of the total wave function

Y(ry,75,7,,R) in terms of wave functions ¢,(r,) and

¢,(r1,1,) describing the bound states of H and He atoms:

w(;h;b;p’ié) = 2 &V(;p)qsn(;l’;Z)Fv,n(I—é), (9)
v

where F ,,’,7(13) represents the scattering function with the
usual asymptotic boundary conditions. The three-
dimensional coupled equation for the unknown scattering
amplitude in momentum space, f, ,,r;,,,](lg’ ,k), for the transi-

tion I_{V+Hen—>ItIV,+He,,,, is given by

AR AR 1
fV/ﬂ/;Vﬂ(k ,k) :ffrn/;,,”(k ,k) - ﬁ

N ff’ 7]’;1/’77"(I€I’E”).fl/’ﬂ’;li’/](lg",]g)
X > | dk” 5 a— :
1//7]// kVu”u_k + 1€
(10)
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Here v and 7 denote, respectively, the sets of quantum
numbers nlm of the projectile and the target (one-electron
excitation) atoms. The first-order (Born) scattering amplitude
is denoted by % and is given by

fff,]/;,,,?(k, k) __fd) (r )¢ (rlvFZ)e mt

X (7)) by Fro ) RdR dF dFydF, (11)
where k and k' are the momenta in the initial and the final
channels, respectively, and are related to the eigenenergies as

k2 _ er _
—+6H+Jle——+e +e (12)
2u 2

1

;—M—+—C is the reduced mass of the system and Q k

—k' is the momentum transfer. On performing the integration

over R, using the Bethe formula, the first-order amplitude for
direct scattering decouples into the projectile and target fac-
tors:

) H =
R (A ) wa (9) DY 4 (¢) (13)

Q27]77

where
H > PN f_; A‘_; N N
I,;;,,(Q)=f ¢,],(V1J”2)(Z—€lQ 1= "0 ¢, (7, Fr)dF\dr

(14)

and

1" (0)= f (7)1 = O G F)dF,. (1)

In partial wave analysis one expands the scattering ampli-
tudes (f or f%) in terms of the spherical harmonics as [13]

H-—>3 I3 3

!
|
Vkk MMy gt LM g

(L’ U )(Jl I J)
X
Mi m,  M;)\M; m;, M

p

fvn V77

(KT (7K )Y 1y, (k)

L’M

><< L L, J )(Jl l, J)
ML mp Ml Ml m, M
(16)

and a similar expression for fZ with 7V on the right side
replaced by B’. Here [ » and [, are the angular momenta of the
bound projectile and the target atoms, respectively, and J is
the total angular momentum of the colliding system, which
comprises three angular momenta /,, /,, and L. 7 represents
the set of quantum numbers (n,,, p,n,,L,,Jl,L). On simplifi-
cation, Eq. (10) becomes a one-dimensional coupled equa-
tion for unknown amplitudes 77 as
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T'(7'k';7k) = B (7' k' ; 7k)
1 BJ k/ 2K TI 7JIk/I I
_E dK'x" (T 5 ) ( T)
4 Vrr.”/r

K" +ie

(17)

To solve these equation one needs B’’s as input. With a
knowledge of f% [from Eq. (13)] one can get, by inverting
Eq. (16),

Bk 70) = (Z*J""D > 33
MMLML m ma mpmp
X(L’ I Jl)(J{ I J)
><< L L, J )(Jl I, J)
M; m, M,/ \M, m; M

x j i f ARV, B B, ).
(1s)

Once Eq. (17) is solved, all the necessary information
about the scattering parameters can easily be obtained. For
the Jth partial wave scattering at incident momentum k, the
real part of the elastic phase shift is given as

n_1< RC[TI( Toko: Toko) ]
277 - Im[TI(Toko, T()ko)]

Sy(ko) = > ta ) (19)

where 7,=(1,0,2,0,/,J) designates the initialization of the
system and the cross section for a transition I_{(ls)

+He(n,S)—>I_{(n;l;)+He(n,'Lr’) is given by

2J+1)
4k

oykg) = 2 T/ (7' k' 5 7oko) 2. (20)

I
L'J

III. MODELS

To investigate the elastic scattering of the ground-state

antihydrogen atom [H(1s)] off atomic metastable helium in
singlet [He(2 'S)] and triplet [He(2 >S)] states we employ the
close-coupling approximation. This model is ab initio and
nonadiabatic in nature. The effect of different physical fea-
tures can be accounted for in the calculation dynamically by
suitable choice of the basis set. The accuracy of the predicted
results certainly depends on the judicial choice of the expan-
sion basis. The systems under consideration are known to
have high values of dispersion coefficient [25]. As a result
the accuracy of any scattering calculation will depend on the
extent to which the long-range interactions are incorporated
in the calculation. In a CCA calculation the van der Waals
interaction, which arises from the interaction of the induced
dipoles of the colliding atoms, can be taken into consider-
ation by retaining the p states of the interacting atoms. The
coverage of this attractive effect depends on how much of
the induced dipole polarizability of the atoms is accounted
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for by the atomic orbitals used to generate the basis set. The
other higher-order long-range forces are included in the CCA
calculation by retaining still higher-angular-momentum

states. Guided by this, we chose the H wave functions in
such a way that the majority of dipole and quadrupole polar-
izabilities of the projectile atom are considered. Literature
reveals that the p and d pseudostates of the hydrogen atom,

viz., H(2p) and H(3d), account for these effects fully [26].
To compare the goodness of such a description of the pro-
jectile atom we have also used a set of projectile states that
contains n=3 and 4 pseudostates in addition to n=2 eigen-
states [27]. Inclusion of n=3 and 4 pseudostates also allows
us to take into account the effect of the projectile continuum
as a whole on the elastic channel. The latter set of pseu-
dostates has been previously found to be suitable in studying
the elastic scattering of e -atom [27], e*-atom [28], Ps-H
[29], and e™-Ps [30] systems. The basis sets used in the
present investigations are

H(1s,2s5,2p,3d) + He(2 55,2 5P), model A,

H(1s,25,2p,35,3p,3d,45,4p,4d)

+He(255,25P), model B,

H(1s,25,25,3d) + He(2 55,2 5P,3 55,3 5P,3 5D), model C,
ITI(ls,Zs,Zp_,?)g)
+He(255,25P,355,35P,35D,455,45P,4°D), model D.

All the four models listed above contain pseudostates of
the projectile atom; consequently, such CCA models are
termed pseudostate close-coupling approximations (PSC-
CAs). One of the main advantages of the CCA model is that
one does not need to calculate the leptonic potential for the
system separately. A sufficiently good description of the iso-
lated atomic states is sufficient for the dynamic generation of
the potentials (both short and long range) of interest.

The two-body dispersion coefficients for the interaction
of two atoms A and B are given by C3¥=(2n
-2) !E}memo/?(iw)af_l_l(iw)dw, where o' (i)
is the dynamic polarizability of order / of atom A at the
imaginary frequency w [31]. The values of the dispersion
coefficients accounted for in the CCA calculations can be
obtained by solving the Schrodinger equation for the system.
To have an idea about the dispersion coefficients, we employ
a first-order definition of the atomic polarizabilities [32]. The
coefficient Cg, as stated earlier, arises from dipole-dipole in-
teraction, and Cg from dipole-quadrupole and quadrupole-
dipole interactions. The values of the first three dispersion
coefficients accounted for in all the four CCA models for
both the systems are listed in Table I together with the cor-
responding standard values [25]. For the triplet target the
model D accounts for about 90% of Cg while for the singlet
case a coverage of more than 98% is achieved. The models A
and B estimate Cg rather crudely. This is due to the fact that
these two models do not contain any d state of the target
atom and consequently the dipole (projectile)—quadrupole
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TABLE I. Comparison of the dispersion coefficients (in a.u.)
Eis=—Ce/RO—Cg/R8—C,(/R'? for the interaction of ground-state
hydrogen [H(1s)] with different atomic targets. A[m] means A
X 10™.

System Ce Cy Cio
H(1s)+H(1s) [33] 6.499[0] 1.244(2) 3.285(3)
H(1s)+He(1'S) [33] 2.821[0] 4.184(1) 8.715(2)
H(ls)+He(2 'S)
Model A 1.149[2] 9.698[2] 0
Model B 1.149[2] 9.676[2] 0
Model C 1.231[2] 9.652[3] 1.401[5]
Model D 1.254[2] 1.025[4] 1.496[5]
Ref. [25] 1.274[2] 9.903[3] 1.027[6]
H(1s)+He(2 3S)
Model A 7.622[1] 6.499[2] 0
Model B 7.618[1] 6.485[2] 0
Model C 7.718[1] 3.144[3] 4.093[4]
Model D 7.760[1] 3.586[3] 4.820[4]
Ref. [25] 8.654[1] 4.959(3] 3.931[5]
H(1s)+Li(2s) [37] 6.654[1] 3.280[3] 2.230[5]

(target) contribution to Cg is absent, whereas the other two
models consider Cy satisfactorily (Table I). However, for the
singlet target, model D overestimates this effect by about
3%. The amount of overestimation may be reduced in still
higher-order calculations. Our last two models consider only
the quadrupole-quadrupole contribution to Cy,. It is to be
noted that the contribution to C;, arising from dipole-
octopole and octopole-dipole interactions has been totally
neglected and as a result the coefficient C,, has been under-
estimated. We argue that the values of Cyq and Cg accounted
for in our CCA calculations are more refined than those
listed in Table I and the incorporation of the long-range
forces is satisfactory.

IV. RESULTS AND DISCUSSION

This paper reports the results for ground-state antihydro-

gen [H(1s)] scattering by the n=2S metastable states of the
helium atom. As there is no other result for the systems
available, the present results could not be compared. Nona-
diabatic pseudostate close-coupling approximations with dif-
ferent basis sets have been employed to get an idea about the
convergence of the predicted values with added states in the
expansion basis. The s-wave elastic cross sections and phase
shifts are presented in the energy range 107'° to 107* a.u.
The highest energy considered here corresponds to a tem-
perature of order of 30 K.

A. Convergence

Tables II and IIT compare the performances of the differ-
ent sets of pseudostates used to address the effect of distor-
tion of the projectile atom. The two sets of hydrogenic
pseudo-states (models A and B) are found to predict s-wave
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TABLE II. Comparison of s-wave elastic phase shifts (rad) for H(1s)+He(2 *S) system using different

PSCCA models. A[m] means A X 10™.

E (a.u.) Model A Model B Model C Model D
10716 —0.1054[-4] —0.1060[—4] —-0.8566[-5] —-0.8407[-5]
1071 —0.1054[-3] —-0.1060[-3] —0.8566[—4] —0.8408[-4]
10712 —-0.1054[-2] —-0.1060[-2] —-0.8568[-3] —-0.8410[-3]
10710 —-0.1056[-1] —-0.1063[-1] -0.8581[-2] —-0.8422[-2]
1078 ~0.1056[0] ~0.1086[0] ~0.8594[1] ~0.8436[-1]
1076 [35] +0.5361[0] +0.5400[0] +0.6967[0] +0.7095(0)
107 +0.6635[1] +0.7485[1] +0.2830[0] +0.3054(0)

elastic results within an acceptable range of tolerance, for
both systems. The effects of the n=3 (model C) and 4 (model
D) states of He atom on the elastic channels have also been
examined (Tables II and III). The results are found to be
nearly convergent with the addition of He states in the ex-
pansion basis for the triplet metastable target while for the
singlet metastable target there is scope for improving the
result marginally. It is to be noted that the model D accounts
for about 98% of the exact value of C4 for a singlet target
while for triplet target our model D considers 90% of the van
der Waals interaction. The discrepancy among between the
exact value of ¢4 and that accounted for in model D is due to
the neglect of the continuum of the target atoms.

The phase shifts of Tables II and III are given in the range
+/4 [34]. Obviously these values will not always reproduce
the cross section as is the case for the last two energies
tabulated [35]. To avoid this and also to have an idea about
the continuous variation of phase shifts with incident mo-
mentum (k=12E/ ), we plot the phase shifts [36] of all the
models in the entire energy range. Figure 1 represents the
variation of the s-wave elastic phase shift for the triplet tar-
get, while Fig. 2 depicts the same for the singlet target. The
phase shifts for both systems are variationally consistent, i.e.,
with enlargement of the basis set the interaction potential
becomes more attractive, which results in higher values of
phase shifts at low energies.

H(1s)+He(2 3S) system

The results of s-wave elastic scattering of ground-state
antihydrogen atoms by the lowest triplet metastable He atom

is presented in this section. Table II compares the s-wave
elastic phase shifts [34] for the system as predicted by the
different PSCCA models, at a few selected energies covering
the range of the present study. In both the models A and B,
the tar%et atom is described by the two lowest triplet states,
viz., 2 °S and 2 3P, while the projectile antiatom is described,
respectively, by a four-state (two eigen- and two pseudo-
states) and a nine-state (three eigen- and six pseudostates)
basis. The phase shifts (Fig. 1) of models A and B differ
marginally over the entire range of energies. This shows that
both the sets of atomic orbitals selected for representing the
antihydrogen atom are equally good, at least for the thermal
energy s-wave elastic scattering of the present system. Figure
3 shows that the elastic cross sections of the system obtained
by using models A and B are indistinguishable from one
another all over the energy range considered in this investi-
gation. At very low energies where the cross section is inde-
pendent of incident energies, there is a difference of about
1% between the two sets of values for the elastic cross sec-
tion. In the four-state description of the projectile atom a
complete consideration of the atomic distortion via dipole
and quadruple moments has been incorporated in the calcu-
lation. Apart from this, a part of the continuum effect has
been introduced in the calculation. We could argue that both
the descriptions of the projectile atom are equivalent. So to
save computational labor, which is enormous in atom-atom
systems, we have opted for a four-state description of the
projectile.

A metastable state is known to have high values of dipole
polarizibility compared to its ground-state counterpart (see
Table I). Thus, the next natural search should be to find the

TABLE III. Comparison of s-wave elastic phase shifts (rad) for the H(1s)+He(2 'S) system using differ-

ent PSCCA models. A[m] means A X 10™.

E (a.u.) Model A Model B Model C Model D
10716 —0.3046[-4] —0.3040[—4] —-0.1976[-4] —0.1844[-4]
10714 —-0.3047[-3] -0.3041[-3] —-0.1973[-3] —0.1844[-3]
10712 —-0.3049[-2] —-0.3043[-2] -0.1977[-2] —0.1845[-2]
10710 —-0.3064[-1] —-0.3058[-1] —0.1988[-1] —-0.1851[-1]
10-8 —-0.3028[0] —-0.3023[0] —-0.1938[0] —0.1845[0]
1070 [35] -0.3667[0] —-0.3656[0] —0.5894[-1] -0.9227[-2]
1074 +0.5446[0] +0.5466[0] +0.7006[0] +0.7225[0]
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FIG. 1. s-wave elastic phase shift (modulus ) for H(ls)
+He(2 3S) scattering. Curves: circles, model A; dotted, model B;
dashed, model C; solid, model D.

convergence of the predicted results with the addition of still
higher states of the metastable atom. To this end, in model C,
we have included the n=3 single-excitation triplet states of
the He atom. The n=3 states of the He atom are found to
have an appreciable effect on the elastic scattering, as is
evident from Table II and Fig. 3. The zero-energy cross sec-
tion of model C decreases by about 34% from the corre-
sponding value of model A. Since the values for the scatter-
ing parameters predominantly depend on the long-range
behavior of the interaction potential, this indicates that triplet
n=3 states of He have a significant contribution to the dis-
persion potential. In model D, He (n=4) states have been
added to expansion basis in excess to the states of model C.
There is a marginal decrease (about 3.6%) in the zero-energy
elastic cross section of model D over that of model C. This
shows that the scattering parameters presented here (model
D) are nearly convergent with respect to the addition of
states of the colliding atom. It is evident from Fig. 3 that the
s-wave elastic cross sections for the triplet metastable target
of all four models are almost equal to each other for incident
energies greater than 107 a.u.

B. H(1s)+He(2 'S) system

Due to the appreciably long lifetime of the lowest meta-
stable triplet helium state, a lot of different experiments have
been performed on this state. On the other hand, n=2S sin-
glet metastable states have less practical importance, al-
though a few experiments have also been executed on this
atomic state. Presently He(2 'S) has been reported to have
appreciable abundance compared to He(1'S), which has
been utilized in Penning plasma diagnoses [22]. Here we
present the results of a pseudostate close-coupling calcula-
tion for the H(1s)+He(2 'S) system, using all the models
employed in the case of the triplet target. The metastable
singlet target differers from the triplet target due to the pres-
ence of the deexcitation channel, which may lead to Penning
ionization. We have performed the calculations for the

present system using the following two basis sets: H(1s)
+He(2'S) and H(1s)+He(1'S,21S). The elastic results of
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FIG. 2. s-wave elastic phase shift (modulus ) for H(ls)
+He(2 18) scattering. Curves: circles, model A; dotted, model B;
dashed, model C; solid, model D.

both the calculations are almost identical and the probability
of deexcitation of He to its ground state is found to be neg-
ligible. Guided by this finding, we have neglected the ground
state of the target. This allows us to treat the two metastable
species on equal footing. From the academic point of view,
the investigation of interaction dynamics in this system and
comparison with the corresponding triplet case are of impor-
tance as the dispersion coefficients for the interaction for
H(ls)+He(2 'S) system are greater than the corresponding
values for H(1s)+He(2 3$) system (see Table I). That is, for
the singlet He target the long-range interaction will be more
attractive than that for the triplet target.

Table III compares the s-wave elastic phase shifts for the

H(1s)+He(2 'S) system using all four PSCCA models [34].
The phase shifts of models A and B are almost identical,
showing once again that the two pseudostate descriptions of
the antihydrogen atom are nearly equivalent. The very low-
energy cross sections of models A and B differ by less than
0.4%. As in the case of the triplet target, here also the n=3
states (singlet) of the helium atom have considerable effect
on the elastic channel. The cross section of model C is even

2
a

S-wave elastic cross section (units of ra ;)

10°F

—
(=]
[
e

for He(2°S) target
3,

1072 10" 10" 10° 10® 107 10° 10° 10*
Incident energy (a.u.}

FIG. 3. s-wave elastic cross section (in units of 7m(2)) for

H(1s)+He(2 %) scattering. Curves: circles, model A; dotted, model
B; dashed, model C; solid, model D.
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FIG. 4. s-wave elastic cross section (in units of wa(z)) for

H(1s)+He(2 'S) scattering. Curves: circles, model A; dotted, model
B; dashed, model C; solid, model D.

less than half the value obtained in model A. This is nothing
but the manifestation of the dominance of the van der Waals
interaction of the system. The inclusion of n=4 states of the
target atom in model D results in a decrease in the cross
section by about 13% from the result of model C. This de-
crease is about 3.6% for the triplet target. This shows that
even n=4 singlet states are very important in determining the
elastic scattering parameters. In other words, a comparison of
the results of the two systems shows that the effect of the
long-range forces is more important for the singlet meta-
stable He than for the triplet. One of the reasons for the
discrepancy of the convergence of the scattering parameters
of the systems may be due to the neglect of the stable ground
state in the case of the singlet metastable target. However,
our test calculations with simple basis sets show that the
inclusion of the deexcitation channel has hardly any effect on
the elastic channel. As for the triplet target, here also all the
four models predict nearly equal values (Fig. 4) for the elas-
tic cross section for energy greater than 107 a.u. The low-
energy elastic cross section for the metastable singlet target
is greater than the corresponding values for the triplet target.

C. Scattering lengths

We have performed calculations down to 107! a.u. for
both the systems and calculated the scattering lengths using
effective range theory. We have used the values of phase
shifts in the energy range 107! to 107® a.u. In this range the
s-wave cross sections for both the systems obey Wigner’s
threshold law, i.e., cross sections are independent of incident
energy. The scattering length is a measure of the cross sec-
tion for a system with zero relative velocity between the
colliding atoms. A knowledge of the scattering length also
provides the values for the phase shifts in Wingner’s region,
i.e., in the region of constancy of the cross section. Table IV
displays the scattering lengths for the systems using all four
PSCCA models. It is found that the scattering length for the
triplet target is almost convergent with respect to the addition
of the atomic states in the basis set, while for singlet helium
there is scope to improve the results by adding still higher
(n>4) states of the target atom. However, the present trend
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TABLE 1V. s-wave scattering length (in a.u.) for both
systems.
System Model A Model B Model C  Model D
f(1s)+He(2 3S) 19.44 19.54 15.80 15.51
H(1s)+He(2 'S) 56.19 56.08 36.45 34.02

shows that the improvement will not be significant.

The values of the scattering parameters are mostly gov-
erned by the asymptotic nature of the interaction potential. A
comparison of the dispersion coefficients (Table I) shows
that the asymptotic potential for the singlet helium target is
more attractive than the triplet one. That is, the deformations
(arising from dipole and higher-order moments) of the meta-
stable helium targets are greater for the singlet state than for
the triplet one. This fact has been well manifested in our
CCA calculations; the s-wave elastic scattering length for the
collision of ground-state antihydrogen with metastable sin-
glet helium is much greater than the corresponding value for
the triplet target.

A comparison of the result of model A with those of
model C and D show that the asymptotic potentials of order
higher than R~® have considerable effect on the thermal en-
ergy elastic scattering. In view of the variation of the scat-
tering length with the co-efficient of the asymptotic potential
[38], it is evident that the short-range interaction also influ-
ences the low-energy scattering to some extent. Thus, in cold
atomic collisions, the value of the scattering length is very
sensitive to the details of the interaction potential. The sys-
tematic improvement of our present scattering length for
each system shows that the potential generated dynamically
within the CCA gets refined consistently with the enlarge-
ment of the basis set.

D. Cooling of H(1s)

The rate of cooling of H(1s) through evaporation in a
buffer gas depends on the values of the elastic cross section
of the antiatom with the buffer gas. The zero-energy cross

sections for the scattering of H(1s) off metastable helium
atoms are much greater than the corresponding values for
H(ls) and He(1 'S) targets. From that point of view, the
metastable He may be considered to be an efficient candidate
as buffer gas. Furthermore, the small mass of He compared
to other targets (except hydrogen and its isotopes) will result
in small transfer of momentum by the buffer gas to the an-

tiatom. One defines the efficiency of cooling H, taking H as

reference, as f° :ﬁ%% Table V compares the efficiency of
evaporative cooling of the ground-state antiatom in different
atomic buffer gases. It is found that for the metastable he-
lium targets the elastic cross sections at thermal energies are
much greater than that for the ground-state target. Such a
feature of the elastic cross section has also been noticed for
electron impact scattering off different helium states [18].
Since the rate of evaporative cooling is directly proportional
to the elastic cross section, antihydrogen may be cooled ef-
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TABLE V. Comparison of efficiency of cooling, f, of H(1s) by
different atomic buffer gases.

Target Scattering length (a.u.) Efficiency
"H(1s) [39,40] 8.19 1
“He(1 1) [12] 271 0.1
‘He(2 1) 34.02 431
“He(2 %) 15.51 0.90
"Li(2s) [16] 48.49 5.01

ficiently in the n=2 metastable helium buffer gases than
ground-state helium buffer gas.

V. CONCLUSION

The present study reports the s-wave scattering param-

eters (phase shift, scattering length and cross section) for H
interacting with metastable atomic heliums He(2 'S) and
He(2 3S) targets in the energy range 107'° to 10 a.u. A
nonadiabatic, quantal coupled-state model has been used to
investigate the systems. The total wave function of the sys-
tem has been expanded in terms of the orbitals describing the
bound states of the individual atoms. All the short- and long-
range potentials can be generated dynamically in the calcu-
lation. The present CCA models include the long-range po-
tential properly as is evident from Table I. Since for both the
systems under consideration the interaction potentials (both

PHYSICAL REVIEW A 73, 062710 (2006)

long and short range) are of importance, the projectile atom
has been described in two different pseudostate bases
(PSCCA). It has been found that the two sets of pseudostates
used to describe antihydrogen atoms for both systems predict
nearly the same results for the elastic scattering parameters.
We have included up to n=4 states of the target He atom in
the expansion basis. With the extension of the basis set, the
present scattering lengths for both the systems get improved
unambiguously, which stands in favor of the consistency of
our calculation. Our results for the metastable triplet target,
ie., He(2 3S), are more accurate than those for the singlet
target. The low-energy elastic cross sections for antihydro-
gen scattering of the lowest metastable singlet and triplet
helium targets are approximately 150 and 31 times greater
than the corresponding values for the ground-state target.

The present investigation has not considered the effect of
rearrangement channels and of the strong interaction on the
elastic scattering. The inclusion of these two effects will
modify the present results. However, the trend of the results
for both systems suggests that present study provides reliable
estimates for the s-wave elastic scattering parameters without
the effects of strong interaction and rearrangement processes
on elastic channel.
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